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Time-dependent properties of interacting active matter: Dynamical behavior of one-dimensional
systems of self-propelled particles
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We study an interacting high-density one-dimensional system of self-propelled particles described by the
active Ornstein-Uhlenbeck particle model where, even in the absence of alignment interactions, velocity and
energy domains spontaneously form in analogy with those already observed in two dimensions. Such domains are
regions where the individual velocities are spatially correlated as a result of the interplay between self-propulsion
and interactions. Their typical size is controlled by a characteristic correlation length. In this work, we focus on
a lesser-known aspect of the model, namely, its dynamical behavior. To this purpose, we investigate theoretically
and numerically the time-dependent velocity autocorrelation and spatiotemporal velocity correlation functions.
The study of these correlations provides a measure of the average lifetime and, thus, the stability in time of the
velocity domains.
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I. INTRODUCTION

In the last period, there has been an upsurge of interest in
the study of systems of self-propelled particles that convert
energy into directed and persistent motion. Certain biological
systems such as run-and-tumble bacteria or crawling cells,
as well as nonbiological systems such as self-driven colloids
or artificial swimmers, commonly referred as active matter,
can be described in terms of effective models able to capture
their salient features [1–3]. Active particles display a very rich
phenomenology, such as their accumulation at the boundaries
[4–7] and near rigid obstacles [8–13] or a kind of nonequi-
librium phase-coexistence, known as motility induced phase
separation (MIPS) [14–18] occurring even in the absence
of attractive [19–28] or depletion interactions [29]. Self-
propelled particles are far-from-equilibrium systems, showing
several dynamical anomalies which have not a Brownian
counterpart [30,31]. A recently reported phenomenon is the
formation of large domains characterized by the tendency
of the particles toward a common alignment of their veloci-
ties. This fact is somehow surprising since the particles have
spherical symmetry, interact via central potentials, and are not
endowed with an alignment mechanism. These domains have
been observed numerically in Ref. [32] in two-dimensional
systems of repulsive self-propelled disks [active Brownian
particles (ABP)] both at moderate packing fraction in the
phase-coexistence region and at large packing fraction in ho-
mogeneous active liquid, hexatic, and solid phases [33], where
domains with aligned velocities can still be observed [34].
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A nonequilibrium phase activity-density diagram has been in-
troduced to represent both homogeneous and inhomogeneous
regimes [34] and the structural properties of the system have
been compared with the typical size of the aligned domains.
The model reproduces several experimental results regard-
ing confluent cell monolayers [35–38], whose velocity fields
display alignment patterns quite similar to the corresponding
predictions of the ABP model. Hence, even such a simple
model can account for the phenomenology of active matter
systems at high density observed in experiments. In particular,
we show that Vicsek-type interactions are not necessary to
induce the local velocity alignment observed in systems of
interacting active particles with excluded volume interaction
and independent self-propulsion with a typical persistence
time. Instead, explicit alignment interactions (coupling the
self-propulsions of the particles) are needed to induce flocking
states, such as band formation [39–42]. We remark that other
complex dynamics involving, for instance, spin variables but
no Vicsek-type interactions [43], could produce local velocity
alignment and even flocking phenomena [44,45]. At present,
notwithstanding the existing detailed information about the
velocity domains, obtained by measuring the equal-time spa-
tial velocity correlations, very little is known about their
dynamical properties. The aim of this work, which will be
carried out by numerical and analytical methods, is to char-
acterize how these domains evolve, how stable they are, and
what controls their lifetime. To achieve this goal, we focus on
high-density systems of self-propelled particles in one dimen-
sion. The motivation of the choice of this low-dimensional
system is threefold: (a) it considerably reduces the time cost
of the numerical simulations, (b) it is possible to develop an
analytical theory, and (c) there are situations where biological
swimmers move in highly confining geometries behaving as
almost one-dimensional systems. This is the case of highly
confined bacteria [46], such as E. coli in microdevices with the
size of a single particle, or molecular motors [47]. Recently,
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FIG. 1. Lifetime t∗ of the aligned domains as a function of τ .
Colors represent the size of the aligned domains, in agreement with
Fig. 4. Black lines are eye guides: the solid one shows the linear
behavior ∝τ while the dashed lines are in correspondence of the last
value of τ showing a spatial velocity correlation.

experimental studies with trains of swimming water droplets
have been performed in microfluidic square channels with
sections equal to the droplets’ diameter [48,49]. In this case,
the local velocity alignment between neighboring droplets has
been experimentally observed.

The major outcome of this investigation is encapsulated in
Fig. 1, where the lifetime of the velocity domains t∗, defined
as the typical decaying time of the spatiotemporal velocity
correlations, is reported as a function of several values of
the persistence time τ (see Sec. IV for further details). Data
coloring reflects the value of the correlation length � of the
spatial velocity correlations, which quantifies the average size
of each velocity domain (see Sec. IV). While � ∝ √

τ , our
study reveals that t∗ displays a linear increase with τ . The
larger the persistence time of the self-propelled motion, the
larger are the typical size and lifetime of the velocity domains.

The paper is structured as follows: After the introduction
of the model reported in Sec. II, we ascertain the existence of
velocity domains in one-dimensional dense systems of active
particles. The steady-state properties, e.g., spatial velocity
correlations and correlation lengths, are studied in Sec. III.
The major insight of this work is reported in Sec. IV, where
the velocity autocorrelation and the spatiotemporal velocity
correlations are numerically and theoretically investigated. A
final discussion is reported in the conclusive section. Appen-
dices contain not only lengthy calculations giving support to
the theoretical results of the paper, but also deeper insights
into the problem.

II. MODEL

We study dense systems of N interacting self-propelled
particles at density ρ0, employing the active Ornstein-
Uhlenbeck particle (AOUP) model [50–57]. The AOUP is a
versatile and popular model of active matter that can repro-
duce many aspects of the phenomenology of self-propelled
particles, including the accumulation near rigid boundaries
[58–62] or obstacles and the motility induced phase separation

(MIPS) [63]. To the best of our knowledge, AOUP is also one
of the simplest ways to model self-propelled particles mov-
ing in one dimension in the presence of mutual interactions
and/or external forces [64–66].

In this paper, particles are constrained to move on a line
of length L and are subject to periodic boundary conditions.
The particles’ positions xi evolve with the following stochastic
equation:

γ ẋi = Fi + fa
i , (1)

where γ is the drag coefficient and we have neglected the
thermal noise due to the solvent since, for many active colloids
and bacteria, the thermal diffusivity is usually rather smaller
than the effective diffusivity due to the active force [1]. The
term Fi represents the steric interaction between particles and
is given by Fi = −∂xiUtot with Utot = ∑N

i=1 U (|xi+1 − xi|).
The potential U is a truncated and shifted Lennard-Jones (LJ)
potential, namely,

U (r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
θ (21/6σ − r), (2)

where θ is the Heaviside function and both the energy scale
ε and length scales σ are set to one, for numerical con-
venience. Since the potential chosen has a limited range,
only the first neighbors mutually interact. The term fa

i mod-
els the self-propulsion of the particle i and is described by
an Ornstein-Uhlenbeck process according to the following
AOUP dynamics:

τ ḟ
a
i = − fa

i + γ v0

√
2τξi, (3)

where ξi is a white noise with zero average and unit variance.
The parameter τ is the persistence time and v0 the active
velocity associated with the self-propulsion force. We remark
that, in the model employed in this paper, the self-propulsion
acts independently on each particle, at variance with Vicsek-
type models [67–70] or more complex dynamics where
explicit couplings between velocities and self-propulsions are
postulated [44,45].

A convenient method to study the AOUP is achieved by
switching from (xi, fa

i ) variables [63,71,72] to position xi and
velocity vi = ẋi variables. In one dimension, the equation of
motion (1) can be recast as

τγ v̇i = Fi − γ
∑

j

�i j (xi − x j )v j + γ v0

√
2τξi, (4)

where the matrix �i j in general depends on the spatial coordi-
nates of different particles and contains the derivatives of the
potential:

�i j = δi j + τ

γ

∂2

∂xi∂x j
U (xi − x j ). (5)

The original active overdamped dynamics is effectively
mapped onto a passive underdamped dynamics with a space-
dependent friction and additional forces which mutually
couple the particles’ velocities. When τγ � 1 the inertial
term can be neglected while for τ/γ ∂xi∂x jU � 1 uniformly
in xi and x j , the term �i j reduces to δi j . In these cases, Eq. (4)
corresponds to an equilibrium overdamped motion with long-
time effective diffusion coefficient D = v2

0τ .
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A. Numerical simulations

The numerical study presented in this paper has been con-
ducted by setting v0 = 50 and varying the persistence time
of the active force τ . Simulations are realized with lengths L
much larger than the persistence length of the active force,
in such a way that the condition L � τv0 is satisfied for the
whole range of τ considered. Such a regime guarantees that
finite-size effects do not play a significant role and that the
one-dimensional version of traveling crystals does not occur
[73,74]. These traveling states, corresponding to the formation
of a single velocity domain, occur for L � v0τ and are not
discussed in this paper. At variance with previous studies
[43,75–78], we consider high-density regimes, in such a way
that the one-dimensional system of active particles is compact
enough and neither defects in the periodic arrangement of
the particles nor clusters can easily form: the system attains
homogeneous configurations for the whole set of parameters
numerically explored in this work.

B. One-dimensional harmonic active crystal

To develop a suitable analytical theory and interpret the
numerical findings, we have considered an approximate treat-
ment of (4), by replacing the full LJ potential by its Taylor
expansion truncated at the second order:

Uhc = U ′′(x̄)
N∑
i

(xi+1 − xi − x̄)2, (6)

where the length x̄ = L/N is the average interparticle separa-
tion. Such an approximation works quite well thanks to two
conditions: the large packing regime and the limited range
of the LJ interaction. In the simulations, the formation of
defects is practically absent and this makes the mapping onto
the active harmonic crystal a successful strategy. Being the
Langevin equation relative to the active crystal (4) linear and
diagonalizable via Fourier modes we can determine all the
stationary one-time and two-time correlation functions within
this approximation.

III. FORMATION OF VELOCITY DOMAINS: SPATIAL
VELOCITY CORRELATIONS

Since the one-dimensional (1D) AOUP shares the same
physics as its 2D companion, also in this case, at high density
we expect the formation of spatial domains where the veloci-
ties statistically point toward a common direction and have the
same modulus. This is pictorially shown in Fig. 2(a) where
several one-dimensional instantaneous configurations of the
system are reported for different values of τ . Particles are
represented by vertical segments and are colored according
to their velocities, in such a way that a spatial region with the
same color can be identified with a velocity domain. When τ

increases, the size of the domains grows, as revealed by the
color gradients in Fig. 2(a). These velocity domains have a
typical lifetime that will be explicitly studied in Sec. IV and
the particles placed at their boundaries are the most subjected
to a velocity change, i.e., to a domain switch.

FIG. 2. (a) Snapshot configurations for different values of τ .
Each configuration is reported along the x axis of length L. For pre-
sentation reasons, each particle is represented as a vertical segment.
Configurations with different τ are reported on the y axis, as shown
in the graph, while colors represent the value of the velocity normal-
ized by

√
〈v2〉. Panels (b)–(d) are time trajectories, showing t/τ vs

position of each of 14 neighboring particles. In particular, (b), (c),
and (d) correspond to τ = 10−2, 10−1, 1, respectively. Neighboring
particles have been drawn with different colors just for presentation
reasons. Simulations are realized with v0 = 50 and the interaction is
given by Eq. (2).

To understand the formation of the velocity domains, we
note that the dynamics (4) can be approximated with

τγ v̇i = −γ vi + γ v0

√
2τξi + Fi − 2τU ′′(x̄)(vi − wi ). (7)

The additional velocity term wi is the mean velocity of the
adjacent particles:

wi = vi+1 + vi−1

2
.

Further details about the derivation of Eq. (7) are reported
in Appendix A. The first term is an effective Stokes force
while the second is assimilable to thermal noise, therefore,
it does not lead to any kind of velocity alignment. The term
Fi represents the collective field which constrains the particles
to form and maintain a lattice structure of periodicity x̄. The
last term forces the velocity of particle i to assume values
equal to the average velocity of its neighbors: it resembles
an interaction that is of Vicsek type. We observe that this
effective alignment force, dominant if τU ′′(x̄)/γ � 1, is a
genuine nonequilibrium effect and leads to the spontaneous
local velocity alignment. On the other hand, in the opposite
regime, i.e., τU ′′(x̄)/γ � 1, the alignment force is negligible
and neighboring velocities are uncoupled as in the passive
Brownian case.

Let us look at the dynamics from another point of view:
in Figs. 2(b)–2(d), we sketch the trajectories of a group of
adjacent particles: the positions fluctuate around their aver-
age value. In dense passive systems, the amplitude of these
fluctuations is in general much weaker than in active systems,
where the oscillations around the equilibrium positions are
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FIG. 3. Variances of position Var(x) = 〈(x − 〈x〉)2〉 and velocity
〈v2〉 as a function of τ . Colored points are obtained from simulations
while colored solid lines from theoretical predictions, Eqs. (9) and
(8) for 〈v2〉 and Var(x), respectively. The dashed black line is drawn
in correspondence of v2

0 , i.e., the asymptotic value of 〈v2〉. Simula-
tions are realized with v0 = 50 and the interaction is given by Eq. (2).

rather strong and grow with τ . While in the small-τ regime,
fluctuations are very small and similar to those of a passive
system, the increase of τ induces larger fluctuations of a
growing number of particles that move cooperatively. These
coherent fluctuations are a direct manifestation of the exis-
tence of velocity domains.

The increase of the oscillation amplitude of a single parti-
cle is captured by measuring the variance of the single-particle
position which is theoretically calculated in Appendix B in the
case of highly dense configurations and almost perfect lattices.
Under these assumptions, we obtain

〈(x − 〈x〉)2〉 = τ
v2

0γ

U ′′(x̄)

N

2π2
− τ 2〈v2〉, (8)

where the velocity variance 〈v2〉 is given by

〈v2〉 = v2
0(

1 + 4 τ
γ

U ′′(x̄)
)1/2 . (9)

In the right-hand side of Eq. (8), the first term coincides with
the variance of a passive system (τ = 0) whereas the second
term gives a negative correction resulting from the formation
of correlated velocity domains.

Remarkably, for small values of τ , such that τU ′′(x̄)/γ �
1, the velocity variance is nearly constant and is approxi-
mately v2

0 , while for larger values of τ , 〈v2〉 decreases as τ 1/2.
Also, an increase of ρ0 ∝ 1/x̄ makes U ′′(x̄) larger and leads
to a decrease of 〈v2〉. Both observations qualitatively agree
with the results relative to two-dimensional (2D) interacting
particles in nonharmonic potentials where a similar trend was
reported [72]. Moreover, the variance of the position linearly
grows with τ , as shown in Fig. 3, in agreement with the quali-
tative observations of Figs. 2(b)–2(d). Indeed, as explained in

Appendix B, Eq. (8) holds only for systems with Nx̄/v0τ � 1
and, thus, the growth of the positional variance remains mono-
tonic with τ . Interestingly, for τ = 10−1 and mostly τ = 1,
i.e., when

√
〈(x − 〈x〉)2〉 � x̄, the positional fluctuations are

so large as to force particles to synchronize their fluctuations,
i.e., to correlate their velocities.

A. Spatial velocity and energy correlations

To characterize the size of the velocity domains, we study
the spatial velocity correlation functions 〈v(x)v(0)〉 in the
steady-state adapting the strategy of Ref. [34] to a one-
dimensional system. In this simple one-dimensional case,
〈v(x)v(0)〉 can be analytically predicted in the active har-
monic crystal approximation, as shown in Appendix C. We
find that, in the stationary regime, the fluctuation amplitude of
each velocity mode has the following shape:

〈v̂qv̂−q〉 = v2
0

1 + τ
γ
ω2

q

, (10)

where the frequency ωq reads as

ωq =
√

2U ′′(x̄)[1 − cos (q)], (11)

and q takes values from −π to π in the limit N � 1. Inverting
analytically the average (10) to determine its real-space rep-
resentation is not so easy without additional approximations,
although some formulas can be found in terms of transcen-
dental functions (see Appendix C). The function represented
in Eq. (10), being peaked around q = 0, is approximated
employing a small-q expansion. Fourier transforming back
to real space, the resulting velocity correlation displays an
exponential spatial decay. In the continuum limit we obtain

〈v(x)v(0)〉 ≈ 〈v2〉 exp
(
−x

�

)
, (12)

where � is the correlation length given by

� = x̄
√

τ

γ
U ′′(x̄). (13)

Figure 4(b) reports a set of spatial correlations functions cor-
responding to different values of τ . It shows the excellent
agreement between the numerical data and the theoretical
predictions (12). Based on such an exponential behavior, we
argue that � represents a measure of the size of the velocity
domains since particles within a distance ≈� are correlated
and, roughly speaking, share similar velocities. The average
size of a typical velocity domain scales as ∼τ 1/2 and increases
with ρ0, due to the dependence of � on the curvature of the
potential [higher ρ0 ∝ 1/x̄ means smaller x̄ and, thus, larger
U ′′(x̄)], as shown by (13).

The spatial correlation of the kinetic energy E (x) = v2(x)
shows a similar trend. The two-point average 〈E (x)E (0)〉, in
the steady state, is used to measure the size of domains sharing
the same kinetic energy. This observable approaches a nonva-
nishing asymptotic value, given by 〈E2〉2. For this reason, we
numerically evaluate the normalized cumulant 〈E (x)E (0)〉c =
[〈E (x)E (0)〉 − 〈E2〉2]/〈E2〉2. This spatial correlation is ana-
lytically calculated in Appendix C and shows the following
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FIG. 4. Spatial correlation functions. (a) � and �E , i.e., correlation lengths of the velocity and kinetic energy versus τ . Colored data and
solid lines are obtained from numerical simulations and Eq. (13) (theoretical prediction), respectively. (b), (c) (sharing the same caption)
Spatial correlations of the velocities 〈v(x)v(0)〉/〈v2〉 and energies 〈E (x)E (0)〉/〈E 2〉, respectively, for several values of τ as shown in the
legend. Colored points are obtained by simulations while black solid lines are the theoretical predictions obtained from Eqs. (12) and (14).
Simulations are realized with v0 = 50 and the interaction is given by Eq. (2).

exponential shape:

〈E (x)E (0)〉c ≈ 〈E2〉 exp
(
− x

�E

)
, (14)

where �E is its correlation length which reads as

�E =
√

τ

2γ
U ′′(x̄). (15)

Theoretical predictions fairly agree with data as revealed both
in Figs. 4(a) and 4(c), reporting �E and the energy correlations,
respectively. Also in this case, �E corresponds to the average
size of energy domains, which is smaller than � by a factor
2−1/2 and maintains the same scaling with the parameters of
the model. As a consequence, in the one-dimensional case, the
spatial energy correlations do not contain further information
concerning the spatial velocity correlations.

IV. DYNAMICAL PROPERTIES OF THE
VELOCITY DOMAINS

In the previous section, we have investigated numerically
and theoretically the spontaneous formation of velocity do-
mains by studying the velocity correlation functions. We have
seen that, despite the absence of any alignment interactions,
the velocities of different particles develop a correlation which
increases with the persistence of the active force. In this
section, we investigate the time-dependent properties of the
system, considering, in particular, the velocity autocorrelation
and the two-time spatial velocity correlation function to un-
veil the dynamics of the velocity domains and estimate their
lifetimes and permanence.

A. Velocity autocorrelation function

In Fig. 5, we report the steady-state normalized veloc-
ity autocorrelation functions (VACF) 〈v(t )v(0)〉/〈v2〉 as a
function of t/τ for several values of τ , and explore both
the large and the small persistence regimes where veloci-
ties are spatially uncorrelated. As shown in Fig. 5(a), this
observable decays within a typical time of order τ for the
whole range of persistence times numerically explored. In the

small-τ regime, i.e., when τU ′′(x̄)/γ � 1, the VACF displays
the same exponential shape as the active-force autocorrela-
tion, i.e., 〈fa

i (t )fa
i (t ′)〉 = Dγ 2

τ
e−|t−t ′ |/τ (see the yellow curves in

Fig. 5). Such a behavior is a direct consequence of Eq. (4)
when τU ′′(x̄)/γ � 1 since, in this limit, �i j ≈ δi j . When τ

increases, the shape of the VACF changes and the relaxation
process becomes faster as measured with respect to rescaled
time t/τ . Then, for further values of τ , in particular, for
τ � 10−4, the rescaled VACFs collapse onto the same curve
as shown in Fig. 5.

Quite surprisingly, the VACFs 〈v(t )v(0)〉/〈v2〉 assume neg-
ative values for t > τ , except in the small-τ regime, for
τU ′′(x̄)/γ � 1, where the decay is exponential as already
discussed. In the former case, the autocorrelations decay very
slowly (with a power-law behavior) toward zero from neg-
ative values, as zoomed in Fig. 5(b). The sign inversion of
〈v(t )v(0)〉/〈v2〉 is understood in terms of the presence of two
competing mechanisms: the active force producing a negative
contribution to the correlations and the restoring force of
the individual oscillation modes driving the VCF toward its
final value. Each mechanism is characterized by a different
timescale, τ and γ /ω2

q, respectively. Only if the active force
acts on a timescale not too small compared with γ /ω2

q the
above phenomenon can be observed, therefore, it has not a
passive Brownian counterpart and represents a pure nonequi-
librium collective effect.

B. Spatiotemporal velocity correlation functions

Figures 6(a)–6(c) display the spatiotemporal velocity cor-
relation function (VCF) 〈v(x, t )v(0, 0)〉/〈v2〉 as a function
of t/τ for several distances x/σ , roughly from x = 0 to
x ∼ �. In particular, Figs. 6(a)–6(c) are obtained at different
values of τ , corresponding to configurations ranging from
those with negligible spatial correlations to those highly cor-
related. For the smallest value of τ , reported in Fig. 6(a),
even nearest-neighbor pairs sitting at distance x/σ = 1 are
practically uncorrelated in time, while for larger τ values
very far particles display a pronounced time correlation
[Figs. 6(b) and 6(c)]. In Figs. 6(b) and 6(c), the spatiotemporal
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FIG. 5. Velocity autocorrelation function 〈v(t )v(0)〉/〈v2〉 as a function of t/τ for different values of τ as shown in the legend. (a),
(b) Correspond to different magnifications of the same observable. Colored solid lines are obtained from numerical simulations while dashed
black lines are the theoretical predictions of Eq. (16). The horizontal dotted black line indicates the zero to provide an eye guide. The violet
curve, corresponding to τ = 10−4, is not reported in (b) for presentation reasons. Simulations are realized with v0 = 50 and the interaction is
given by Eq. (2).

FIG. 6. Spatiotemporal correlations of the velocities 〈v(x, t )v(0, 0)〉/〈v2〉 as a function of t/τ . (a)–(c) Correspond to τ =
10−5, 10−3, 10−1, respectively. Each curve is obtained at different distances x/σ , as reported in the legends. Instead, (d) and (e) show
〈v(x, t )v(0, 0)〉/〈v2〉 at x/σ = 5, 10, respectively. As indicated in their legends, each curve is realized with a different value of τ . Colored
solid lines report numerical simulations data while dashed black lines are predictions according to Eq. (16). The lower dashed black line
indicates the zero and corresponds to the spatiotemporal correlations for x � �. Simulations are realized with v0 = 50 and the interaction is
given by Eq. (2).
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correlations for “small” separation x/� closely resemble the
corresponding VACF. On the contrary, for x ∼ �, the VCF
〈v(x, t )v(0, 0)〉/〈v2〉 displays a sort of plateau for an initial
time window (always �τ ) until it collapses onto the VACF
curve for t � τ .

At the origin of such a plateau is the fact that the state of
the particle placed at x = 0 changes under the influence of
the active force only after a time of order τ . However, the
information about such a change does not reach a second par-
ticle belonging to the same velocity domain (hence correlated
with the first) and located n sites away, before a time which
increases with their separation has elapsed. Finally, for x � �,
any sort of spatiotemporal correlation is absent because the
two particles do not belong to the same domain.

Based on the observation of the collapse of the VCF data
onto the VACF curve for x ∼ �, we identify the average life-
time t∗ of a domain with typical size � as the time at which the
normalized autocorrelation approaches the value 1/e being e
the Neper number. This typical time t∗ shows a linear increase
with τ above the dashed black line in Fig. 1 which marks the
first value with nonvanishing spatial correlations. Below this
line, even nearest-neighbor particles are almost independent
and velocity domains do not form. In this last case, since the
domain contains only a single particle, t∗ is nothing but the
VACF relaxation time. Such a quantity coincides with τ in
the equilibriumlike regime where τU ′′(x̄)/γ � 1 and shows
a nonlinear increase as a function of τ in the crossover regime
before the linear for τU ′′(x̄)/γ � 1.

C. Theoretical predictions

To predict the shape of the spatiotemporal VCF, we con-
sider the correlation of the Fourier modes as in the case of the
steady-state spatial velocity correlations. Solving the dynam-
ics in the active harmonic crystal approximation, we obtain

〈v̂q(t )v̂−q(0)〉 = v2
0

[
1
τ

e− 1
τ

t − ω2
q

γ
e− ω2

q
γ

t
]

(
1 + τ

γ
ω2

q

)(
1
τ

− ω2
q

γ

) , (16)

where the factor ω2
q is defined by Eq. (11). At variance with

the spatial velocity correlations [Eq. (10)], here, the approx-
imation for small q is no longer valid to predict the whole
time behavior (see Appendix D for more details about the
derivation and the approximations involved). The reason is
that the wave-vector-dependent VCF represented in Eq. (16)
is made of two contributions each varying with its own relax-
ation time and both containing a divergence. Only by handling
them together the two divergences cancel out. Both for VACF
and spatiotemporal VCF, Figs. 5 and 6 show the excellent
agreement between data obtained via numerical simulations
and the numerical integration of Eq. (16) (normalized with
〈v2〉).

1. Short-time approximation

The integral in Eq. (16) can be evaluated numerically in a
straightforward way but must be handled with care to extract
analytical predictions about the temporal decay of the spatial
autocorrelation function. In Appendix D, we derive a suitable

FIG. 7. Velocity autocorrelation 〈v(x, t )v(0, 0)〉/〈v2〉 for two
different values of τ as shown in the legend. The dashed black line
is obtained by Eq. (20), while the two dashed dotted black lines are
obtained using Eq. (17).

approximation, holding for t � τ , which consists in expand-
ing the exponentials for small (t/τ ) and resumming a class of
terms. In this way, the small-time decay of the autocorrelation
is predicted and reads as

〈v(x, t )v(0, t )〉 ≈ v2
0e−t/τ�(x, t ), (17)

where the integral is given by

�(x, t ) =
∫ π

−π

dq

2π
cos

(
q

x

x̄

) e−2(1−cos(q))U ′′(x̄)t/γ

1 + 2[1 − cos(q)] τ
γ

U ′′(x̄)
.

(18)

This class of integrals can be performed exactly in terms of
modified Bessel functions of the first kind and integer order
[79]. Prediction (17) fairly agrees with data in a time window
smaller than τ while the differences between small-time the-
ory and simulations occur approximatively for t > 0.3 τ , as
shown in Fig. 7 for two different values of τ . In particular,
Eq. (17) cannot reproduce the negative values assumed by the
autocorrelation for t ∼ τ . In addition, in the short-time regime
t/τ < 1, and, in particular, from Eq. (17), it is possible to de-
rive the leading correction of the departure of 〈v(x, t )v(0, 0)〉
from its equal-time value:

〈v(x, t )v(0, 0)〉 − 〈v(x, 0)v(0, 0)〉 ≈ − v2
0

(n + 1)!

t

τ

( t

2τK

)n
,

(19)

where τK = γ /2U ′′(x̄) and n ≈ x/x̄. This prediction explains
the plateau observed for large distances when t/τ is small.
Indeed, the prefactor of the first-order time correction in
Eq. (19) becomes smaller as x increases through the n de-
pendence. In agreement with the numerical observations, a
longer time is needed before the VCF with large x deviates
from 〈v(x, 0)v(0, 0)〉.
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2. Long-time behavior

As already mentioned, in the small persistence time regime
the VACF has a pure exponential decay and, thus, for t � τ ,
approaches zero from positive values. As numerically re-
vealed, the decay is more complex in the large persistence
regime, i.e., τU ′′(x̄)/γ � 1. While the VACF and the VCF
are positive in the early stage of the relaxation process as
shown by direct inspection of Eq. (16), they become nega-
tive at larger times. Each mode gives a positive contribution
to the q integral up to a wave-dependent crossover time
t∗
q = −τ ln(τω2

q/γ )/(1 − τω2
q/γ ) > 0, defined as the instant

when the function in Eq. (16) shows its first zero. Such a
q-dependent time decreases as q grows and, thus, the final
decay toward zero of the VACF (for t � τ ) is controlled by the
relaxation of the long wavelength modes since the short wave-
lengths give negligible contributions to the integral. Roughly
for t > τ the e−t/τ term in formula (16) plays a negligible
role. Performing the q integration of Eq. (16) we obtain the
following long-time approximation:

〈v(x, t )v(0, 0)〉 ≈ − v2
0τ

2
√

Kπ/γ
t−3/2, (20)

which shows that, as t → ∞, the VACF vanishes from neg-
ative values with an inverse power-law behavior, explaining
the behavior observed in Fig. 5. The prediction (20) is derived
in Appendix D and numerically checked in Fig. 7 for two
different values of τ showing a good agreement with data. In
addition, we remark that, in the small persistence regime, the
relevant amplitudes in Eq. (16) remain positive, as expected
for passive systems. Finally, it is interesting to realize that the
nonmonotonic behavior of the two-time correlation function
discussed above is different from the monotonic behavior of
the linear response function, i.e., the response of the system
to a a small impulsive perturbation on the positions of the
self-propelled particles. The calculation, reported in Appendix
E, clearly shows that response and correlation are not propor-
tional.

V. CONCLUSIONS

This work contains results concerning both the steady-state
and time-dependent spatial properties of a system of interact-
ing active particles. To the best of our knowledge, such an
analysis has not been performed so far, in particular, for what
concerns the characterization of the two-time correlations in
the nonequilibrium steady state of self-propelled particles.

The interest in such a study is twofold: the ensemble av-
erages of the single time observables are constant in time
but already contain interesting information about the spatial
organization of the system, namely, display the presence of
domains where the velocities of the particles are strongly
correlated. The two-time observables reveal how the system
responds to external stimuli or how a given spatial structure
lasts in time. Our study employs a one-dimensional model of
interacting self-propelled particles evolving under the active
Ornstein-Uhlenbeck dynamics, as a test system. The numer-
ical study is conducted by choosing a truncated and shifted
Lennard-Jones (LJ) potential and large packing conditions. As
a preliminary step, we have studied the stationary properties

of the system to characterize the size of the velocity domains
and focused on the spatial velocity correlations. Then, we
investigated the dynamics of the velocity domains studying
the autocorrelation and the spatiotemporal velocity correlation
functions and determined the average lifetime of a typical
velocity domain. Our numerical study has been supported by
theoretical arguments to derive the temporal dependence of
the correlations. Thanks to the lack of an appreciable density
of defects or voids we can faithfully describe the system as
a one-dimensional lattice of coupled harmonic oscillators,
whose elastic and spacing constants are derived from ex-
panding quadratically the LJ potential near its equilibrium
values. The resulting active harmonic lattice can be solved
analytically in terms of Fourier normal modes giving explicit
formulas for one-time and two-time observables.

The theoretical method employed in this paper bears
some similarities with the one used in active polymer theory
[80–84], i.e., the shape of the excitation spectrum to make an
example. However, the observables, here considered, are quite
different from those usually studied in the context of active
polymers, described by one-dimensional chains in two- or
three-dimensional spaces. Those studies are mainly concerned
with diffusive [85] or configurational properties [86–88],
while this work regards the dynamical properties of a one-
dimensional single file system where the interplay between
low dimensionality, steric interactions, and self-propulsion
determines an off-equilibrium, highly correlated motion not
studied so far.
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APPENDIX A: HARMONIC ACTIVE CRYSTAL

In this Appendix, we illustrate the approximations em-
ployed to develop the theoretical formulas that in the main
text have been compared to the numerical data. We replace the
full LJ potential by its Taylor expansion around the average
particles’ positions x̄. The expansion is truncated at the second
order and gives

Uhc = U ′′(x̄)
N∑
i

(xi+1 − xi − x̄)2. (A1)

Replacing Utot with Uhc, the matrix �i j assumes a simple form
and the dynamics (4) becomes

τγ v̇i = − γ

[
vi + τ

γ

∑
j=i±1

U ′′(x̄)(vi − v j )

]

+ Fi + γ v0

√
2τξi. (A2)

Remarkably, the force term maintains the average distance
between neighboring particles and is derived from Uhc. Nev-
ertheless, its shape is not particularly significant. Splitting the
square brackets in Eq. (A2), we obtain the dynamics (7). Rep-
resenting Eq. (A2), in Fourier space, we obtain the equations
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of motion of the harmonic crystal:

d

dt
ûq(t ) = v̂q,

d

dt
v̂q(t ) = −ω2

q

γ
v̂q(t ) − 1

τ
v̂q(t ) − ω2

q

γ τ
ûq + v0

√
2

τ
ξ̂q, (A3)

where ûq and v̂q are the Fourier transforms of the displacement
and velocity, respectively, which explicitly are

(ûq

v̂q

)
= 1√

N

N∑
n=1

cos qn
((xn − nx̄)

vn

)
, (A4)

while ξ̂q is a noise term obtained from the Fourier transform
of ξi. The reciprocal lattice wave vectors are q = 2πk/N with
k = 1, N , while the frequency ωq is such that

ω2
q = 2U ′′(x̄)[1 − cos (q)]. (A5)

We remark that, in the limit N � 1, the sums can be approxi-
mated by integrals

1

N

N∑
n=1

→ 2

π

∫ π/2

π/N
dq.

In the following, we shall maintain a discrete notation that
identifies each particle with an integer index. The comparison
between the discrete theoretical and the x-dependent numer-
ical observables is made by noting that, in the high-density
regime considered, the particle’s coordinates approximately
satisfy the relation x = nx̄, making possible replacing vn by
v(x).

APPENDIX B: VARIANCE OF POSITIONS
AND VELOCITIES

Without further approximations, we can derive the equal-
time averages over the active noise fluctuations, calculating
the steady-state time correlations of Eq. (A3):

〈ûq(t )û−q(t )〉 = γ

ω2
q

τv2
0

1 + τ
γ
ω2

q

, (B1)

〈v̂q(t )v̂−q(t )〉 = v2
0

1 + τ
γ
ω2

q

. (B2)

Setting 〈u2〉 = 〈(xn − nx̄)2〉 (which is n independent) and K =
U ′′(x̄), for the sake of simplicity, the resulting autocorrelation
of the displacement u reads as

〈u2〉 = τ
v2

0γ

2π

∫ π/2

π/N
dq

(
1

4K sin2
( q

2

) −
τ
γ

1 + τ
γ

4K sin2
( q

2

)
)

.

(B3)

The first integral in Eq. (B3) is divergent for N → ∞, i.e.,
when performed from 0 to π/2, at variance with the second
one. However, for a finite but large sample with N � 1, by
discarding a small interval near the origin we obtain from
Eq. (8) the following result:

〈u2〉 = τ
v2

0γ

K

1

2π2
N − v2

0τ
2(

1 + 4 τ
γ

K
)1/2 . (B4)

Equation (B4) makes sense just if 〈u2〉 > 0, meaning that
does not hold for arbitrary values of τ . Indeed, the validity
of Eq. (B4) is restricted to the regimes where the persistence
length v0τ is smaller than L = Nx̄ (i.e., the regimes numer-
ically explored in this paper). A simple integration gives the
formula for the velocity variance reported in Eq. (9). Interest-
ingly, we can relate the velocity fluctuation to the positional
fluctuation through the following relation:

〈u2〉 = 〈u2〉τ=0 − τ 2〈v2〉, (B5)

where the first term in the right-hand side is the well-known
variance of the displacement fluctuations in the white-noise
limit τ = 0 [89,90]. Thus, the single units, comprising the
active harmonic crystal, have fluctuations smaller than those
of the corresponding passive crystal. This observation agrees
with the well-known results of single active harmonic oscilla-
tors, which display an enhanced rigidity with respect to their
equilibrium counterparts.

APPENDIX C: SPATIAL CORRELATIONS OF THE
VELOCITY AND ENERGIES

The equal-time velocity pair correlation function in
Eq. (12) is obtained by expanding ω2

q up to quadratic order in
q2 and extending the Fourier integrals to the whole real axis.
Such an approximation is valid when the discretization of the
lattice becomes irrelevant. Let us write

〈vi+n(t )vi(t )〉 = v2
0

2π

∫ π

−π

dq
cos(nq)

1 + 2�2[1 − cos(q)]

= v2
0

2�2
gn

(
1 + 2�2

2�2

)
, (C1)

where gn(x) = 1
2π

∫ π

−π
dq cos(nq)

x−cos(q) . For small values of the in-
dex n, gn can be expressed in terms of elementary functions,
for instance, g1(x) = [ x√

x2−1
− 1], g2(x) = [ 2x2−1√

x2−1
− 2x],

g3(x) = [ 4x3−3x√
x2−1

− (4x2 − 1)], whereas in general we have to
write it in terms of hypergeometric functions. By expanding
the result in powers of �, one verifies that the terms are very
well reproduced by the formula (12). This procedure yields
the same result as if we expand up to the second order in q the
denominator in Eq. (C1) and perform an integration over the
whole real axis.

By a simple extension of the previous method we may eval-
uate the energy correlation function. In our discrete notation
we define El = v2

l and consider

〈(El+m − 〈El+m〉)(El − 〈El〉)〉 = 2〈vlvl+m〉〈vlvl+m〉, (C2)

where we have used the Gaussian property of the distribution
to factorize the operator average. Taking into account Eq. (12),
we obtain the final expression

〈(El+m − 〈El+m)(El − 〈El〉)〉 = 2〈v2〉2e−2|m|x̄/�, (C3)

which coincides with Eq. (14).
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APPENDIX D: SPATIOTEMPORAL CORRELATION
FUNCTIONS

For t > t ′, the Fourier transform of the two-time displace-
ment correlation function, in the steady state, reads as

〈ûq(t )û−q(t ′)〉 = v2
0
τγ

ω2
q

[
ω2

q

γ
e− 1

τ
(t−t ′ ) − 1

τ
e− ω2

q
γ

(t−t ′ )
]

(
ω2

q

γ
− 1

τ

)(
1 + τ

γ
ω2

q

) , (D1)

while the Fourier transform of the velocity correlation func-
tion is given by Eq. (16). Thus, to come back to real space, we
have to calculate the integral

〈vn(t )v0(0)〉 = v2
0

π

∫ π

0
dq

cos(qn)

1 + τ
γ
ω2

q

[
ω2

q

γ
e− ω2

q
γ

t − 1
τ

e− 1
τ

t
]

(ω2
q

γ
− 1

τ

) .

(D2)
The apparent singularity of the denominator is eliminated by
the concomitant vanishing of the numerator.

1. Short-time approximation in real space

Let us consider the following integral:

d

dt
σ 2

n (t ) = v2
0τ

π

∫ π

−π

dq
cos(qn)

1 + τ
ω2

q

γ

[
e−τ

ω2q
γ − e− 1

τ
t
]

1 − τ
ω2

q

γ

(D3)

related to the velocity correlation by the identity

〈vn(t )v0(0)〉 = d2σ 2
n (t )

dt2 . After Taylor expanding the first and
second exponential in powers of the rescaled time t/τ , we
rewrite it as

d

dt
σ 2

n (t ) = −v2
0τ

π

∫ π

−π

dq
cos(qn)

1 + τ
ω2

q

γ

× 1

1 − τ
ω2

q

γ

[
t

τ

(
1 − τ

ω2
q

γ

)

− t2

2τ 2

(
1 −

(
τ

ω2
q

γ

)2)]
+ O

(
t3

τ 3

)
.

Up to this order, we may approximate the above result by the
following expression:

d

dt
σ 2

n (t ) = −v2
0τ

π

∫ π

−π

dq
cos(qn)

(�(q))2
(1 − e−�(q)t/τ ), (D4)

with �(q) = 1 + τ
ω2

q

γ
. Finally, differentiating with respect to

t , we get the short-time formula for the velocity correlation
function:

〈vn(t )v0(0)〉 = v2
0

2π

∫ π

−π

dq
cos(qn)

�(q)
e−�(q)t/τ . (D5)

Perhaps, the best strategy to display the presence of a small-t
interval where the velocity two-time correlation function for
particles separated by a distance n is to study the first time

derivative of such a function:

− d

dt
〈vn(t )v0(0)〉 = 1

2π

v2
0

τ
e−t/τ e− t

τK

∫ π

−π

dq cos(qn)e
t

τK
cos(q)

,

(D6)

where τK = γ

2K . The integration can now be performed
exactly:

− d

dt
〈vn(t )v0(0)〉 = v2

0

τ

e−t/τ

2π
e− t

τK In

( t

τK

)
, (D7)

where In(x) is the first-kind modified Bessel function of order
n. Using standard properties of the Bessel functions, we find
the following short-time aproximation:

〈vn(t )v0(0)〉 ≈ 〈vn(0)v0(0)〉 − 1

n!

v2
0

τ

( 1

2τK

)n tn+1

n + 1
. (D8)

That is to say, the relaxation rate of the pair correlation be-
comes smaller with increasing separation of the two particles
considered since it is proportional to (t/τ ) to a power equal
to (n + 1). This formula coincides with Eq. (19) and explains
the formation of plateau regions. These plateaus become more
and more evident when the particle’s separation increases.

2. Long-time approximation

We define the crossover time t∗
q as the time at which the

VACF vanishes. From Eq. (16), it is straightforward to see
that t∗

q = −τ ln(τω2
q/γ )/(1 − τω2

q/γ ). For times larger than
t∗
q , it is safe to neglect the contribution of the e−t/τ term in

Eq. (D2). The modes with small values of q yield the main
contributions to the integrals (D2) and the result is negative
because the constant term in the denominator is larger than
the q-dependent term. To evaluate Eq. (D2) in the long-time
regime t/τ � 1, we first consider the following integral:

d

dt
σ 2

n (t ) ≈ v2
0τ

π
e−(2K/γ )t

∫ π

−π

dq e2 K
γ

cos(q)t cos(qn)

= 2v2
0τe−(2K/γ )t In

(
2K

γ
t

)
(D9)

and use the following large-t approximation:

d

dt
σ 2

n (t ) ≈ v2
0τ√

Kπ/γ
t−1/2

(
1 − 4n2 − 1

16

1

(K/γ )t
+ · · ·

)
.

Finally, the sought correlation is found by differentiating such
a formula with respect to t :

〈vn(t )v0(0)〉 ≈ − v2
0τ

2
√

Kπ/γ
t−3/2

(
1 − 3

32

(4n2 − 1)

(K/γ )t
+ · · ·

)
.

This equation coincides with Eq. (20) at the first order and
the other terms of the expansion are negligible because of the
large value of K .

APPENDIX E: RESPONSE FUNCTION

The impulse response function for the AOUP was obtained
by Szamel [64] for the harmonic case and by Caprini et al.
[91] in the general case. In this Appendix, we derive the
response of the system by adding a small impulsive force
ĥq(t ) = ĥ0

qδ(t ) to the equation describing the evolution of the
q component of the displacement.
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Following a standard procedure (see for instance,
Ref. [92]) to compute the response to an impulsive perturba-
tion acting on a particular q mode we arrive at the following
formula:

Rq(t ) = −
〈
ûq(t )

∂

∂ ûq
ln Pq(t = 0)

〉
, (E1)

where Pq is the known steady-state distribution of the q mode,
explicitly given by

Pq ∝ e
− (1+ τ

γ ω2
q )

2D

{
ω2

q
γ

ûqû−q+τ
[(

ω2
q

γ

)
ûq−η̂q

][(
ω2

q
γ

)
û−q−η̂−q

]}
. (E2)

The response function, defined as

Rq(t ) =
〈
û(h)

q (t ) − ûq(t )
〉

û(h)
q (0) − ûq(0)

, (E3)

turns out to be

Rq(t ) = e−(ω2
q/γ )t ,

using Eq. (E1) and the linearity of the system. Remarkably,
the response function only depends on the frequency ωq but
not on the persistence time τ .
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