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Effective equilibrium picture in the x y model with exponentially correlated noise
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We study the effect of exponentially correlated noise on the xy model in the limit of small correlation time,
discussing the order-disorder transition in the mean field and the topological transition in two dimensions. We
map the steady states of the nonequilibrium dynamics into an effective equilibrium theory. In the mean field, the
critical temperature increases with the noise correlation time τ , indicating that memory effects promote ordering.
This finding is confirmed by numerical simulations. The topological transition temperature in two dimensions
remains untouched. However, finite-size effects induce a crossover in the vortices proliferation that is confirmed
by numerical simulations.
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I. INTRODUCTION

The classical xy model undergoes a phase transition that
is second order in d > 2 spatial dimensions and infinite order
in d = 2 [1,2]. Since the xy model is described by a vectorial
order parameter invariant under the O(2) orthogonal symmetry
group, the existence of a second-order phase transition in d spa-
tial dimensions is governed by the Mermin-Wagner theorem
that fixes the lower critical dimension at d = 2 [3–5]. However,
in two dimensions, topological defects produce collective
configurations like vortices that cause a novel type of phase
transition related to the vortex-antivortex pair unbinding [6–8],
i.e., the so-called Berezinskii-Kosterlitz-Thouless transition
(BTK).

In this paper, we investigate the properties of the xy model
driven out of equilibrium through exponentially correlated
noise. The control parameters of the dynamics are the cor-
relation time of the noise τ and the strength of the noise T .
When τ = 0, the model reduces to the equilibrium xy model
at temperature T . By considering the unified colored noise
approximation (UCNA) [9,10] in the small τ limit, we write an
effective equilibrium theory that is exact in the small τ limit.
In the effective equilibrium picture, τ becomes an external
thermodynamic parameter that can be tuned to bring the system
to the transition point.

We will start by discussing the model in the mean-field
approximation corresponding to d = ∞. To do so, we consider
a fully connected lattice [11]. In the small τ limit, we can
compute analytically the partition function, obtaining a vecto-
rial O(2) field theory where the Landau parameters depend
on both temperature and τ . According to that finding, the
mean-field model for small τ undergoes a second-order phase
transition at a τ -dependent temperature. We show that, along
with the scalar field theories [12], exponentially correlated
noise promotes order in the sense that the resulting mean-field
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critical temperature Tmf(τ ) is an increasing function of τ ; that
is, by increasing τ the critical temperature increases too.

After that, we address the problem in d = 2, where for
τ = 0 the second-order phase transition is replaced by the BTK
transition at temperature TBKT. In that case, the effective equi-
librium picture is obtained while considering the continuum
limit of the xy model, i.e., in the spin-wave approximation.
From the computation of the spatial correlation function, we
show that no long-range order can be obtained at small but
finite τ . The impact of τ on BKT will be investigated while
considering the single vortex energy cost. Even though the
effect of correlated noise becomes negligible in the thermody-
namic limit, we find a linear shift at higher temperature TBKT

that scales logarithmically in the system size.
In active matter [13–17], recent works pointed out the

importance of memory effects on the angular dynamics of
Vicsek-like models [18,19]. However, in the presence of
memory effects, it is not possible to perform the usual coarse
graining procedure to obtain hydrodynamic equations [14,18].
In the model we are going to consider, since the calculation
is performed on a lattice, density fluctuations are not taken
into account. However, the effective equilibrium picture pre-
sented here could be the starting point to try to extend these
approximation schemes to off-lattice model.

We also perform numerical simulations to check the validity
of the approximated solution. We compare the predictions
given by the approximated theory with numerical simulations
for both cases, mean field and two dimensions. In particular,
the theoretical expression for the critical temperature in the
mean field is in good agreement with numerical simulations.
In two dimensions, we recover a linear shift in τ , in agreement
with the prediction of the theory.

II. THE MODEL

We consider the dynamics of a two-dimensional xy model
driven by exponentially correlated noise. The system is
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composed of N compasses si = (cos θi, sin θi), with i =
1, . . . ,N , arranged on a two-dimensional square lattice. The
model can be introduced formally by considering the following
equation of motion for the angular degree of freedom θi :

θ̇i = −∂Hxy

∂θi

+ ζi . (1)

The Hamiltonian is

Hxy[θ ] = −1

2

∑
i,j

Jij cos(θi − θj ), (2)

where Jij is the adjacency matrix. In the mean field, Jij =
J/N, ∀ i,j = 1, . . . ,N , i.e., a fully connected lattice. In d

dimensions, Jij = J is different from zero only for nearest
neighbor sites. We consider ferromagnetic coupling J > 0.
The noise term ζi is colored and Gaussian,

〈ζi(t)〉 = 0,

〈ζi(t)ζj (s)〉 = 2T

τ
δij e

− |t−s|
τ . (3)

To start our analytical computation we rewrite (1) using
an auxiliary variable ψi for each angular degree of freedom
θi . To ensure an exponentially correlated dynamics for θi , ψi

undergoes an Ornstein-Uhlenbeck process. We can recast the
original equations of motion (1) as follows:

θ̇i = −∂Hxy

∂θi

+ ψi,

τ ψ̇i = −ψi +
√

T ηi. (4)

Now the noise term ηi is white and Gaussian, i.e., 〈ηi〉 = 0 and
〈ηi(t)ηj (s)〉 = 2δij δ(t − s). T tunes the strength of the noise,
and τ is the persistence time. When τ = 0, our model reduces
to the equilibrium xy model at temperature T . In the opposite
limit, i.e., τ → ∞ and finite T , ψi is a random and quenched
variable, and we recover the Kuramoto model [20]. It is wort
noting that Eqs. (4) are the on-lattice version of the angular
dynamics for self-propelled particles considered in [18].

Now we will write an equilibrium-like description of the
steady state resulting from the nonequilibrium dynamics (4).
To do so, we apply the UCNA [9,21] to the many-body problem
[10,22–24]. We start with performing the time derivative of
the first equation in (4). Adopting the dot notation for the time
derivative and using the Einstein summation convention, we
have [10]

τ θ̈i = −Mij θ̇j − ∂Hxy

∂θi

+
√

T ηi,

Mij ≡ δij + τ
∂2Hxy

∂θi∂θj

. (5)

According to (5), we have rewritten the original set of two
first-order stochastic differential equations into a second-order
stochastic differential equation where τ plays the role of inertia
and Mij is the friction. In UCNA we consider the overdamped
limit of (5); to do so let us introduce M̃ij ≡ τ 1/2Mij and the
rescaled time z = τ−1/2t . We can then write

θ̈ij = −M̃ij θ̇j − ∂Hxy

∂θi

+ η̃i , (6)

where for the noise term η̃ one has 〈η̃i〉 = 0 and 〈η̃i(z)η̃j (z′)〉 =
2T τ−1/2δij δ(z − z′). The overdamped limit holds in the large
and positive friction limit M̃ij 
 1. Since M̃ij = δij τ

−1/2 +
τ 1/2 ∂2Hxy

∂θi∂θj
, in the region of the configuration space where

the system is locally stable, i.e., where the potential energy
hypersurface has all positive curvatures, the large friction limit
is realized in both situations τ → 0 and τ → ∞ [9,21]. In the
large friction limit we can write

θ̇i = −1

2
Fi[θ ] + Dij [θ ]ηj ,

Fi[θ ] ≡ −2M−1
ij

∂Hxy

∂θi

,

Dij [θ ] ≡
√

T M−1
ij . (7)

The corresponding Fokker-Planck equation for the probability
distribution function P [θ,t] reads

∂tP [θ,t] = 1

2

∂

∂θi

{
2Dij

∂

∂θl

[DljP ] + FiP

}
. (8)

To compute the steady state distribution Pss[θ ] =
limt→∞ P [θ,t], we consider the solution of ∂tP [θ,t] = 0,
which is

Pss[θ ] = det M exp

(
−Hxy[θ ]

T
− τ

2T
|∇θi

Hxy |2
)

Z−1
eff , (9)

where the numerical constant Z−1
eff is the normalization factor.

According to (9), we can write an effective free energy
Feff (T ,τ ). The thermodynamics is then given by the following
equations:

Feff (N,T ,τ ) = −T ln Zeff ,

Zeff ≡
∫ 2π

0

∏
i

dθie
− 1

T
Heff [θ],

Heff [θ ] ≡ Hxy[θ ] + τ

2

∣∣∇θi
Hxy

∣∣2 − T ln det M. (10)

The presence of det M in (10) makes the effective free energy
calculation a hard task that needs further approximations. As
we have discussed before, UCNA holds in the limits τ → 0
and τ → ∞. In the first case, even in the presence of negative
curvatures, the term δij dominates with respect to the Hessian

matrix ∂2Hxy

∂θi∂θj
. In that situation the determinant can be computed

analytically considering the Hessian as a small perturbation
to the identity matrix. The mean-field model, i.e., d = ∞,
is addressed in Sec. III considering a fully connected lattice
model Jij = J/N . In this way one can compute analytically
the partition function in the small τ limit. After that, in Sec. IV,
we study the model for d = 2 in the continuum limit, i.e., the
spin-wave approximation of Hxy . In two dimensions, Jij is
different from zero only between nearest neighbor sites.

III. MEAN-FIELD APPROXIMATION AND
LANDAU-GINZBURG FREE ENERGY

Here we are interested in investigating the critical properties
of the xy model, i.e., the properties of the system near a
second-order phase transition. To do so, we neglect the spatial
properties of the system, performing the computation (10)
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on a fully connected lattice. In this way, we can analytically
compute the partition function and also write the corresponding
Landau-Ginzburg theory. The fully connected lattice is ob-
tained considering an adjacent matrix Jij = J/N . We compute
the effective thermodynamics (10), performing a saddle-point
approximation to evaluate the partition function Zeff (see
Appendix A). Introducing the free-energy per spin f (T ,τ ) =
Feff (N,T ,τ )/N and the inverse temperature β = 1/T , one has

f [m] = βJ

2

(
1 + τJ

2

)
m2 − ln z[m],

z[m] ≡ I0(βJm) + τmI1(βJm), (11)

where m is the modulus of the magnetization m = (mx,my) =
〈N−1 ∑

i si〉. We have indicated with In(x) the modified
Bessel function of order n. It is worth noting that (11) holds
only in the small τ limit where we can write det M ∼ 1 +
τT r∂2

θi ,θj
Hxy . By minimizing with respect to m, we obtain the

self-consistency equation

m − {2I1(βJm) + τJ [I0(βJm) + I2(βJm)]}
2z

= 0. (12)

As we can check, when τ = 0, the equation reduces to the
well known mean-field result m(β) = I1(βJm)/I0(βJm). By
expanding (11) up to the fourth order in m and recalling that m

is the modulus of the magnetization m = (mx,my), we obtain
the following Landau-Ginzburg free energy:

fLG[mx,my] = A

2

(
m2

x + m2
y

) + B

4

(
m2

x + m2
y

)2
,

A ≡ Jβ

[
1 − J

2
(τ + β)

]
,

B ≡ J 4β2

8

[
β2

2
+ τ

(
1

2
+ τβ

)]
. (13)

Here fLG contains all the information we need to understand
the critical properties of the system in the mean-field approx-
imation. For instance, writing m = |m| and considering the
solution

∂fLG

∂m
= 0 ,

∂2fLG

∂m2
> 0, (14)

we obtain the spontaneous magnetization ms . In the symmetry
broken phase one has ms = √−A/B. According to Eq. (13),
the Goldstone picture remains untouched. To realize that we
write m as a complex field parametrized through two real fields,
ϕ1 and ϕ2, i.e., m → ϕ1 + iϕ2. Looking at the fluctuations
near the minimum of fLG, in the symmetry broken phase,
we can write ϕ1 = ms + δϕ1 and ϕ2 = δϕ2. Inserting these
two expressions in fLG, we find that m2

s is the mass of the
longitudinal fluctuation δϕ1, while the transverse mode δϕ2 is
massless, i.e., the Goldstone mode.

To estimate the critical line Tmf(τ ) we have to consider the
solution of the equation A = 0, that is,

Tmf(τ )

J
= 1

2 − τJ
� 1

2

[
1 + τJ

2

]
. (15)

As we show in Sec. A 2, the same critical line can be computed
from the free energy f [m] given by (11). According to (15),
we notice that Tmf(τ ) increases with τ and diverges when τ =

 0

 0.5

 1

 1.5

 2

 0  0.25  0.5  0.75  1

Te
m

pe
ra

tu
re

 T
 / 

J

Noise correlation time  / alg

 0

 0.25

 0.5

 0.75

 1

M
ag

ne
tiz

at
io

n

FIG. 1. Phase diagram. Mean-field phase diagram obtained min-
imizing the free energy (11). The red curve is the analytical compu-
tation of the critical line given by (15), black symbols are numerical
simulations, and the white dashed curve is the small τ expansion of
(15).

2/J ≡ τalg. Here we have introduced a characteristic time scale
τalg that is the time needed to align a spin with the resulting
mean field acting on it. Since the computation holds at small
τ , the divergence is unphysical. Thus, we have to consider the
small τ expansion of Tmf(τ ).

In Fig. 1 we show the resulting phase diagram obtained
by minimizing numerically the free energy (11). The contour
plot represents the magnetization m(τ/τalg,T ). The red curve
is the critical line (15), and the black symbols are obtained
by numerical simulations of the fully connected lattice; the
details of numerical simulations are given in Appendix D. As
we can see, the theoretical prediction reproduces quite well
the numerical simulations in the small τ limit; to highlight
this finding we have plotted in white the small τ expansion.
However, deviations from the approximated theory become
dramatic with increasing τ .

IV. TOPOLOGICAL TRANSITION IN TWO DIMENSIONS

In this section, we discuss the effect of persistent noise in
d = 2 where the BKT transition takes place at temperature
TBKT for τ = 0. To do so, we start by considering Hxy in the
spin-wave approximation [1], that is,

H [θ (r)] = J

2ad−2

∫
ddr ∇θ (r) · ∇θ (r), (16)

where a is the lattice spacing. To write the equation of motion
for θ (r), we introduce an auxiliary field ψ(r) undergoing an
Ornstein-Uhlenbeck process,

θ̇ (r) = −δH [θ ]

δθ (r)
+ ψ(r),

τ ψ̇(r) = −ψ(r) +
√

T η(r); (17)

the noise term satisfies 〈η(r)〉 = 0 and 〈η(r,t)η(r′,s)〉 =
2δ(r − r′)δ(t − s). By introducing the rescaled time z =
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τ−1/2t , we can write

θ̈ (r) = −θ̇ (r)M̃[θ (r)] − δH

δθ (r)
+ η̃(r,z),

M̃[θ (r)] ≡ 1

τ 1/2
+ τ 1/2 δ2H

δθ (r)δθ (r′)
, (18)

where for the noise term η̃(r,z) we have 〈η̃(r,z)〉 = 0 and
〈η̃(r,z)η̃(r′,z′)〉 = 2T τ−1/2δ(r − r′)δ(z − z′). In the large fric-
tion limit M̃ 
 1, we can neglect the inertial term θ̈ (r) → 0.
Since the continuum approximation is performed around the
ground state, i.e., where the system is locally stable, the
overdamped dynamics is recovered in the limit τ → 0 and
τ → ∞. Here, we will consider the limit τ → 0, meaning that
our results are valid only in the small τ limit. In that limit and
at small enough temperature, the equation of motion for θ (r)
reads

θ̇ (r) = − δHeff

δθ (r)
, (19)

where we have introduced the effective Hamiltonian

Heff [θ (r)] = H + H1,

H1 ≡ τJ 2

2ad−4

∫
ddr (�θ (r))2. (20)

It is convenient to express θ (r) in terms of its Fourier compo-
nents θ (r) = N−1/2 ∑

k θke
ik·r. In this way, we can rewrite the

energy as

Heff [θ ] = a2J

2

∑
k

k2θkθ−k + τa4J 2

2

∑
k

k4θkθ−k, (21)

with k = |k|. As well as the BKT case, we can write θ (r) =
θsw(r) + θv(r), where θsw is the spin-wave configuration and
θv is the vortex configuration.

Now, we can compute the spin-spin correlation function
g(r) = 〈e−i[θsw(r)−θsw(0)]〉; the details are discussed in Appendix
C. In the limit r2 
 a2Jτ we have

g(r) ∼
(πr

a

)− T
2πJ

(1 + Jπτ )
T

4πJ . (22)

Because g(r → ∞) = 0, Eq. (22) implies also that, like for the
equilibrium case, no long-range order is found for an infinite
system. However, for a finite-size system, if r is of the order of
the system size and a2Jτ 
 r2, we have that g(r) � 1; that is,
the system is practically in the ground state with all the spins
aligned. In other words, at low enough temperatures, memory
in the noise promotes a uniform configuration, suppressing
long wavelength excitations, at least in the small τ regime.
To check the validity of that prediction, we have computed
numerically the spin-spin correlation function g(r); the details
of the simulations are given in Appendix D. In particular, we
have fitted the numerical data to the functional form gfit(r) =
(Ar)−T/B(1 + Bτ

2 )T/2B . In Fig. 2(a) we show the behavior of
T/B vs T for τ = 0.01,0.05,0.1 (squares, circles, and trian-
gles, respectively). The black line is the theoretical prediction
(22), i.e., B = 2πJ . As one can see, for temperatures T < 0.5,
the data collapse on (22).

Now we estimate the energy cost of a single vortex in the
presence of correlated noise. In this way, we can quantify the
effect of persistent noise on the BKT temperature. The vortex

FIG. 2. Two-dimensional simulations. (a) Comparison between
theory (22) and numerical simulations. Triangles, circles, and squares
are τ = 0.01,0.05,0.1, respectively. At small temperatures T < 0.5,
data collapse on the same curve. (b) Monotonic shift in the temperature
of the topological transition as a function of τ . Blue symbols are
simulations, and the red line is the linear fit TBKT(τ ) = a + bτ , with
a = 0.93(1) and b = 0.67(3).

configurations θv(r) minimize (20) and satisfy the boundary
condition

∮
dl · ∇θv = 2nπ. As in the equilibrium case, also

in the small τ limit, vortices have the form ∇rθv(r) = 1/r .
Inserting the vortex configuration in Heff , we can compute the
free energy cost �fvortex = H − kBT S, where S is the entropy
of a single vortex. Performing a straightforward calculation,
one can obtain �fvortex, that is,

�fvortex = H0 + H1 − 2kBT ln
L

a

= [πJ − 2kBT ] ln
L

a
+ πτJ 2

2

[
1 − a2

L2

]
. (23)

According to (23), the exponentially correlated noise produces
a shift �TBKT in the critical temperature of the topological
transition, that is,

�TBKT(τ ) = πJ 2g(L,a)

4 ln (L/a)
τ,

g(L,a) ≡ 1 − a2

L2
. (24)

As one can see, �TBKT is linear in τ . However, since
the linear size of the system L grows with N1/2, in the
thermodynamic limit limN→∞ �TBKT = 0, meaning that the
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location of the topological transition remains untouched. Con-
sidering a finite-size system, we can define a size-dependent
crossover temperature TBKT(τ,N ). According to (24), one has
limN→∞ TBKT(τ,N ) = TBKT. However, at finite N , we expect
to observe a linear shift in τ towards higher temperature.
We have tested that prediction in numerical simulations. The
resulting shift in TBKT is shown in Fig. 2(b). As we can see, it is
in good agreement with (24). The blue line is obtained fitting
the data to TBKT(N,τ ) = a + bτ , where a and b are the fitting
parameters. The parameter a ≡ TBKT(0) ∼ 0.9 is compatible
with recent accurate estimate of TBKT [25,26].

V. SUMMARY AND DISCUSSION

In this paper, we have proposed an effective equilibrium
theory for the xy model driven out of equilibrium by exponen-
tially correlated noise. To map the original many-body problem
into an effective equilibrium picture, we have employed UCNA
[9,21]. In the results presented here, the persistent time τ plays
the role of an external and tunable thermodynamic parameter.
Moreover, even though UCNA should work also in the τ → ∞
limit, in the many-body case the presence of det M requires, in
general, further approximations [10]. Since the matrix M has
the form M = 1 + τH, where 1 is the identity matrix and H
is the Hessian matrix, we have considered the approximation
det M = 1 + τT rH, which holds in the small τ limit. We
have specialized our computation in two cases: (i) d = ∞,
corresponding to the mean-field approximation, and (ii) d = 2,
where, in equilibrium, BKT transition takes place. Different
from the scalar field case, where a Landau ϕ4 theory has
been proposed phenomenologically to describe the impact of
correlated noise on critical phenomena in active matter [12],
the mean-field computation presented here allows us to obtain
the coarse-grained theory starting from a microscopical model.
In particular, we have computed analytically the effective
partition function, and expanding the free energy around the
transition point, we have obtained the corresponding Landau-
Ginzburg free energy fLG.

We have shown that the coefficient of the quadratic term
of fLG vanishes along the critical line Tmf(τ ). Moreover, the
resulting Tmf(τ ) is an increasing function of τ , i.e., starting
from a disorder configuration at high T and keeping T fixed,
the memory of the noise can be tuned to bring the system to
criticality. This property of nonequilibrium models driven by
exponentially correlated noise seems to be quite general since
it has already been observed in both theory and numerical
simulations in the case of zero-dimensional ϕ4 theory with
exponentially correlated noise [12], i.e., the gas-liquid univer-
sality class, and also in the case of the glassy transition of active
particles driven by colored noise [27–29].

To check the validity of that finding we have performed
numerical simulations of the fully connected model. The
critical points in the small τ regime obtained from numerical
simulations follow quite well the theoretical prediction Tmf(τ ).
Since fLG describes an O(2) vectorial field theory, crossing the
critical line the symmetry O(2) is spontaneously broken, and
according to the Goldstone mechanism [30], the longitudinal
fluctuations are massless, while the mass of the transverse
excitation depends on τ .

In addition, we have studied the theory in two dimen-
sions where BKT transition takes place. We have shown
that, in the small τ limit, the topological transition remains
untouched by the nonequilibrium dynamics. However, con-
sidering a finite-size system, the theory predicts a linear shift
in TBKT, meaning that memory disadvantages vortex excita-
tions. Thus, at low temperatures, the nonequilibrium system
turns out to be more correlated than its equilibrium counter-
part. Performing numerical simulations in two dimensions,
we found good qualitative agreement between theory and
numerics.

It would be very interesting to try to extend these ap-
proximation schemes to off-lattice models. In this way, one
could estimate the impact of memory effects on the collective
properties of assemblies of self-propelled particles with align-
ment interactions [15]. Recently, it has been shown in both
experiments and models that memory effects in the angular
dynamics play an important role [18,19]. It is wort noting that
the well-established methods describing collective properties
of self-propelled particles cannot be applied in the case of ex-
ponentially correlated dynamics [14]. For instance, analytical
predictions about the effects of exponentially correlated noise
on angular dynamics can be made only in the low-density
limit and considering a simplified one-dimensional telegraphic
noise model for describing the memory effects [18]. According
to our computation scheme, in the small τ limit, memory effects
in the angular dynamics can be reabsorbed into an effective
equilibrium Hamiltonian Heff = Hxy + Jτ

2 |∇θHxy |2.
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APPENDIX A: FULLY CONNECTED MODEL

The mean-field solution of the xy model has been computed
considering a fully connected lattice that corresponds to the
d = ∞ situation [11,31,32]. The Hamiltonian reads

H MF
xy [θ ] = − J

2N

∑
i,j

cos(θi − θj ). (A1)

To compute the partition function we introduce the following
order parameters:

Nφ =
∑

i

cos θi, Nψ =
∑

i

sin θi,

Nπ =
∑

i

cos 2θi, Nσ =
∑

i

sin 2θi . (A2)
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In terms of the order parameters the Hamiltonian can be written
as follows:

H MF
xy [θ ] = −NJ

2

(
1 − τJ

2

)
[φ2 + ψ2] + NτJ 2

4
(ψ2−φ2)π

− NτJ 2

2
φψσ − 1

β
ln det M. (A3)

In the small τ limit, we approximate the determinant in the
following way:

det M � 1 + τTr
∂2H MF

xy

∂θi∂θj

, (A4)

and the trace of the Hessian matrix reads

Tr
∂2H MF

xy

∂θi∂θj

= J
∑

i

(φ cos θi + ψ sin θi) + O

(
1

N

)
. (A5)

To compute the partition function we represent the order
parameters (φ,ψ,π,σ ) through a set of Lagrangian multipliers
λk , with k = 1, . . . ,4, as follows:

δ

(
Nφ −

∑
i

cos θi

)
=

∫
dλ1 e−λ1(Nφ−∑

i cos θi),

δ

(
Nψ −

∑
i

sin θi

)
=

∫
dλ2 e−λ1(Nψ−∑

i sin θi),

δ

(
Nπ −

∑
i

cos 2θi

)
=

∫
dλ3 e−λ1(Nπ−∑

i cos 2θi),

δ

(
Nσ −

∑
i

sin 2θi

)
=

∫
dλ4 e−λ1(Nσ−∑

i sin 2θi).

Finally, the partition function reads

Z = N
∫

d� e−Nf , � ≡ (λi,φ,ψ,π,σ ),

f ≡ −βJ

2

(
1 − τJ

2

)(
φ2 + ψ2)

+ βJ 2τ

4

(
ψ2 − φ2

)
π − 1

2
βJ 2τφψσ

+ λ1φ + λ2ψ + λ3π + λ4σ − ln z,

z ≡
∫ 2π

0
dθ A(φ,ψ)θ e−H′

, (A6)

A(φ,ψ)θ ≡ 1 + τJ (φ cos θ + ψ sin θ )

−H′ ≡ λ1 cos θ + λ2 sin θ + λ3 cos 2θ + λ4 sin 2θ,

where N is a normalization constant.

1. Saddle-point equations

In the thermodynamic limit N → ∞, we can perform the
saddle-point approximation to evaluate the partition function
[11,31,32]

Z ∼ e−NfSP ,
∂f

∂�

∣∣∣∣
SP

= 0, (A7)

and the saddle-point equations are

λ1 = βJ 2τ

2
(φπ + ψσ ) + βJ

(
1 − τJ

2

)
φ + I1,

λ2 = βJ 2τ

2
(φσ − ψπ ) + βJ

(
1 − τJ

2

)
ψ + I2,

λ3 = βJ 2τ

4
(φ2 − ψ2),

λ4 = 1

2
βJ 2τφψ, (A8)

φ = 〈cos θ〉H, ψ = 〈sin θ〉H,

π = 〈cos 2θ〉H, σ = 〈sin 2θ〉H,

−H ≡ −H′ + ln A(φ,ψ)θ ,

I1 ≡ τJ

z

∫
dθ cos θ e−H′

,

I2 ≡ τJ

z

∫
dθ sin θ e−H′

,

where we have introduced the average of a generic observable
with respect to the effective one-body Hamiltonian H, that is,

〈O〉H ≡
∫

dθOe−H∫
dθ e−H .

2. Elimination of the redundant variables

In order to eliminate the redundant variables that we have
introduced to compute the partition function, we write the
auxiliary fields in polar coordinates,

φ = m cos �, λ1 = � cos λ, λ3 = n cos λ̂,

ψ = m sin �, λ2 = � sin λ, λ4 = n sin λ̂. (A9)

From the equations for λ3,4 it follows that n = λ̂ = 0 and, as
a consequence, π = σ = 0. The free energy of the model can
be written as follows:

f [m,�] = −βJ

2

(
1 − τJ

2

)
m2 + m� − ln z,

z = I0(�) + τJmI1(�). (A10)

The self-consistency equations are

∂f

∂m
= −βJ

(
1 − τJ

2

)
m + � − τJ I1(�)

z
= 0,

∂f

∂�
= m − 1

2z
{2I1(�) + τJ [I0(�) + I2(�)]} = 0. (A11)

When τ = 0, we recover the mean-field solution of the equi-
librium xy model,

� = βJm,

m = I1(βJm)

I0(βJm)
. (A12)

Moreover, from (A11) we have � = βJm + O(τ 2). Plugging
this relation into (A10), we obtain (11). The critical line Tmf(τ )
can be computed considering the solution of ∂2

mf [m]|
m=0 =

0. The computation leads to the same result obtained in the
main text (15), which was obtained considering the Landau-
Ginzburg free energy (13).
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APPENDIX B: SPIN WAVES

At low enough temperature the xy Hamiltonian in d spatial
dimensions can be written as follows:

H = J

2ad−2

∫
ddr ∇θ (r) · ∇θ (r). (B1)

As we have shown in the main text, the effective Hamiltonian
in the small noise limit reads

Heff ≡ H + τ

2

∣∣∣∣δHδθ
∣∣∣∣
2

. (B2)

Now, to evaluate the second term on the left-hand side of the last
equation, we come back to the lattice model. When d < ∞,
Ji,j = J = 0 only for nearest neighbor sites i,j , which we
denote 〈i,j 〉. The Hamiltonian reads

H = −J
∑
〈i,j〉

cos(θi − θj ) � −J
∑
〈i,j〉

[
1 − (θi − θj )2

2

]
;

(B3)
the derivative with respect to θi reads

∂H

∂θi

= −J
∑

i

(θi+a + θi−a − 2θi) = −Ja2�θi, (B4)

where � is the Laplace operator. In the continuum limit the
Hamiltonian becomes

Heff = H + H1,

H1 ≡ τJ 2

2ad−4

∫
ddr (�θ (r))2. (B5)

APPENDIX C: SPIN-SPIN CORRELATION FUNCTION

Now we compute the spin-spin correlation function g(r),
that is [1],

g(r) = exp

{
−1

2

∫ ∏
k

dθke
− Heff

T [θ (r) − θ (0)]2

}
, (C1)

which is

g(r) = T

N

∑
k

1 − cos (k · r)

a2Jk2 + a4Jk4τ
. (C2)

Now we switch to the continuum also in k space by setting
N−1 ∑

k · · · → ad

(2π)d
∫

dk · · · , so that Eq. (C2) becomes

g(r) = T
( a

2π

)d
∫

dk
1 − cos (k · r)

a2Jk2 + a4Jk4τ
. (C3)

Specializing the calculation to the d = 2 case, by integrating
Eq. (C3) in polar coordinates and introducing the Bessel

function J0(x), we get

g(r) = T
( a

2π

)2
∫

dk 2πk
1 − J0(kr)

a2Jk2 + a4Jk4τ
. (C4)

When r is very large compared with a, we can neglect the
Bessel function and approximate Eq. (C4) as

g(r) � πr

a

− T
2πJ

[
r2 + a2Jτ

r2(1 + Jπτ )

]− T
4πJ

. (C5)

When r2 
 a2Jτ , we recover the result [Eq. (22)] in the main
text.

APPENDIX D: NUMERICAL SIMULATIONS

We have solved numerically the equations of motion (4)
where N compasses sr = (cos θr, sin θr) are arranged on a
two-dimensional square lattice. The vector r with r = ix + jy
individuates site (i,j ) of the lattice, with i,j = 1, . . . ,

√
N .

The connectivity of the adjacent matrix Jij defines the spatial
dimensions d where the model is embedded. In finite dimen-
sions d, Jij = J among nearest neighbor sites. The mean-field
consists of a fully connected lattice, i.e., Jij = J/N , ∀ i,j .
Here we report the results concerning N = 4900 (d = 2) and
N = 400 (fully connected lattice). The equations of motion
are integrated using a second-order Runge-Kutta scheme with
integration time step dt = 10−3.

1. Two dimensions

In two dimensions, we have computed the correlation
function

g(r) =
〈
N−1

∑
r′

sr+r′ · sr′

〉
t

, (D1)

where the average 〈·〉t in (D1) of a generic observableO[θ (t)] is
computed averaging over one long trajectory of the system with
a single noise realization, i.e., 〈O〉t = t−1

∫ t0+t

t0
ds O[θ (s)].

The transition temperature TBKT(τ ) has been computed
considering a power law fit to r−η for the spatial correlation
function g(r). We define TBKT(τ ) using the criterion η = 1

4 at
the transition temperature [33].

2. Mean field

In Fig. 1, we compare the mean-field prediction (15) with
numerical simulations of a fully connected lattice composed
by N = 400. We have considered 30 temperatures for each
τ with τ ∈ [10−3,2]. The critical point was obtained con-
sidering the modulus of the magnetization m =

√
m2

x + m2
y ,

where mx = N−1 ∑
r cos θr and my = N−1 ∑

r sin θr are the
magnetization along x and y, respectively. To evaluate the
transition temperature, we have looked at the susceptibility
χ = N〈(m − 〈m〉)2〉 that develops a peak at the transition.
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