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Hidden velocity ordering in dense suspensions of self-propelled disks
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Recent investigations of the phase diagram of spherical, purely repulsive, active particles established the
existence of a transition from a liquidlike to a solidlike phase analogous to the one observed in colloidal
systems at thermal equilibrium. In particular, an intermediate hexatic phase is observed in two dimensions. At
variance with previous studies, we highlight the dynamical anomalies of dense active phases employing suitable
parameters accounting for the observed spatial velocity correlations. The resulting information is encoded into
a phase diagram evidencing the nonequilibrium features of self-propelled systems at a high density. First, we
unveil the growth—with density and activity—of ordered domains where the particles’ velocities align in parallel
or vortexlike domains, extending the preliminary observation found in the phase-coexistence regime. Second,
when activity is strong, the spatial distribution of the kinetic energy becomes heterogeneous, with high-energy
regions correlated with defects of the crystalline structure. This spatial heterogeneity is accompanied by temporal
intermittency, with sudden peaks in the time series of kinetic energy. The observed dynamical anomalies cannot
be detected by considering only the structural properties of the system and are exquisitely nonequilibrium
peculiarities absent in dense equilibrium colloids.
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I. INTRODUCTION

The dynamics of colloidal particles at high densities have
been widely explored, theoretically, numerically, and experi-
mentally, in the last decades [1,2]. At thermodynamic equilib-
rium, the Mermin-Wagner theorem rules out the existence of
a crystalline phase in two-dimensional systems, characterized
by long-range translational order [3,4]. As shown by Halperin
and Nelson [5] and Young [6], in two dimensions the melting
transition proceeds via two continuous Berezinskii-Kosterlitz-
Thouless [7,8] transitions driven by topological defects, i.e.,
a hexatic-liquid transition, with a quasi-long-range orienta-
tional order, and a solid-hexatic transition, characterized by
quasi-long-range translational order and long-range orienta-
tional order [6,9]. Density and temperature are the control
parameters to move from liquid to hexatic and to solidlike
aggregation phases. This scenario has been verified employing
dense suspensions of equilibrium colloids [10,11].

Recently, the study of two-dimensional systems of self-
propelled particles at high packing fractions has attracted the
attention of the active matter community [12,13], since it
may offer interesting engineering applications, for instance,
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in the design of new materials [14]. Although most of the
experimental studies have so far focused on the low-density
regime, some novel experiments have investigated Janus par-
ticles also in the case of very dense suspensions [15]. Another
interesting class of high-density nonequilibrium systems is
represented by driven granular media where monodisperse
polar grains under shaking [16] display persistent motion.
It is also worth mentioning some recent studies of artificial
microswimmers at such densities [17], revealing an intriguing
experimental scenario for nonequilibrium aggregation. Speci-
mens of active matter systems at very high densities are very
interesting also in the biological realm. Typical examples are
tissues composed of highly packed eukaryotic cells. Particular
attention has been devoted to the dynamics of confluent mono-
layers [18,19], which slows down as the density increases.
More recently, an amorphous “solidification” process has
been investigated during the process of vertebrate body axis
elongation [20], where cells become solidlike.

Theoretical approaches in the statistical physics of active
matter focus on simplified models of self-propelled particles,
the active Brownian particle (ABP) being one of the most
studied. Despite the existence of a vast literature concerning
the regime of moderate packing fractions, ABP dynamics in
the high-density regime is by far less explored. For instance,
active crystallization is studied in Ref. [21], where a shift
of the liquid-solid transition line towards higher densities
with respect to the Brownian counterpart is revealed. In addi-
tion, this transition is accompanied by a true nonequilibrium
phenomenon: liquid and solid phases are separated by a
region where the suspension is globally ordered but bubbles
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FIG. 1. Dynamical phase diagram. (a) Phase diagram as a function of τ and φ, with each region’s color depending on the size of the
aligned domains, quantified by the parameter R/σ . Phases: S, solid; H, hexatic; L, liquid; and P-S, phase separated. Phases are separated by
solid lines. The dashed red line was obtained by monitoring the pair correlation function, g(r). (b) The top region of the phase diagram, with
colors depending on the correlation length, �, of the spatial velocity correlation. The dashed black line delimits the regions where kinetic
energies show an intermittent phenomenology. (c), (d) Two zooms of the snapshot configuration realized at φ = 1.1 and τ = 1. Colors encode
the orientation of the self-propulsion, while black arrows represent the velocity vectors. (c) An aligned domain. (d) A vortexlike structure in
the pattern of the particles’ velocities. Simulations are obtained with v0 = 50 and the interparticle interaction discussed in the text.

of “liquid” persist. A more detailed analysis revealed the
occurrence of traveling crystals [22,23], accompanied by a
transition to rhombic, square, and even lamellar patterns. This
phenomenology has recently been confirmed by experiments
realized with vibrating granular disks [24].

The construction of the phase diagram of the ABP
model [25–27] follows the idea that its behavior [28] for small
active forces resembles that of passive Brownian particles,
with the occurrence of “gaslike,” “liquidlike,” “hexaticlike,”
and “solidlike” phases, with a shift of the transition lines to-
wards higher densities when activity increases [25,28]. On the
contrary, for large self-propulsion (but moderate densities) an
unexpected phenomenon occurs: the system phase separates
even in the absence of attractive interactions [26,29–36] (so-
called motility-induced phase separation (MIPS) [37–40]).
Differently, at high densities but far from equilibrium,
“standard” crystallization seems to occur [21,25]. The gen-
eral picture suggested by these studies is that the high-
density equilibrium scenario extends, qualitatively identically,
to active systems, with the only difference being that self-
propulsion may induce a phase separation or destabilize the
ordered phases. The systems being far from equilibrium, this
conclusion is, somehow, counterintuitive. In the present paper,
we show that it can even be wrong.

Several studies have already suggested that the MIPS
region displays a richer picture with respect to the pas-
sive phases in the coexistence region. Analysis of the pres-
sure [41,42] and the interfacial tension between the gas and
the cluster phase [43,44] provided the first clue supporting
this statement. Recently, the study of the particles’ velocities
revealed unexpected features which are certainly absent in
equilibrium fluids, e.g., different kinetic temperatures inside
and outside the dense cluster [45] and spontaneous alignment
of velocities in the phase-separated regime [46].

Given the relevance of dense active phases in both exper-
imental and theoretical studies, the present paper is entirely

devoted to understanding the nonequilibrium features of dense
phases of self-propelled disks: we show that the peculiarity of
active dense systems lies in their dynamical properties and, in
particular, in their interplay with the structural properties. In
this framework, the presence of translational and/or orienta-
tional orders plays a fundamental role.

Summary of results

Our main findings can be summarized by the introduc-
tion of dynamical information about the particles’ velocities
into the structural phase diagram, as shown in Fig. 1. We
enrich the picture reported in [25,28] which could lead to
the misleading conclusion that the only relevant aspect con-
cerning the behavior of active high-density systems is the
shift of liquid-hexatic and hexatic-solid transitions. The phase
diagram concerns the two-dimensional high-density regimes
(both homogeneous and phase separated), with two main
control parameters: the persistence time, τ , of the active force
(which is proportional to the Péclet number and inversely
proportional to the rotational diffusivity) and the packing
fraction, φ. We recall the definition of φ = Nσ 2π/4L2, N/L2

being the number density and σ the particles’ diameter. Our
“augmented” phase diagram challenges the widespread idea
that the structural properties alone are enough to describe the
dense phases of self-propelled particles and suggests that a
richer picture is obtained by including velocity correlations,
which, in turn, represent an exquisitely off-equilibrium feature
of active systems.

Figure 1(a) portrays the phase diagram as a function of
φ and τ , which reproduces [25], with three homogeneous
phases, i.e., the solid (S) phase, the hexatic (H) phase, and
the liquid (L) phase, and a nonhomogeneous regime with
MIPS-like phase coexistence (P-S) (see Sec. II B for details).
Our first finding is that the alignment of particles’ velocities
discovered in [46] in the P-S regime is observed also in
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the homogeneous liquid, hexatic, and solid phases. Particles’
velocities form patterns, becoming arranged in aligned or vor-
texlike domains, as shown by the arrows in Figs. 1(c) and 1(d),
even if the orientation of self-propulsion has negligible order
(see the color coding in the same panels). The size of aligned
domains—quantified by R, defined later, encoded by colors
in Fig. 1(a)—increases as τ and φ increase, as discussed in
detail in Sec. III A. The first new insight in this paper regards
the analysis of the “nontrivial” interplay between structural
properties and alignment domains. In the homogeneous liquid
configurations, the size of the aligned velocity domains is
rather small as a result of the absence of translational order,
at variance with the solid (denser) case where the sizes reach
large values. In the nonhomogeneous configurations, only an
increase in τ induces an increase in the correlation length
as a result of density saturation. We recall that order in the
velocity field is absent in any passive Brownian suspension,
even at high densities: it is, in fact, a pure nonequilibrium
feature due to the presence of propulsion forces in the active
dynamics. Interestingly, a similar effect is also observed in
fluidized granular materials, where it is caused by the presence
of dissipative interactions [47–49].

The second insight in this paper regards the occurrence of
pattern formation in the particles’ kinetic energies accompa-
nied by temporal intermittent behaviors with regions of high
velocity. These anomalies are caused by the lack of orienta-
tional order, confirmed by the correlation between the kinetic
energy field and structural defects in the crystal arrangement
(see details in Sec. III B). This phenomenology represents the
main qualitative difference between active solid and hexatic
phases. The results of this analysis are gathered in Fig. 1(b),
which focuses on the top part (highest densities) of the phase
diagram: the colors encode different information here, i.e., the
correlation length, �, of the spatial velocity correlation, which
takes into account also the kinetic energy (square modulus of
the velocity) and not just the orientation of the velocity vectors
as in the case of R in Fig. 1(a). We observe that � increases in
the solid phase and saturates in the hexatic or liquid phases.
This is mainly caused by the absence of translational and/or
orientational order (it increases again in the phase-separated
regime as explained in detail in Sec. III C). In the same panel,
the dashed black line delimits a region where heterogeneous
spatial distributions and temporal intermittent behaviors of the
kinetic energy are observed.

The article is structured as follows: in Sec. II, we introduce
the ABP model for interacting self-propelled particles, sum-
marizing the structural properties of the system. In Sec. III,
we present a detailed study of all the dynamical anomalies
in the velocity orientation, velocity vector, and kinetic energy
fields, correlating these anomalies with the different structural
properties of the system. A theoretical approach is also pre-
sented in Sec. III C that allows us to predict the features of the
spatial correlation functions of the velocity field. Section IV
is devoted to conclusions and perspectives.

II. THE SYSTEM OF INTERACTING SELF-PROPELLED
PARTICLES

We study a system of N interacting ABP disks in two
dimensions moving in a fluid at high viscosity (low Reynolds

number). We neglect both hydrodynamic interactions among
the particles and inertial terms [14]. The center of mass of
each disk, xi, evolves according to the stochastic differential
equation

γ ẋi = Fi + fa
i , (1)

where γ is the drag coefficient of the fluid and the effect
of the thermal noise due to the solvent is assumed to be
much smaller than the effect due to the random active force
fa
i [14]. The term Fi represents the force contribution due

to steric interactions, such that Fi = −∇iUtot, where Utot =∑
i< j U (|xi j |), with xi j = xi − x j .
Following several studies in the literature [29,46], we

choose U (r) as a truncated and shifted Lennard-Jones poten-
tial:

U (r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε, r � 21/6σ,

0 r � 21/6σ .
(2)

The constant σ represents the nominal particle diameter, while
ε is the typical energy scale of the interaction. For numerical
convenience, both these parameters are set to 1 in the sim-
ulations. Even in very packed configurations, each particle
can only interact with its first neighbors due to the truncated
potential.

The self-propulsion force, fa
i = γ v0ni, evolves with ABP

dynamics: v0 is the modulus of the speed induced by the
self-propulsion for a force-free particle, and ni is a unit
vector of components (cos θi, sin θi ). The orientational angle,
θi, performs angular diffusive motion described by

θ̇i =
√

2Dr ξi , (3)

where ξi is a white noise with unit variance and zero average.
The constant Dr represents the rotational diffusion coefficient
and its inverse defines the typical relaxation time, τ = 1/Dr ,
of the active force [50].

We remark that no explicit aligning force is included in the
present model, at variance with Vicsek-like models where par-
ticles’ velocities are forced to align with the mean orientation
of surrounding particles’ velocities [51–53]. Thus, in contrast
with Vicsek-like models, the dynamics, (1), does not produce
any polarization of the directors ni. We also avoid employing
any form of self-alignment between the particle velocity and
the self-propulsion force responsible for orientation-velocity
ordering as recently proposed in [54,55].

A. Effective velocity dynamics of the particle

In order to obtain theoretical predictions and interpret the
results, following [46], it is useful to switch from the set of
variables {xi, fa

i } to the transformed variables {xi, vi}, elimi-
nating the self-propulsions in favor of the particles’ velocities,
vi = ẋi. We emphasize that the vectors fa

i and vi are not
aligned, because of the interaction force Fi. This is true, in
particular, at high densities. The transformed dynamics reads

ẋi = vi, (4)

τγ v̇i = −γ

N∑
j=1

�i j (ri j )v j + Fi + τγ ki, (5)
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where both vi and xi belong to the plane xy and ri j = xi − x j .
Each term �i j is a 2 × 2 matrix whose elements are

�
αβ
i j (ri j ) = δi jδαβ + τ

γ
∇iα∇ jβU (|ri j |) , (6)

where Latin indices identifying the particles assume the val-
ues i, j = 1, N , while Greek indices stand for the spatial
components (x, y). The last addend in Eq. (5), ki, is a noise
term which reads

ki = v0

√
2/τ ξi × ni = v0

√
2/τ ξi × γ vi − Fi

γ v0
. (7)

ξi is the stochastic vector with components (0, 0, ξi ) normal
to the plane of motion. At variance with the dynamics of fa

i ,
the modulus of vi is not constant because of the term ∝ξi ×
Fi. The result can be easily generalized to the case of finite
thermal noise, as shown in Appendix A, using the strategy
from [56].

The deterministic part of Eq. (5) represents the dynamics
of an underdamped passive particle under the action of space-
dependent friction. Indeed, the first term on the right-hand side
of Eq. (5) can be split into a contribution, −γ�iivi, represent-
ing a generalized Stokes force acting on the ith particle, plus
a second contribution, −γ

∑N
j �=i �i j (ri j )v j , which depends on

the particles’ relative positions and velocities and vanishes in
a passive system.

The ABP equation, (5), for the velocity strongly resembles
the analogous equation of another schematic model of self-
propelled particles, namely, the active Ornstein-Uhlenbeck
model (AOUP) [57–66]. Such a connection has recently been
established in some studies [67,68]: the only difference be-
tween the ABP and the AOUP arises from the noise term ki. In
the latter case, ki is a simple white noise acting on the velocity
as an effective thermal bath. On the other hand, in the ABP, ki

is perpendicular to ni, the orientation of the active force, and
is a multiplicative noise since its amplitude depends on both
vi and Fi through the unit vector ni. Also, note that (since ξi

has unit variance and n is a unit vector) the variances of the
ABP and AOUP noises coincide, being v2

0/τ . We emphasize
that, upon fixing v0, the noise variance decreases in the large
persistence regime.

B. Known results and positional order

In the present section, we illustrate the phase diagram
for the values of the control parameters φ and τ (at fixed
v0) explored in this work. Our results are obtained through
numerical solutions of Eqs. (1) in a square domain of size L
under periodic boundary conditions. In the considered interval
of packing fractions (φ ∈ [0.78, 1.1]), a suspension of passive
Brownian particles exhibits liquid, hexatic, and solid phases
depending on the temperature. Our ABP phase diagram,
realized under stationary conditions, is consistent with the
findings of Di Gregorio et al. [25]. As shown by these authors,
as τ is increased the liquid-hexatic and the hexatic-solid
boundaries shift to larger values of φ and the hexatic region
of the phase diagram is enlarged with respect to the passive
equilibrium picture. In the whole phase diagram, a further
τ increase determines the transition from homogeneous to
inhomogeneous configurations (MIPS). We ascertain that our

simulations reach a stationary regime in both cases and, in
particular, when phase separation occurs. Since the dense
cluster reaches average sizes, we conclude that there is no
evidence of coarsening dynamics.

When the persistence is smaller than the time scale as-
sociated with the potential, i.e., when τ � (∇ · F(x̄)/γ )−1

(x̄ being the average distance between neighboring particles,
which is fixed by the density in any homogeneous configura-
tions), we expect the same behavior as in passive Brownian
particles [69,70]: particles are homogeneously distributed in
the box and arranged in the solid, hexatic, or liquid phase,
as shown in [25], depending on the interplay between φ

and τ . In this regime, the active force acts as a thermal
bath with effective diffusivity ∼v2

0τ . Thus, the growth of τ ,
at fixed v0, can be mapped in the increase in the effective
diffusivity in the corresponding Brownian system. Depending
on the interplay between φ and v2

0τ , the system explores
liquid, hexatic, or solid phases. The structural properties are
detected by monitoring the behavior of the orientational order
parameter [26,71], ψ6(xi ), defined as ψ6(xi ) = ∑

j e6iαi j /Ni,
where αi j is the angle—with respect to the x axis—of the
segment joining the ith and the jth particle and the sum is
restricted to the first neighbors of particle i, namely, Ni. In
particular, we focus on the correlation function, g6(r = |xi −
x j |) = 〈ψ6(xi )ψ∗

6 (x j )〉/〈ψ2
6 (x j )〉, to distinguish between dif-

ferent phases. While g6(r) is roughly constant with the dis-
tance in the solid phase, it decays as an inverse power law
in the hexatic phase. Differently, in the liquid phase, g6(r)
shows an exponential decay. Examples of the different de-
cays of g6(r) in the three structural phases are shown in
Fig. 2(a).

In addition, we also measure the pair correlation function,
g(r). At a high density, the arrangement of particles is close to
the hexagonal lattice, so that the peaks of the g(r) are placed
at positions x̄,

√
3x̄, 2x̄,

√
7x̄, . . . , where x̄ is the typical

distance between neighboring particles, fixed by the density
in any homogeneous configurations. It is noteworthy that x̄
is quite smaller than σ , meaning that particles climb on the
interacting potential due to the high densities. Each particle
interacts only with its six neighbors due to the truncated nature
of U (r). In analogy with an equilibrium system, one can
roughly identify the liquid phase with the parameter region
where the second peak of g(r) is not split. We see that for all
values of the packing fraction, the peaks of the g(r) decrease
as τ is increased, in agreement with the interpretation of the
self-propulsion in terms of effective diffusivity: fluidization
occurs. The g(r) is shown in Figs. 2(g) and 2(h) for several
values of τ and two densities, φ = 0.94 and 0.82, respectively:
at a high density [Fig. 2(g)], the system maintains a split
second peak, while at a moderate density [Fig. 2(h)], the
system shows a transition—increasing τ—towards a single
second peak where a liquidlike structure occurs [69]. Upon
increasing τ beyond some threshold value (that depends on
φ), represented by the dotted red line in Fig. 2(g), the curves
representing g(r) saturate, meaning that the internal structure
is no longer influenced by the value of τ . On the other hand,
the shape of g(r) changes towards less fluid configurations
where the system shows phase separation or inhomogeneities.
This is not a surprise since, in these cases, particles in the
clusters attain a more compact configuration.
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FIG. 2. Structural properties. (a) g6(r) at φ = 0.98 for different values of τ , as reported in the legend, exploring the different structural
phases: S, almost solid; H, hexatic; and L, liquid. (b), (c) Two snapshot configurations, where colors denote the orientation of the particles,
namely, θ . (d), (e) Distribution of the packing fraction, P(φ̂), corresponding to the two configurations. (f) The fraction of defects in the whole
box vs τ for three values of the densities as illustrated in the legend. The colored stars show the value of τ at which the system becomes
nonhomogeneous. (g), (h) A set of g(r) obtained at different values of τ for φ = 0.94 and 0.82, respectively. Each curve is shifted along y for
presentation reasons. Simulations were always realized with v0 = 50 and the interaction discussed in the text.

The boundary line between the homogeneous and the in-
homogeneous (phase-separated) regimes is obtained by mon-
itoring the stationary distribution of the local packing frac-
tion, P(φ̂), shown in Figs. 2(d) and 2(e) for two different
configurations at the same densities and different τ ’s. When
the system is spatially homogeneous P(φ̂) displays small tails
and a peak located at φ̂ = φ, while in the inhomogeneous
region it displays a long tail for small φ̂ < φ and a shift of
the main peak for φ̂ > φ. The line of the transition from
homogeneous (L, H, S) to phase-separated (P-H) phases is
tracked in Fig. 1(a), in correspondence with the first point
showing such a shift.

Finally, the fraction of defects vs τ is measured for the
denser configurations spanning solid and hexatic phases, as
illustrated in Fig. 2(f). A defect is detected by counting the
number of neighbors of a particle inside a circular radius of
size σ : if the number of neighbors is different from six, we
mark this point as a defect. The measure is stopped when
the system becomes inhomogeneous, in the proximity of the
colored stars. We observe that the solid-hexatic transition
takes place where the fraction of defects reaches ∼5%.

III. ORDER IN THE VELOCITIES

Figures 1(c) and 1(d) are snapshots of the system represent-
ing the particles’ positions and velocities for a large value of

the persistence: they do not show MIPS, since at φ = 1.1 the
density remains homogeneous in the considered range of τ . In
the case of interacting systems, the velocities of the particles,
vi, represented by black arrows in Figs. 1(c) and 1(d), differ
from fa

i and, despite the absence of any alignment interactions,
align and self-organize in large oriented domains. On the con-
trary, the self-propulsion fa

i remains randomly oriented. The
alignment of velocity orientations corresponds to the collec-
tive movements of large domains of particles. Such domains
rearrange continuously with time and, sometimes, collapse
into vortex structures, at variance with the well-known trav-
eling bands occurring in the Vicsek-like models [52,72–74].
This phenomenology, occurring in the steady state, resembles
qualitatively the scenario presented in [46] in the dense cluster
of a configuration showing MIPS. Moreover, we discover that
this nonequilibrium phenomenology is accompanied by the
occurrence of large regions having the same kinetic energy
and fast regions in the proximity of defects which induce
intermittent behavior in the time trajectory of the kinetic
energy (see Sec. III B).

Hereafter, this velocity order is studied quantitatively in
terms of spatial alignment velocity correlations and suitable
order parameters, useful to estimate the size of the domains.
We find that there are different aspects of the velocity ordering
phenomenology—(i) order in the orientation of the velocity
vectors and (ii) order in the full velocity vectors—accounting
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FIG. 3. Size of the velocity-aligned domains. (a), (b) R and φ̂ as a function of τ for different values of φ as indicated in the legend. (c), (d)
Spatial correlations of the velocity orientation, Q(r), for φ = 1.1 and 0.94, respectively. Curves with different τ values are reported according
to the legend. (e), (f), (g) Three snapshot configurations, for τ = 0.002, 0.05, and 2, respectively, with φ = 1.1. In these three panels, colors
represent the orientation of the particles’ velocities. All data in this figure were obtained at v0 = 50.

also for the occurrence of large regions with the same kinetic
energy.

A. Velocity orientation

For Vicsek-like models, the global alignment of the parti-
cles, also known as polarization, is commonly measured by
the order parameters [51,72,75,76]

ϕ = 1

N

∣∣∣∣∣
N∑

i=1

ei�k

∣∣∣∣∣ , (8)

where i is the imaginary unit and �k is the velocity orientation
of the kth particle. This observable is almost 0 for particles
without any alignment, typically at low numerical densities
and high noise, and returns to 1 for perfectly aligned particles,
e.g., for large values of φ [72]. On the contrary, in most
systems of swimming active particles, typically evolved by
means of overdamped equations, velocity vectors are ignored
and the self-propulsion orientation is the only information
used to characterize polarization: for instance, in the case of
spherical (apolar) ABP particles, the parameter ϕ in Eq. (8)—
with �k replaced by θk from Eq. (3)—is close to 0. In this
model, since self-propulsions do not coincide with velocities,
it is more suitable to consider the orientation of the veloc-
ity vector, ẋk , in Eq. (8), i.e., replacing �k with the angle
formed by the velocity of the particle with respect to the x
axis. However, due to the presence of several domains with
different orientations, there is no global velocity polarization.
In principle, for very large persistence we could observe a
large oriented domain spanning the whole box, but such a

finite-size effect occurs only when v0τ � L, i.e., when the
persistence length exceeds the size of the box [22,23]. We do
not consider such a case in this paper.

A more appropriate indicator, which—even in the absence
of a global polarization—provides information about the local
alignment of the velocities and its dependence on physical
parameters, is the spatial correlation function of the velocity
orientation, Qi(r) [46], normalized to 1. This observable mea-
sures the velocity alignment between particle i and its neigh-
boring particles located in the circular crown of thickness
r̄ = σ and mean radius r = kr̄, k being an integer positive
number, and reads

Qi(r) = 1 − 2
∑

j

di j

Nkπ
, (9)

where the sum runs over the particles within the circular
crown defined by the value of k and Nk corresponds to
the number of particles contained in it. The term di j is the
angular distance between the two angles of the velocities
of particles i and j, namely, βi and β j , calculated as di j =
min[|βi − β j |, 2π − |βi − β j |]. We average over all particles
by defining Q(r) = ∑

i Qi(r)/N , which (for r > 0) has the
property of being 1 and −1 for perfectly aligned and an-
tialigned particles, respectively, and 0 in the absence of any
form of alignment. In Figs. 3(c) and 3(d), we report Q(r)
for different values of the persistence time, τ , and for two
different densities. As expected, Q(r) is a decreasing function
of r. For the smallest values of τ , the alignment is appreciable
only in the first shells, a finding consistent with the scenario
where the self-propulsion only acts as an effective thermal
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diffusion. Instead, as τ increases, Q(r) takes on larger values
in the first shell and decays more and more slowly towards
0, with a typical decay length which roughly represents the
average size of one domain: larger values of τ and density
(almost always) produce both an increasing Q(r) in the first
shell (k = 1) and a slower decay of the whole function.
This observation is, also, qualitatively confirmed by three
snapshot configurations obtained for increasing values of τ

from Fig. 3(e) to Figs. 3(f) and 3(g). There, the colors encode
the velocity orientations, showing the increase in the average
size of the individual velocity domains with τ .

The velocity ordering is well captured by the parameter
R, obtained by integrating over the whole box the correlation
Q(r):

R =
∫

Q(r)dr . (10)

This parameter is a measure of the domain size and is studied
in Fig. 3(a), as τ varies for several values of φ, evaluating both
the homogeneous and the nonhomogeneous configurations.
We recall that the nonhomogeneous regimes correspond to
the emergence of empty regions or phase separation, signaled
by the presence of a nonsingle peak in the packing fraction
distribution [see Figs. 2(d) and 2(e)]. To evaluate the impact of
density inhomogeneity on R, we show the main peak position,
φ̂ in Fig. 3(b), for different values of τ and average packing
fraction φ. We remark that φ̂ ≈ φ up to some critical value
of τ , then it increases. This critical value increases as the
average packing φ is increased. At the larger packing fraction
studied, φ = 1.1, the system remains homogeneous for all the
explored values of τ . It is noteworthy that the values of φ̂ (the
densities in the denser part of the system) become independent
of φ for τ sufficiently large.

As shown in Fig. 3(a), R increases with τ . For φ = 1.1, i.e.,
when the system is spatially homogeneous for all values of τ ,
the growth is steady. This proves that the growth of R occurs
even in the absence of any local density inhomogeneity since
it is not associated with some local change in density. Instead,
for smaller values of φ, a first slow monotonic increase is
followed by a sharp one occurring at a value of τ for which the
homogeneous liquidlike or hexatic phases break down in favor
of an inhomogeneous phase. A comparison between Fig. 3(a)
and Fig. 3(b) also suggests that R has a strong dependence
on φ.

The occurrence of such a velocity order is evidence of
the nonequilibrium nature of the dense active phases. Even
if the structural (positional) information suggests an anal-
ogy with the liquid, hexatic, or solid phases of a passive—
equilibrium—system, there is not an equilibrium counterpart
of the velocity ordering phenomenon.

In general, it is believed that the occurrence of local
velocity alignment is a consequence of the breaking of some
microscopic isotropy (as occurs in the case of elongated parti-
cles [77–80]) or the introduction of explicit alignment interac-
tions. The present ABP model subject to random independent
active driving leads to velocity alignment—in the high-density
regimes—even for spherical particles. This phenomenology
simply arises from the interplay between self-propulsion and
steric interparticle repulsion.

B. Kinetic energy and intermittency

Besides the local order of velocity orientations, spatial cor-
relations also manifest in the speed, v = |v|, and, thus, in the
kinetic energy of the particles, ∝v2. Figures 4(a)–4(c) show
the map of v2/〈v2〉 for three snapshot configurations obtained
varying τ , for φ = 1.1, i.e., at a density value such that the
active system attains a solidlike state for every τ . For small τ ,
kinetic energies display uncorrelated spatial fluctuations (with
Gaussian statistics; not shown here). As τ grows, structures
characterized by similar (or correlated) values of v2 appear,
with alternation of fast and slow regions (each identified by a
given color).

We also highlight an interesting connection between the
kinetic energy spatial distribution and the structural proper-
ties of the system. In Figs. 4(d)–4(f), we plot the observ-
able |ψ6(xi )|—which is the field pertaining to the crystalline
orientational order—relative to the three configurations in
Figs. 4(a)–4(c). The comparison between the maps of |ψ6(xi )|
and v2 reveals that the regions with high kinetic energies
develop close to the defects of the crystalline structure. A
similar scenario occurs for a smaller value of φ, namely,
φ = 1.02. In this case, the v2 map is shown in Figs. 4(g)–4(i),
while Figs. 4(j)–4(l) report the |ψ6| map. For this choice
of φ, the three values of τ distinguish different aggregation
phases: phase separated, hexatic, and solid (from left to right).
The solid phase for the smaller value of τ is qualitatively
indistinguishable from the denser case [compare Figs. 4(c)
and 4(i)]. Instead, for the intermediate value of τ [Fig. 4(h)]
the occurrence of the hexatic phase is responsible for a larger
number of defects and, thus, a larger number of mobile parti-
cles, as clearly shown from the comparison between Fig. 4(h)
and Fig. 4(k). Finally, in the phase-separated configuration,
the fastest regions are mostly concentrated near the boundary
of the empty region [Fig. 4(g)].

To assume another perspective, it is instructive to consider
the time behavior of the kinetic energy, v2, calculated averag-
ing over a box of size l such that r̄ � L. This observable,
as a function of time, is reported for different values of τ

in Figs. 4(m) and 4(o) for φ = 1.1 and 1.02, respectively.
In these two cases, the scenario is similar: for the smaller
values of τ the kinetic energy displays symmetric and rapidly
uncorrelated fluctuations around the mean value, 〈v2〉. This
is coherent with an effective equilibrium picture which is
expected when τ → 0. For large values of τ , sparse anoma-
lous peaks manifest, corresponding to rare fluctuations, which
move away from their average by several standard deviations.
These peaks become higher and more isolated when τ in-
creases. The observed behavior resembles the temporal in-
termittency observed in turbulence [81] or in active attractive
glassy systems [82]. A more detailed analysis of this issue will
be presented in a future work, while in this paper, we consider
only the essential features of this phenomenon, in particular,
the role played by defects in the solid phase: particles near the
defects attain, in fact, a high kinetic energy. To corroborate our
observation, we compare the fluctuations of the orientational
order parameter, �6 = ∑Nl

i=1 ψ6, j/Nl , and those of the kinetic
energy, v2, both averaged over a box of size l with Nl particles.
In particular, Fig. 4(n) shows the time trajectories of 1 − �6

and v2, revealing a fair correlation between the occurrence of
spikes for both these observables.
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FIG. 4. Fluctuations of kinetic energy. Snapshots in the plane xy realized at (a)–(f) φ = 1.1 and (g)–(l) φ = 1.02 for different values of
τ as reported below the panels. Colors in (a)–(c) and (g)–(i) encode the value of the square velocity of each particle, v2/〈v2〉, while colors
in (d)–(f) and (j)–(l) represent the value of the crystalline orientational order parameter |�6|. (m, o) Different time series of v2 obtained for
τ = 10−2, 10−1, 1, and 2 as indicated in the legends, with φ = 1.1 (m) and φ = 1.02 (o). (n) Comparison of a single trajectory of v2 and
1 − |�6|, obtained with τ = 2 and φ = 1.1. All simulations were realized with v0 = 50.

With the aim of introducing also the information on in-
termittency in the general picture, we have drawn a dashed
black line in the phase diagram in Fig. 1: the line identifies
the intermittency region and is tracked at the first values of
τ and φ for which the peak of the v2 trajectory overcomes 3
times the standard deviation from its average value.

C. Vectorial velocity field

In the previous sections, we have shown that the spatial
correlation of velocity orientations increases with τ , even in
the presence of crystalline defects or large voids (such as those
in the phase-separated regimes). Speed (velocity modulus) is
more sensitive to the presence of defects and creates patterns
with sparse strong fluctuations. A natural question arises:
What happens to the spatial correlation of the full velocity
vectors (which incorporate both orientation and modulus)?

A quantitative measure of the ordering of the velocities can
be obtained by measuring the spatial correlation function in
the steady state,

C(r) = 〈v(r) · v(0)〉
〈v2〉 , (11)

in the continuous limit, vi → v(r). 〈v2〉 is the variance of the
velocity distribution calculated over the whole box. Our anal-
ysis limited to the case of homogeneous density under some
assumptions is able to predict the form of C(r) (as illustrated
in Appendix B). The equation of motion, (5), is approximated
by the AOUP dynamics, replacing the multiplicative noise
with a two-dimensional additive noise. By this method, it is
possible to predict the spatial velocity correlation function. At
variance with the calculation reported in [46], here we assume

that particles are free to oscillate around their equilibrium
positions, i.e., they form a hexagonal crystal structure with
oscillating sites. Under these simple hypotheses, an expres-
sion for C(r) can be derived using the equation of evolution of
the velocities. In particular, C(r) displays an exponential-like
behavior,

C(r) ∝ x̄2

�2

(
�

8πr

)1/2

e−r/� , (12)

where � is the correlation length,

� = x̄
√

τ

γ

[
3

4

(
U ′′(x̄) + U ′(x̄)

x̄

)]1/2

. (13)

Thus, a strong potential and/or a large value of τ increases
the value of �. Also, increasing the average packing fraction
(i.e., decreasing the lattice constant x̄) leads to an increase
in � through the U (x̄) dependence on this quantity. Expres-
sion (13) coincides with the result obtained in [46], even if
here it is derived under the less restrictive hypothesis of a
vibrating (not rigid) lattice. Moreover, at variance with [46],
here we are also considering very high average densities with
homogeneous (not phase-separated) configurations, allowing
us to directly check the scaling of C(r) with τ . On the
contrary, when phase separation occurs, the packing fraction
φ̂ of the dense regions increases with τ , even at fixed average
density φ (and therefore x̄ decreases).

To check predictions (12) and (13), we study the spatial
velocity correlation, C(r), for several values of τ and φ.
C(r) for the denser case (φ = 1.1), which corresponds to the
solid phase for the whole range of τ numerically explored,
is reported in Fig. 5(c) and reveals a good agreement with
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FIG. 5. Spatial correlations of velocity vectors: theory and numerics. (a), (b) Correlation lengths, �, as a function of τ for different values
of φ as shown in the legends. The colored circle around a symbol in each curve in (a) is the point at which the solid-hexatic transition is
obtained. In particular, (b) zooms into small values of τ and shows the prediction, (13), as a solid line, fitting the function A τ 1/2, A being a
fitting parameter. (c)–(e) Plots of the correlation function C(r) for several values of φ and τ : for φ = 1.1 (i.e., in the solid state) for several
values of τ (c), and for two values of τ as a function of φ [(d) and (e), which share the same legend]. In (c)–(e), points were obtained from
numerical simulations, and solid lines from the theoretical prediction, Eq. (12). S, solid phase; H, hexatic phase. (f)–(i) g6(r) for different
values of φ and τ . The simulations were realized with v0 = 50.

theory. The correlation length, �, is reported in Fig. 5(a)
(green diamonds) and shows monotonic growth in fairly good
agreement with Eq. (13): under these high-density conditions,
the defects are not as statistically relevant and do not interfere
with the velocity order. The zoom in Fig. 5(b), accompanied
by a fit of the numerical data, displays a good agreement
with formula (13). A similar analysis reveals discrepancies
between theory and simulations when applied to lower values
of φ: the increase in � ceases at some value of τ which depends
on φ. We mark with a colored circle the first value of τ where
� has reached a plateau and call it τ ∗(φ). Interestingly, this
is close (up to numerical errors) to the value of τ where
the solid-hexatic transition takes place (i.e., the fraction of
crystalline defects roughly overcomes a given threshold).
Here, for completeness, we report the correlation function
of �6, namely, g6 = 〈�6(0)�∗

6 (r)〉, in Figs. 5(f)–5(i). This
function shows the well-known transition from the solid to
the hexatic phases, roughly at τ ∗, where g6 goes from a nearly
constant behavior to a power-law decay [71]. For comparison,
we also show C(r) as a function of φ for two values of τ , in
Figs. 5(d) and 5(e), where each phase is labeled S or H (solid
or hexatic) in the legend. In the hexatic phase, C(r) maintains
the exponential-like shape predicted in Eq. (12) but decays
abruptly much faster in the proximity of the solid-hexatic

transition. As a consequence, the agreement between Eq. (13)
and the data, shown in Fig. 5(b), holds up to τ ∗, while for
τ > τ ∗ the presence of defects invalidates the prediction, (13),
since � remains nearly constant or decays very slowly. It is
also remarkable that a further increase in τ produces a steep
increase in �. This is likely caused by phase separation and the
increase in local density in the clustered regions. Even in this
case, we still expect that Eq. (13) holds even if the function
x̄(τ ) is unknown.

In conclusion, we have solid arguments to state that a large
number of defects occurring in the hexatic or liquid phase are
responsible for the saturation of �. Indeed, in the proximity
of a defect, regions with high kinetic energies are present,
as shown in the previous section, and as a consequence,
the velocities are less correlated. Interestingly, the size R of
the orientational domains is not as affected by the lack of
orientational order, always revealing monotonic growth with
τ independently of the structural phase.

IV. DISCUSSION AND PERSPECTIVES

We have studied systems of self-propelled particles at
high packing fractions displaying structural properties which
resemble the equilibrium liquid, hexatic, and solid phases,
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exploring both small and large persistence regimes. While
at small values of the persistence time, τ , many observables
behave as at equilibrium, the phenomenology in the high-
persistence regime is much richer and displays unexpected
dynamical phenomena. The observed dynamical anomalies
are included in a new phase diagram upon the introduction
of a suitable order parameter encoding the information on the
spatial velocity correlations. To the best of our knowledge,
this is the first extensive investigation which, going beyond the
standard analysis of structural properties, reveals the nonequi-
librium peculiarities of packed self-propelled disks.

Specifically, we extend the scenario found in [46] for a
moderate packing value to a broad range of packing frac-
tions, confirming that velocities exhibit intriguing patterns
and form aligned domains or vortexlike arrangements in all
the dense phases of active matter. Remarkably, the lack of
translational order hinders the spontaneous alignment in liq-
uid phases where it remains rather low, while the domain size
increases considerably in the denser homogeneous phases.
This information is included in the phase diagram through
a suitable order parameter which quantifies the size of the
aligned domains, deduced from the spatial correlations of the
velocity orientations. This parameter increases with both the
packing fraction, φ, and τ in the homogeneous phases, while
it becomes independent of φ in the phase-separated regimes.
We remark that this scenario is consistent with the absence
of alignment phenomenology observed in the homogeneous
liquid phase studied in [46] before the occurrence of MIPS,
because of the small packing fraction value considered.

We also observe novel dynamical anomalies in the occur-
rence of large regions whose kinetic energy is highly corre-
lated: these regions become larger when τ and φ increase.
In addition, high energetic regions form in the proximity
of orientational defects of the crystalline aggregates. This
scenario is accompanied by a pronounced time intermittency
phenomenon, apparently well correlated with the fluctuations
of the orientational order parameter. Correlations of the veloc-
ity vector are also useful to gain insights into the dynamical
features, accounting for both velocity orientation and mod-
ulus. Being sensitive to both orientational and translational
order, their correlation lengths distinguish between hexatic
and solid phases. As an additional analytical result, they can
be successfully compared to a mesoscopic theory developed
under the assumption of homogeneous density. Deviations
from the theory occur when the hexatic phase appears and,
with it, a large fraction of defects.

Our observations call for experimental verification.
Promising real platforms to confirm such interesting phe-
nomenologies are Janus particles [15,83] and vibrated polar
granular disks [17].

In the present work, we have been interested in understand-
ing the dense phase in monodisperse active systems. Binary
mixtures are often employed for gaining insight into active
glass phases [62,82,84–90]. In particular, it has been shown
that the spatial velocity correlation function is an input ingre-
dient for developing a self-consistent mode-coupling theory
of active matter [86]. Our findings prove that the statistical
properties of the velocity field must be taken into account
in order to have a complete description of active systems.
As a future direction, it would be interesting to understand

how the velocity alignment patterns could affect the glassy
transition.

The phenomenology of domains with aligned velocities
could resemble the scenario of traveling crystals, observed
in numerical simulations in Refs. [22,23]. Recently, traveling
crystals have been observed in experiments using suspensions
of microdisks subjected to vertical vibrations [24]. In such
studies, the whole hexagonal pattern moves coherently in
space, even though each self-propulsion vector points ran-
domly. Our phenomenology is quite different since far parti-
cles (which belong to different domains) move independently,
and thus, the whole crystal gets stuck. Instead, the movement
of some clusters gives rise to the formation of defects. We find
that the whole crystal travels coherently as in Ref. [22] only if
the size of the box is smaller than the persistence length of the
active motion.
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APPENDIX A: VELOCITY DYNAMICS IN THE CASE T > 0

The change of variables from (xi, fa
i ) to (xi, vi ), i.e., from

Eqs. (1) and (3) to Eqs. (4) and (5), was derived in Ref. [46]
in the absence of thermal noise (i.e., for T = 0). The change
of variables can be easily generalized to the case T > 0,
as shown in this Appendix. This generalization follows the
strategy in Ref. [56], where the result is obtained in the case of
the AOUP model for noninteracting particles. Here, the same
trick can be adapted to ABP self-propulsion. To overcome
the difficulty regarding the time derivation of the thermal
noise, we define the variable vi = ẋi − √

2T/γ wi. Taking the
derivative with respect to time, the dynamics reads

ẋi = vi +
√

2T/γ wi, (A1)

τγ v̇i = −γ

N∑
j=1

�i j (ri j )v j + Fi + τγ ki

− τ∇i · Fi

√
2T/γwi. (A2)

The thermal noise comes into play with two additional noise
terms. The first is an additive noise on the dynamics of ẋi,
while the second is multiplicative and acts on v̇i. Its space
prefactor balances the space-dependent Stokes force in the
equilibrium limit τ → 0.

APPENDIX B: POSITIONAL, ORIENTATIONAL, AND
VELOCITY CORRELATIONS FOR A PERFECT ACTIVE

LATTICE

In order to obtain the correlation functions of the two-
dimensional system we make two simplifying assumptions in
the dynamics, Eq. (1):
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(i) Each component of the active force, fa
i , is replaced

by independent Ornstein-Uhlenbeck processes, namely, ηi,
with equivalent intensity, v0 = √

D/τ , and persistence time,
1/Dr = τ .

(ii) Each particle oscillates around a node of a hexagonal
lattice so that the total inter-particle potential can be approxi-
mated as the sum of the quadratic terms.

The approximate dynamics reads

η̇i(t ) = − 1

τ
ηi(t ) +

√
2D

τ
ξi(t ), (B1)

ẋi(t ) = ηi(t ) −
n.n∑

j

∇iU (|x j − xi|)
γ

, (B2)

where ∇iU stands for the gradient of the potential U with
respect to xi and the sum involves the nearest neighbors of
the lattice node i.

Introducing the displacement ui of particle i with respect
to its equilibrium position, x0

i , namely,

ui = xi − x0
i , (B3)

we get

η̇i(t ) = − 1

τ
ηi(t ) +

√
2D

τ
ξi(t ), (B4)

u̇i(t ) = ηi(t ) + K

γ

n.n∑
m

(u j − ui ) , (B5)

where K is the strength of the potential in the harmonic
approximation, i.e., U ≈ K

2 (u j − ui )2, which reads

2K =
(

U ′′(x̄) + U ′(x̄)

x̄

)
.

In order to solve the problem, we switch to normal coordi-
nates, employing the Fourier-space representation,

ûq = 1

N

∑
i

ui e−iq·x0
i , (B6)

η̂q = 1

N

∑
i

ηi e−iq·x0
i , (B7)

and obtain

d

dt
η̂q(t ) = − 1

τ
η̂q +

√
2D

τ
ξ̂q, (B8)

d

dt
ûq(t ) = −ω2

q

γ
ûq(t ) + η̂q , (B9)

where

ω2
q = −2K

[
cos(qxx̄) + 2 cos

(
1

2
qxx̄

)
cos

(√
3

2
qyx̄

)
− 3

]

≈ 3

2
Kx̄2q2 + O(q4) , (B10)

with q = (qx, qy) vectors of the reciprocal Bravais lattice.
Thus, we can easily calculate the steady-state equal-time

correlations:

〈ûq(t ) · û−q(t )〉 = 2Dγ

ω2
q

(
1 + τ

γ
ω2

q

) , (B11)

〈v̂q(t ) · v̂−q(t )〉 = 2D

τ

1

1 + τ
γ
ω2

q
, (B12)

〈ûq(t ) · v̂−q(t )〉 = 0. (B13)

1. Velocity correlation function

We now consider the real-space velocity correlation func-
tion:

〈vx · vx′ 〉 = 1

N2

2D

τ

∑
q

eiq(x−x′ ) 1(
1 + τ

γ
ω2

q

) . (B14)

By replacing the lattice sum with a double-dimensional inte-
gral and defining r = |x − x′|, we have

〈vx · vx′ 〉 ≈ 1

2π

2D

τ

x̄2

�2
K0(r/�), (B15)

where K0(r/�) is the zero-order modified Bessel function of
the second kind, which has the asymptotic behavior when
r/� � 1

K0(r/�) ≈
(

π�

2r

)1/2

e−r/� ;

we find

〈vx · vx′ 〉 ≈ 2v2
0

x̄2

�2

(
�

8πr

)1/2

e−r/� , (B16)

where

�2 = 3τ

2γ
x̄2K = 3τ

4γ
x̄2

(
U ′′(x̄) + U ′(x̄)

x̄

)
,

which defines the correlation length � in the harmonic hexag-
onal lattice, in agreement with result (13).

2. Bond angle order and ψ6 field in the harmonic crystal

We define the angle, αx, between the local crystallographic
axes and the axes of the ideal lattice [91],

αx = 1
2∇ × ux,

where we have used the continuum representation. In Fourier
space we have

α̂q = i

2
(qxûqy − qyûqx ),

while the α̂q correlation reads

〈α̂qα̂−q〉 = Dγ

4

q2

ω2
q

1

1 + τ
γ
ω2

q
≈ σ 2

6x̄2

1

1 + �2q2
,

where σ 2 = Dγ /K . The real-space αx-correlation function is
given by

〈(αx − αx′ )2〉 ∝ 1

N2

∑
q

eiq(x−x′ ) σ 2

6x̄2

1

1 + �2q2

∝
(

�

8πr

)1/2 x̄2

�2
e−r/�,
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where we have used the expansion for small q and the asymp-
totic behavior of K0(r/l ). Now, we consider the correlation
function of ψ6x = ei6αx :

〈ψ6xψ
∗
6x′ 〉 = 〈ei6αx e−i6αx′ 〉.

Using the form of the α correlation we find

〈ψ6xψ
∗
6x′ 〉 = e− 1

2 〈(6αx−6αx′ )2〉 .

Consequently, the correlator of ψ6 does not vanish at ∞, i.e.,
the order is maintained since

lim
|x−x′ |→∞

〈ψ6xψ
∗
6x′ 〉 = const.

This is the expected result since the harmonic lattice always
maintains the sixfold coordination number and no disclina-
tions can be created. We note that for this model the velocity
correlation and the αx correlation have the same long-range
behavior.
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