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A general approach to nonlinear stochastic equations with white noise is proposed. It consists
of a path integral representation of the nonlinear Langevin equation and allows for systematic
approximations. The present method is not restricted to the asymptotic, i.e., stationary, regime
and is suited for deriving equations describing the relaxation of a system from arbitrary initial
conditions. After reducing the nonlinear Langevin equation to an equivalent equilibrium problem
for the generating functional, we are able to apply known techniques of conventional equilibrium
statistical 6eld theory. We extend the efFective action method developed in quantum 6eld theory
by Coruwall, Jackiw, and Tomboulis [Phys. Rev. D 10, 2428 (1974)] to uouequilibrium processes.
Arguments are given as to its superiority over perturbative schemes. These are illustrated by
studying an N-component Ginzburg-Landau equation in zero spatial dimension in the limit of large
N. Within this limit we show the equivalence of the lowest order approximation, i.e., the dressed
loop expansion, with the Gaussian variational ansatz for the efFective potential, which leads to the
dynamical Hartree approximation.

PACS number(s): 02.50.—r, 05.40.+j, 03.65.Db

I. INTRODUCTION

Nonlinear stochastic difFerential equations (SDEs) in
one or more variables occur &equently in the description
of a wide variety of physical phenomena such as those
involving relaxation towards a steady state [1,2]. A cele-
brated example of a SDE is the Langevin equation, where
one relates the rate of change of some physical observ-
ables to a drift term, i.e. , to a deterministic driving force,
plus a stochastic noise. Whereas stochastic linear dif-
ferential equations are in principle amenable to analytic
solutions, those of the nonlinear type are much more dif-
icult to treat and in most cases one has to resort either to
computer simulations or to approximate schemes. Sev-
eral approximations exist in the literature for the analysis
of nonlinear SDEs. A widely used method is the so-called.
statistical linearization [3], which consists of the replare-
ment of the nonlinear SDEs by equivalent linear ones
whose coefBcients are determined by a suitable error min-
imization algorithm. This method, in its original form,
is appropriate in the asymptotic, i.e., stationary, regime.
In many physical situations, however, one is interested in
the transient regime. To deal with this problem the idea
of statistical linearization has been extended to include
a possible time dependence in the parameters [4,5]. The
drawback of these methods is that they are not derived
in a systematic way, so it is not simple to improve thexn.

An alternative procedure is the so-called dynamical
Hartree approximation. This scheme amounts to neglect-
ing cumulants of order higher than the second and is ex-
act whenever the probability distribution associated with
the problem is Gaussian. This is not the case of strongly
interacting systems or in the presence of large Quctua-
tions, so corrections to the Hartree approximation should
be taken into account. Also in this case it is not simple

to improve the approximation.
In this paper we present a formulation of the nonlin-

ear SDE that allows for systematic approximations. This
is achieved by reducing the nonlinear Langevin equa-
tion to an equivalent equilibrium problem, which can be
analyzed with the methods of conventional equilibrium
statistical Geld theory. In particular we have applied
a method originally developed in quantum field theory
by Cornwall, Jackiw, and Tomboulis [6,7], alternative
to conventional perturbation theory, because a standard
coupling constant expansion can only be used for the
study of small corrections to the deterministic result. In
this respect the present approach is alternative to the
field theoretical treatment based on the introduction of
auxiliary fields; see, e.g. , [8].

To illustrate the method we shall study an N-
component Ginzburg-Landau equation in zero spatial di-
mension with the purpose of deriving systematically the
time dependent Hartree equations and the Grst correc-
tions. The same model has been discussed previously
by Bhattacharjee, Meakin, and Scalapino [9], who intro-
duced an approximation scheme for the Langevin equa-
tion based on leading terms of the expansion in the small
parameter 1/K. We shall obtain a solution that rep-
resents a systematic expansion in 1/N. This will be
discussed in Secs. III—V, where the corrections to the
N —+ oo solution are considered. The formalism is es-
tablished in Sec. II, where we construct the generating
functional for the average value of the observables and
its correlations.

The path integral representation of the generating
functional used here is well suited for a variational ap-
proach similar to the Feynman method in equilibrium
statistical mechanics. This is presented in Sec. VI. The
variational approach provides an alternative and elegant
derivation of the dynamical Hartree equations. This
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method is quite useful when it is dificult to identify a
small parameter for the expansion, as, for example, in the
model discussed in Sec. VI for the limiting case N = 1.
Vfe stress, however, that the variational approach gives
only an approximation and in general it is diKcult to
improve it systematically.

det —= exp — dt
2 0

In deriving Eq. (5) we have used the forward time prop-
agation Green function 0(t —t') af the operator Oi and
the definition

II. FOB.MALISM

In this section we derive the effective action formalism
for the Langevin equation. The path integral method
constitutes a convenient representation of the Langevin
equation for a field P(t). Within this approach, the orig-
inal stochastic differential equation, where P(t) depends
an another field ((t), called the noise, is reformulated by
constructing an efFective action for the field P obtained by
integrating out the noise. The advantage of this transfor-
mation is that one can employ the well-known methods
of equilibrium statistical field theory. To keep the nota-
tion as simple as possible, the derivation will be carried
out for a single component real field. The extension to
N-vector fields will be discussed later.

The tixne evolutian of the field (t)(t) is governed by the
Langevin equation

This choice corresponds to the "physical" regularization
of the noise term ( as

R(t) ~(t )) = I (t —t )

where x1(t) is an even function sharply peaked at t = 0,
whose integral &om —oo to +oo is equal to I. The b-
function-correlated noise is obtained in the limit of van-
ishing width. In terms of stochastic differential equations
this corresponds to the Stratonovich formalism [12).

At this stage one eliminates the noise field by inserting
Eq. (5) into Eq. (3) and performing the integral over the
noise ( obtaining

Z(J] = JV f 11'QV (p(0))

1 /Bp OS) '
x exp — dt

I
+

o 21 4 Bt (9 )

where S[P] is an "energy" function and ( a Gaussian
random variable satisfying the following properties:

(~(t)) = o (((t) ~(t )) = I ~(t —t ). (2)

~K =A' f D"4 D(&(0(o)) &(4 —4~)

Our aim is to study the correlations associated with the
stochastic process (1). Instead of working directly with
Eq. (1), we find it convexuent to construct a generating
functional from which the correlations can be obtained.
Proceeding in the standard way (see, e.g. , Ref. [10]), we
introduce an external tixne-dependent source J(t) and
define the generating functional

The argument of the exponential can be simplified by
performing the integration of the term j dt /OS/0$ =
S[P(w)] —S[P(0)], so we finally have

Z[J] = N Z)p(p) 'p(p(p)) eSI~( ]1)' ~p(7.)
eS]g(w)]/r

T

x DP exp I[/] — dt—JP, (9)
0

where 17$ denotes integration over all paths startixig at
P(0) for t = 0 and ending at P(w) for t = v. It is defined
as

x exp
(2

dt JP exp — dt
0 2I'

N —1

17/ = lim
N —+oo i=1

dP(t;), (10)

where P~ is the solution of stochastic equation (1), for
a given realization of noise ((t), subject to soxne set of
initial value conditions $(0) assigned with probability
'P(P(0)), and JV is a normalizing constant. The func-
tional integral on P in Eq. (3) includes integration over
P(0) and P(7 ). We denote it by the double prime: 17"(](.
The time ~ is an arbitrary time which for convenience can
be eventually assumed. infinite. The 8 function stands for

I[&] = 1 f BP) ' Ka)SI 1 (92S
I +I2I' o (a)t) (a)4) 2 o

where (t)(t;) is the field at time t; = ie, having sliced the
interval 0 to 7 in N parts of size e = w/N. The action
I(P) is given by

b(P —P() = b — +. —( det—BP BS
(4)

where the factor det I8(/hPI represents the Jacabian of
the transformation ( —i P. With well-known manipula-
tions (see, e.g. , Refs. [10,11]),one obtains

and contains coupling terms of diferent structure from
the original energy S[$]. Since in Eq. (9) the integration
over the end points only fixes the boundary conditions
at t = 0 and t = v, without lost of generality we can
consider a "reduced" generating functional
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ZfJ] = JV f 17/ exp I—[P] — dt JP
0

where the functional integral contains all paths that start
at t = 0 from P(0) = $0 and end at P(7 ) = Pi for t = 7.
In the limit 7 ~ oo the paths become independent of the
final value P(7 ).

We note, however, that the presence of the additional
constraint is necessary to select paths that are solu-
tions of the original equation of motion Eq. (1). Equa-
tions (ll) and (12) lead in fact to second-order differen-
tial equations of motion, whereas the original stochastic
equation is of the erst order. The additional constraint
at t = w makes the problem well defined since the paths
in Eq. (12) must satisfy the two constraints P(0) = Po
and P(v) = Pi. Once the two boundary conditions are
imposed, the path is also solution of the first-order dif-
ferential equation (1), as can be easily seen in the limit
I' ~ 0, i.e. , the deterministic limit.

In general the calculation of path integrals such as Eq.
(12) is not at all straightforward. Nevertheless, quantities
of physical interest can be obtained. In our case we are in-
terested in the noise-averaged value of the field {P(t))and
correlations (P(t) P(t')) as functions of time. An advan-
tage of the present formalism is that self-consistent, sys-
tematic variational principles for these quantities can be
obtained. using a method introduced by Cornwall, Jackiw,
and Tomboulis in quantum field theory [6]. The basic
idea is to derive an effective action that is stationary at
the physical values of (P(t)) and {P(t)P(t')).

The method starts by generalizing Eq. (12) to account
for the composite operator P(t)P(t'). We then define the
generating functional

T

F[q, G] = W[J, K] — ds q(s) J(s)

1
ds ds' q(s) K(s, s') q(s')

0 0

1 7

ds ds' G(s, s') K(s, s'),
0 0

where J and A" are eliminated as a function of q and G
by the use of Eq. (14). It can be shown that I [q, G] is
the generating function of two-particle irreducible (2PI)
Green functions, i.e., it is given by all diagrams that can-
not be separated in two pieces by cutting two lines [6,7].
The external sources can be obtained from I'[q, G] as

b I [q, G] = —J(s) — ds K(s, s') q(s),
Sq s 0

b 1
I'[q, G] = ——K(s, s').

'I

(16)

I [q, G] = I[q] + —Tr ln G
1

1+—Tr 17 [q] G + I 2 [q& G] + coilst, (17)

The physical process corresponds to vanishing sources
J = K = 0. Prom Eq. (16) it follows that in this limit
the value of q and G are determined by the stationary
point of I'[q, G]. We have thus obtained a variational
principle for the noise-averaged field (P(s)) and the con-
nected two-point correlation function (P(s) P(s')), of the
process described by the Langevin equation (1).

The next step is to evaluate F[q, G]. Pollowing Refs.
[6,7] I [q, G] can be written as

T

Z[J, K] = JV 17/ exp I[/] — d—t J(t) P(t)
O, gp 0

dt dt' P(t) K(t, t') P(t'),
2 0

where J and K are a local and a bilocal source, respec-
tively.

By taking functional derivatives with respect to the
external sources, the averaged correlations of P can
be obtained. In particular, by considering W[J, K]
—ln Z[J, K], we have for 0 ( s, s' «,

b
WIJ K) = {4(s))—= q(s)

where I[q] is given by Eq. (11) with P —i q,

bP(s)bP(s') ~

PI;„,[y; q]

bg(s)bg(s') ~

(18)

I[q+ 4] —I[q] —4 = 4» '[q]4+ I'-i-[4; ql.
SI[P] 1

bP ~ 2

with D propagator of the "&ee" theory. The functional
I'2 is given by the sum of all 2PI vacuum diagrams of a
theory with interactions determined by I;„t and propa-
gators G. The interaction term is defined by the shifted
action

8K(s, s') W[J, Kj =
2 (P(s) P(s'))

—= 2 [q(s) q(s') + G(s, s')]

where the averages are obtained with the weight of Eq.
(13). In the limit of vanishing external sources, q and G
become the noise-averaged field {P(s))and the connected
two-point correlation function (P(s) P(s')), of the process
described by the Langevin equation (1).

By Legendre transforming W[J, K] we can eliminate J
and K in favor of q and G:

This procedure corresponds to a dressed loop expansion
with vertices that depend on P and can thus exhibit non-
perturbative effects even for a small number of dressed
loops. The crucial point is that it in no sense corre-
sponds to a perturbation theory in physical amplitudes.
The stationarity conditions for F[q, Gj yield a coupled
set of nonlinear dynamical equations for P and G. If one
could sum up the whole series, the exact value of P and
G would emerge from the stationary point. If the series
is truncated one gets approximate values of P and G.
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However, the resulting equations describe nonperturba-
tive behaviors.

In the next section we apply the above formalism to a
O(N) problem where the successive contributions to I'2
can be extracted in the % —+ oc limit. The leading order
reproduces the results obtained with other approaches
such as, e.g. , the statistical linearization. Next orders
give systematic corrections.

III. MODEL

(2o)

~[@)= 2&'+ 4,~(@')';

where Gaussian random noise is defined by

(21)

(&*(t)}= o (~*(t) ~ (t )) = 1 ~' ~(t —t ) (22)

and we assume that a ~ 0 and A ) O. Generalizing Eq.
(ll) to K-component 6elds one finds the action

To illustrate the formalism introduced in the preceding
section we consider an N-component Ginzburg-I andau
time-dependent field P; with quadratic local interaction
in zero spatial dimension. When discussing Huctuations
e8'ects to any given order in a perturbation expansion
one is not usually able to justify the neglect of yet higher
orders. However, for theories with large N internal sym-
metry group there exists another perturbative scheme,
the 1j% expansion. The inodel is specified by the evolu-
tion equation

to Eq. (17) for K -+ oo are

8dt' —-- + m
Ot

,

' q'(t) +, , q (t) G(t, t') h(t —t')Ao

and

(25)

02

+, —,q'(t) b(t —t'). (26)

The leading order 2PI diagrams N ~ oo, shown in Fig.
1, lead to

l 2[q, G] =

go

r
%godt G'(t, t) +, '

dt G'(t, t)

dt q (t) G2(t, t), {27)

where q(t) = (Pi(t)} assuming that the symmetry is bro-
ken along the direction l.

Stationarity of the functional l [q, G] with respect to
q(t) and G(t, t') yields the dynamical equations for the
order parameter and its fluctuations, which read, respec-
tively,

a2
, +~'+, q'(t) +, , q'{t) + —', G(t, t)

+—', G'(t, t) +, q'(t) G(t, t) q(t) = O (28)
2 go

and

where the parameters m, Ao, and go are related to the
original constants by

+—,G'(t, t) +, q'(t) G(t, t) G(t, t') = I' h(t —t')2 go

(24b)

(24c)

(29)

These coupled dynamical equations are exact to leading
order in ¹

go ——10A . (24d)

The last term in Eq. (23) does not depend on P and
can be absorbed into the definition of the normalizing
constant JV in Eq. (12).

In the limit N ~ ao we can calculate explicitly the
leading order term of the functional (17) following the
same steps of Ref. [13]. The "action" (23) corresponds
to a classical gP theory in one spatial dimension.

From Eq. (23) it follows that the leading contributions

(c)

FIG. 1. Leading order 2PI diagrams.
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g~z
= +(q(t) G(t t)) q(t)

O'G(t, t') = S'(q(t), G(t, t)) G(t, t') —rb(t —t'), (31)

where

E(q(t), G(t, t)) = m + q (t) + q (t)
Ap

+—', G(t, t) ~ —', G'(t, t)

q'(t) G(t, t). (32)

We will eventually be interested in solutions for v ~ oo.
Under this assumption the efFective dynamical equations
(30) and (31) can be reduced to simpler first-order non-
linear difI'erential equations by using the following repre-
sentation for q(t) and G(t, t'):

It is interesting to note that Eqs. (28) and (29) can
be obtained directly by introducing a quasilinearization
scheme in the stochastic equation (20). A simple way
of doing that is to average Eq. (20) and factorize the
averages of the Geld using the Wick theorem. The quasi-
linearization procedure is somewhat ad hoc and difBcult
to improve, whereas in the formalism presented here suc-
cessive corrections can be included systematically. We
stress that in the present approach no a pH ori assump-
tions are required in order to obtain Eqs. (28) and (29).
Thus it can also be seen as a justiGcation of the factor-
ization procedure employed in the quasilinear scheme.

Before discussing the solution of Eqs. (28) and (29),
we note that these equations can also be derived by a
variational approach to the path integral (8), or Hartree
approximation, where one seeks for the best quadratic
approximation for the action. The advantage of the vari-
ational approach is that it does not require any factoriza-
tion of the averages. However, similar to the quasilinear
approach, it is dificult to include corrections. For more
details see Sec. VI.

IV. SGLU'TIDN

We sketch briefIy the solution of coupled efIective dy-
namical equations (28) and (29), which can be cast into
the form

= —R(t)q(t),
Bq(t)

Bt
BC(t)

Ot
= -2R(t)C(t) + r, (40)

obtained &om Eqs. (33)—(36). We obtain the following
solution for R(t):

R(t) = —C(t) + q (t) + a.

In principle there exists another set of parameters, but it
leads to an asymptotically unstable solution.

The first-order nonlinear differential equations (39)—
(41) give the full description of the model (20) and (21)
in the limit N ~ oo for all times t. If q(t) is not iden-
tically equal to zero, it is not straightforward to solve
analytically the set of equations (39)—(41). Nevertheless
these can easily be solved numerically for any set of ini-
tial conditions. We note that this is not the case for Eqs.
(28) and (29). These indeed suffer of strong numerical
instability and one has to devise a clever algorithm to
handle them.

From the structure of the equations one can see that
the O(N) symmetry dictates that the expectation value
of the Beld q(t) vanishes identically at all times if we
assume the iiutial condition q(0) = 0. In this case the
equation for G(t, t') can be solved in closed analytical
form. In fact, if we take the initial condition C(t = 0) =
0, the solution reads

at/2—1 —(~/P)
eA&t/3 (c„/P) e A&t/3 '—

where the function R(t) is solution of the first-order non-
linear diBerential equation

OR(t) = R'(t) —E(q(t), G(t, t)).

By inspection of Eqs. (32) and (37) it follows that R(t)
should have the functional form

R(t) = ~C(t) + Pq'(t) + q, (38)

where C(t) = limi~q G(t, t'). The parameters n, P, and
p are determined by substituting R(t) from Eq. (38) into
Eq. (37) and eliminating dC(t)/dt and dq(t)/dt with the
help of

and

q(t) = q(o) f (t)
f (t) — «/2

AZ'
1 —(~/P)

eAb, t/3 (~/P) e A&t/3—

G(t, t') = f, (t') f, (t) 8(t' —t) + f, (t) f, (t') 0(t —t') (34)

with

fi(t) = exp
i

— dt' R(t') i,
0

t

f 2 (t) = I' exp — dt' R(t')
0

where

with

x sinh(%At/3),

(44)

(45)
t t'

x dt' exp 2 dt R(t")
0 0

(36) and a and A are the coeKcients entering in Eq. (21).
Substitution of Eqs. (42)—(44) into Eq. (34) leads to the
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solution for G(t, t') .In the limit t' -+ t we recover the
result of Ref. [9] for C(t).

V. BEY'OND THE HARTREE APPROXIMATION

The next leading terms of order 1/N can be included
systematically by evaluating diagrams not included in
Eq. (27). In the case q(t) = 0 the work is simplified
since one does not have to consider separately trans-
verse and parallel components of the correlation function
(0"(t) ~ '(t ) ) .

The diagrams contributing to the Grst corrections to
I 2 are shown in Figs. 1(a), l(b), and 2 and yield

I'o[G] =, to dt G (tt) ,+, go f dtG (tt),4~r 6~r

A02

122I' dt dt' G'(t, t')

go J dt f dt G"'(t, t') G(tt) G, (t , t )''
6! 2I'

72OI'
ct ct' G'(t, t') G(t, t). (46)

To systematically improve this result and the Hartree ap-
proximation, one has to consider an infinite series of di-
agrams. A complete summation of the series (see Figs. 3
and 4) can be performed; however, only in the case of
a system at equilibrium where time translational invari-
ance holds. The final result for F2 is valid to all orders
in A and to first order in 1/N and reads [14,15]

lirn I'2 [G]/7 = Ao
' ' G ~l G M2 +

i
go

' ' 'G ~1 G M2 G ~3

1 du fAo go ) — 1 d(G (Ao go+— ln 1 +
I

—+ —G(0, 0)
I

II((G) ——
I

—+ —G(0, 0)
I

II(pd),
2 2~ q3! 60 ' ) 2 2m (3! 60

where II(pd) is the so-called vacuum polarization propa-
gator

(48)

(a)

Upon difFerentiating with respect to G(w) the functional
I'[G] with the 1/N corrections included one obtains [13]

G '(pd) = ~'+m'+ —,G(0, 0) + —,G'(0, 0)

1 1+—
~, +~GO, O rr~

(Ap gp
I

—+ —G(0, 0)
I
G(~ —~i) + 11(~i) .i3 30

(49)

Equation (49) represents the spectrum of the equilibrium
Huctuations correct to order 1/N. The study of these
corrections will be the subject of a future paper.

(a)

(c)

FIG. 2. 2PI diagrams contribution to the first 1/N correc-
tions.

(c) (d)

FIG. 3. Three-vertex 2PI diagrams contributing to the first
1/N corrections.
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(a) t
OO

dt 2o —— dt dt' ) P;(t) u; (t, t') P (t')
0 0 0

dt ) v;(t) P;(t),
0

(52)

where u;~ is a positive definite kernel. The Hartree
method consists of choosing the arbitrary quadratic ac-
tion (52), which minimizes the right-hand side of Eq.
(50). To the best of our knowledge, this method does
not seem to have been used in the theory of nonequilib-
rium processes so far.

Recalling that

W~ )[u, v]:——lnZo[u, v]
1= -- »llu '(t t')ll
2

OO OO

dt dt'v(t) u (t, t') v(t') (53)
0 0

and taking the derivatives of W~ ) with respect to v(t)
we find

hW~ ) uv OO

hv(t) o
= —q(t) = —I' dt'u '(t, t') v(t'),

W(o) [u, v] = —G(t, t') = —I'u '(t, t'),

(54)

(55)

FIG. 4. Four-vertex 2PI diagrams contributing to the first
1/N corrections.

VI. VARIATIONAL APPROACH

which can be inverted to give

dt'u(t, t') q(t') = I v(t),
0

f dt'u(t, t') G(t', t") = I'b(t —t").
0

(56)

(57)

The formalism discussed requires the presence of a
small parameter to develop a perturbative expansion,
e.g. , the quantity I/IV in the above example. However,
sometimes it is not always simple to identify such a pa-
rameter. The path integral formulation for the Langevin
equation used here is amenable for an elegant variational
approach, which is useful to obtain approximate equa-
tions even in the absence of small parameters.

By using the convexity of the exponential function
we can use the Peierls-Feynman-Bogolubov inequality,
which in our case reads

The arbitrary functions u;~ and v, are determined by
looking for the minimum of W ~ ~ to be the best estimate
of lnZ.

For the model discussed above, by applying this vari-
ational method to (21) one finds

02

+—', G(t, t) + —', G'(t, t)

q'(t) G(t, t) h(t —t')2gp 2

—ln Z & —ln Zo + (8 —8o) o = W

where 8 is action density given by

(50)
and

v(t) = 0.
I = dt's

0

and 80 is an arbitrary action density. The arbitrary pa-
rameter v has been set to infinity. The average ()o in
(50) is done with respect to the probability distribution
corresponding to 80 and Zp is the partition function asso-
ciated with 80. As widely used in equilibrium statistical
mechanics, we can assume the most general quadratic
functional form for 80, i.e.,

Inserting (58) and (59) in Eqs. (56) and (57) we find the
same result as Eqs. (28) and (29).

To conclude the discussion of the Hartree method it
is interesting to analyze what happens in the case % =
1. The variational nature in fact justifies its application
even when the problem under scrutiny does not contain
a natural small parameter around which to perform some
sort of expansion.

Let us consider the case of a Langevin equation for
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a scalar field with cubic nonlinearity. The equations of
motion for the average value of the Beld and for the Quc-
tuations are [16]

+ m + —q (t) + —q (t) + —G(t, t)
AP 2 gP 4 AP

04 2

+—G'(t, t)+ —'q'(t) G(t, t) q(t) = O, (6O)
8 ' 12

82
, + ~'+ —q'(t) + —,q'(t) + —G(t, t)

+—G'(t, t) + —q'(t) G(t, t) G(t, t') = I'b(t —t').
8 ' 8

(61)

With the substitution

t
q(t)= xpi — d R(r) [)

(62)

R, (t) = ~, C(t)+P, q'(t)+q, (63)

and R(t) given by Eq. (38) we find, up to terms quadratic
in the coupling constant A, o.~ = a = A/2, Pz ——A/6,

P = A/2, and p~ = p = a. The value of the coefficients
coincides with the value obtained in the so-called Langer-
Bar-on —Miller approximation [17] to the Langevin equa-
tion, a result that was also rediscovered few years ago [5]
on the basis of a somewhat ad hoc variational principle.
We believe that the present derivation, being based on
a path integral formulation of the stochastic equations,
makes the underlying physical assumptions more clear.

VII. CONCLUSIONS

and G(t, t') given by Eq. (34) we obtain two equations
for R~(t) and R(t) analogous to Eq. (37). Using the trial
solution

equations. The drawback is that it is not simple to im-
prove the quality of the approximation. In this paper we
have presented an alternative approach to the study of
nonlinear Langevin equation that allows for systematic
development of approximation schemes. The basic idea
is to reduce the nonlinear Langevin equation to an equiv-
alent equilibrium problem to which the methods of con-
ventional Beld theory can be applied. A particular well
suited perturbative scheme is that developed in quantum
field theory by Cornwall, Jackiw, and Tomboulis [6]. The
major advantage is that it leads to a variational principle
for the physical quantities of interest.

The method is illustrated by applying it to an N-
component Ginzburg-Landau equation. The leading con-
tributions for N ~ oo reproduces the known equations
obtained with other methods, e.g. , stochastic lineariza-
tion. By means of the method proposed here we are able
to evaluate the next order corrections for the order pa-
rameter q(t) and two-time connected correlation function
G(t, t').

The study of these is, however, more involved and has
not been included in this paper. This will be part of
future work. It will also be of interest to extend the
present approach to higher dimensions and to explore
numerically the predictions of the present approach to
Gnite values of ¹

Finally, we present a variational approach for the dy-
namical Hartree approximation based on the path inte-
gral formulation presented here. The advantage of this
is that it can be used even in the absence of a small pa-
rameter to set up a perturbative expansion.

The two methods presented in Secs. III and VI are
both variational, but they are different in their spirit.
The Cornwall-Jackiw-Tomboulis method does not as-
sume a specific form of the action and the dynamical
equations resulting from the variation of the effective
potential I'[q, G] with respect to the local and bilocal
sources are in principle exact. The explicit form of I'[q, G]
has to be calculated by means of a physical approxi-
mation. %'ithin the Hartree dynamical approximation,
on the other hand, one imposes from the beginning a
quadratic form for the action. After optimizing it with
respect to the variational parameters one obtains self-
consistent dynamical equations, similar to the dynamical
equations derived, e.g. , in the quasilinearization scheme.

Many problems arising in the study of physical prob-
lems are most naturally represented in terms of systems
of nonlinear stochastic differential equations. Several ap-
proximation schemes have been developed to treat the
nonlinear aspect of equations. Usually they are based. on
some reasonable assumptions. The advantage of these
approaches is that they may lead to relatively simple
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