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Abstract

The broad interest in rapid solidi�cation processes originates from the variety of non-equilibrium
microstructures found in the solidi�ed materials; most familiar examples are dendrites, lamellar
eutectics, cellular and banded structures. In spite of the deep e�orts devoted to this subject by
the scienti�c community, the interfacial dynamics is far from being well understood. The aim
of this article is to review some recent theoretical developments, which give a di�use picture
of the interfacial region. A new microscopic approach, based on the stochastic dynamics of a
lattice of Potts spins, is also discussed. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Rapid solidi�cation phenomena play a major role in many �elds such as mate-
rial engineering, crystal growth, chemistry and physics [1]. As the �nal properties of
the solid material depend signi�cantly on the details of the growth process, the under-
standing and prediction of the interfacial dynamics is of crucial importance. For pure
substances, the growth rate is controlled by the di�usion of the latent heat released
at the solid–liquid interface; for alloy solidi�cation both heat and solute di�usion are
the limiting factors. The classical approach to describe the interfacial dynamics is for-
mulated in terms of a moving boundary problem. The di�usion equation of heat (and
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eventually of solute) is complemented with boundary conditions at the moving front,
re
ecting two di�erent constraints: (i) conservation law for energy (and solute) at the
interface, and (ii) constitutive law which relates the chemical potential jump across
the interface to the growth rate. Point (ii) requires a separate modellization of the
interface kinetics. It should be mentioned that the contradiction between the sharp
boundary conditions and the di�use nature of the interfacial region poses delicate prob-
lems when the model is applied to the description of fast transient growth [2]. A more
recent method to investigate solidi�cation processes is based on the phase-�eld model
(PFM) [3,4]. In this model a non-conserved order parameter characterizes the phase of
the system at each point. A suitable free-energy (or entropy) functional is then con-
structed, that depends on the order parameter as well as on the associated (conserved)
�elds and their gradients. The functional derivatives of this functional with respect to
such order parameter and �elds determine the evolution of the system towards equi-
librium. Studies conducted on solidi�cation of both pure substances and binary alloys
[5,6] pointed out that the PFM incorporates in a natural fashion the e�ects of inter-
face curvature and non-equilibrium phenomena as the trapping of solute into the solid
phase and the kinetic undercooling of the solid–liquid interface. Moreover, describing
the interface as a region of �nite thickness, gives a more natural and consistent picture
of the solidi�cation front.
The existing approaches to the problem represent at di�erent degrees a coarse-grained

picture of the microscopic processes. In fact, thermal 
uctuations are not included in
either model. An alternative approach consists in starting from the level of descrip-
tion of the Hamiltonian together with a microscopic dynamics of stochastic character,
and to recover the observed macroscopic behavior at a macroscopic and mesoscopic
scale without coarse graining the model [7,8]. This task avoids some of the tradi-
tional di�culties such as the use of adhoc free-energy functional in the PFM and the
need to postulate sharp boundary conditions, in contradiction with the di�use nature of
the interfacial region, in the free-boundary model. This microscopic statistical model
(MSM) has been exploited in some recent studies on rapid solidi�cation of both pure
substances and binary alloys.
Some of the most relevant results obtained starting from the PFM and MSM are

reviewed hereafter. Section 2 is devoted to solidi�cation of pure substances, and
Section 3 to alloy solidi�cation. The concluding remarks follow in Section 4.

2. Solidi�cation of pure substances

Investigations on the solidi�cation of pure substances conducted through the phase-
�eld model were at �rst directed to demonstrate that the model equations reduced
asymptotically to the free-boundary formulation when the interface width tends to
zero. The control parameter for the interface velocity v is the non-dimensional un-
dercooling �, de�ned as � = cp(Tm − T∞)=L, where cp is the speci�c heat, T∞ the
far-�eld temperature and Tm the equilibrium melting temperature; L is the heat of
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fusion. One-dimensional numerical simulations [9] showed that the model properly de-
scribed the di�usional regime for �¡ 1 (with v decaying as ˙ t−1=2) and the steady
regime for �¿1. Numerical studies of the growth of a single dendrite were conducted
in two dimensions and attention was focussed on the selection mechanism of the den-
drite tip operating state, which intrigued the scienti�c community for a long time. It
was con�rmed that in free growth conditions in order to have a stable and steady tip
propagation, anisotropy of the surface energy is required [10]: the dendrite tip radius
� and the velocity vtip are related to the anisotropy strength � through the dependence
�2 vtip ˙ �−7=4. When the growth occurs in a narrow channel, the intrinsic anisotropy
induced by the channel boundaries allows steady tip propagation even for isotropic
surface tension [11]. The phase-separation dynamics of an initially undercooled melt
was also studied numerically within the framework of the phase-�eld model. In the
later stage of the growth process, the evolution is dominated by the di�usion of the
residual heat in the system and leads to a scaling regime characteristic of a conserved
dynamics, with characteristic power-law growth of the average domain size proportional
to t1=3 [12]. These numerical results were corroborated by the solution of a spherical
version of the PFM which lead to the prediction of crossover from a t1=2 behavior to
an asymptotic t1=3 growth law [13–15].
The microscopic statistical model (MSM) is based on a lattice dynamics in which

a Potts spin variable describing the local phase is associated to each lattice point;
the heat conduction mechanism is implemented adding to each site additional de-
grees of freedom, the Creutz demons, which follow a conserved dynamics. The model
has proved able to properly describe the di�usive (�¡ 1) and the kinetic (�¿ 1)
regimes for the one-dimensional growth [7]. In two dimensions a morphological insta-
bility results in a front pattern which characteristic length is in good agreement with
the predictions of the Mullins Sekerka analysis.

3. Alloy solidi�cation

The analysis of the microstructures formed in rapid solidi�cation of binary alloys,
evidenced that the partition coe�cient k (i.e., the ratio cs=cl of the solute concentration
in the growing solid to that in the liquid at the interface) increases from the equilib-
rium value ke towards unity at large growth rate. This phenomenon was termed “solute
trapping”. Aziz [16], starting from a di�usional analysis across a steadily moving inter-
face, was able to determine a dynamic phase diagram; the dependence of the partition
coe�cient on the growth velocity is given in the form

k(v) =
ke + v=vd
1 + v=vd

(1)

being ke the equilibrium value for a stationary interface, and vd a characteristic velocity
describing the di�usional solute redistribution across the moving front; vd is generally
expressed as vd = D=a, where D is the interface solute di�usivity and a is the width
of the interfacial layer.
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Fig. 1. The oscillatory dynamics of the solidi�cation front.

The dynamic phase diagram is generally employed to provide the non-equilibrium
boundary conditions needed to solve the free-boundary di�usional problem. However,
this method hides a basic contradiction. The moving front is treated, under all respects,
as in�nitely thin layer, whereas Eq. (1) originates from a di�use interface picture of
the solidi�cation process (for a sharp interface a = 0, vd =∞ and no solute trapping
should occur). This ambiguity emerges in the description of time dependent processes:
solute relaxation across the interface is not instantaneous but takes time of the order
� ∼ a2=D = a=vd, and the free-boundary equations give an unrealistic picture of the
process when the transient characteristic time is of the order of �. On the contrary, the
phase-�eld model intrinsically accounts for �nite time e�ects in the interfacial dynam-
ics. As an example [2], we refer to the oscillatory dynamics observed in some rapid
directional solidi�cation experiments (i.e., solidi�cation driven by a thermal �eld which
moves at constant velocity V0 with a thermal gradient G). Fig. 1 shows the results of
a phase-�eld simulation for a Ni–Cu alloy: the interface velocity is represented versus
time, for V0 = 700 and G = 40 K (except for temperatures, dimensionless units are
used, scaling lengths to the interface width a and times to a2=D. The process never
reaches a steady regime, and the interface velocity continuously oscillates around the
average value V0. Here � is of the order of 10−5, and the fast transients shown in
Fig. 1 exhibit Fourier components comparable with 1=�; then we should observe a
breakdown of the free-boundary picture. This suggestion is con�rmed by Fig. 2, where
the cycle described by the partition coe�cient, as given by the phase-�eld simulation
(solid dots), is compared with the predictions of Eq. (1) (solid line). We note that
the partition coe�cient is not a uniquely de�ned function of the interface velocity, but
shows an hysteretic behaviour and deviates from the free-boundary predictions during
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Fig. 2. The partition coe�cient versus the interface velocity along the cycle described by the solidi�cation
process.

a signi�cant portion of the cycle. In the MSM [8] for alloy solidi�cation the local
phase is described through a discrete Potts state variable which follows a stochastic
non-conserved dynamics; the chemical species is associated with a spin variable chang-
ing according to Monte Carlo spin-exchange dynamics in order to conserve the number
of particles of each species. These two variables allow to de�ne an Hamiltonian which
models a binary mixture undergoing a solid–liquid phase separation, driven by the
competition between the larger entropy of the liquid and the lower energy of the solid.
The mean �eld approximation of the model results in a lens-shaped equilibrium phase
diagram, characteristic of ideal solutions. The o� equilibrium dynamics is character-
ized by the di�erent frequencies with which one attempts to change the two variables,
re
ecting the two di�erent time scales of the solidi�cation process and of the solute
di�usion. The model has been solved in directional solidi�cation conditions. It was
observed that the width of the interfacial layer is of the order of several lattice sites.
Figs. 3 and 4 show the solute pro�le for two di�erent values of the rate of attempts fd
for the species variable. It can be observed that the concentration gap at the interface
increases with increasing fd. This is a manifestation of the trapping of solute into the
solid phase. At high di�usion rates the solute redistribution across the advancing front
is very e�ective and the partition coe�cient approaches the equilibrium value ke. At
low values of fd the di�usional mechanism is too slow with respect to the growth
rate and the solute has no time to be e�ectively rejected across the interface; as a
consequence the concentration gap decreases and the partition coe�cient approaches
unity.
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Fig. 3. The solute pro�le for directional solidi�cation. The rate of attempts for the species variable is fd=16
per each Monte Carlo step; xI locates the interface position.

Fig. 4. The solute pro�le for directional solidi�cation. The rate of attempts for the species variable is fd=40
per each Monte Carlo step; xI locates the interface position.

4. Conclusion

Di�use interface models give a realistic picture of rapid solidi�cation processes, ac-
counting for non-equilibrium phenomena and �nite-time e�ects. Phase-�eld simulations
allowed to gain more insight into the interfacial dynamics underlying the formation
of dendritic patterns and the late stage coarsening of solid islands. With respect to
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the free-boundary approach alloy solidi�cation is more accurately described for fast
transient growth. The stochastic behavior intrinsic to the microscopic statistical model
properly accounts for the 
uctuations; the model has proved able to predict the mor-
phological instability of the solidi�cation front and non-equilibrium e�ects as solute
trapping.
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