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Motivated by recent studies on the dynamics of colloidal solutions in narrow channels, we consider
the steady state properties of an assembly of noninteracting particles subject to the action of a
traveling potential moving at a constant speed, while the solvent is modeled by a heat bath at rest
in the laboratory frame. Here, since the description we propose takes into account the inertia of the
colloidal particles, it is necessary to consider the evolution of both positions and momenta and study
the governing equation for the one-particle phase-space distribution. First, we derive the asymptotic
form of its solutions as an expansion in Hermite polynomials and their generic properties, such as
the force and energy balance, and then we particularize our study to the case of an inverted parabolic
potential barrier. We numerically obtain the steady state density and temperature profile and show
that the expansion is rapidly convergent for large values of the friction constant and small drifting
velocities. On the one hand, the present results confirm the previous studies based on the dynamic
density functional theory �DDFT�: On the other hand, when the friction constant is large, it display
effects such as the presence of a wake behind the barrier and a strong inhomogeneity in the
temperature field which are beyond the DDFT description. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2904881�

I. INTRODUCTION

In recent years, we have witnessed the emergence of a
new branch of applied physics named microfluidics, which is
the science of designing, manufacturing devices, and pro-
cesses that deal with volumes of fluid on the order of
nanoliters.1–5 Microfluidic systems have diverse and wide-
spread potential applications.6–8 Some examples of systems
and processes that might employ this technology include ink-
jet printers, blood–cell-separation equipment, biochemical
assays, chemical synthesis, genetic analysis, drug screening,
electrochromatography, surface micromachining, laser abla-
tion, and mechanical micromilling. Not surprisingly, the
medical industry has shown keen interest in microfluidics
technology.

Such advances in manipulating fluids9–11 have recently
motivated Penna and Tarazona12 to consider a model repre-
senting a simple device to push a dilute solution of colloidal
particles along a narrow channel. In particular, they studied
the effect of a moving barrier on a system of noninteracting
colloidal particles described by overdamped Langevin dy-
namics. Under the action of the potential barrier shifting at a
constant speed, the fluid achieves a steady state, with density
distribution and local current following the moving barrier.
These authors showed that such a steady state can be conve-
niently studied within the dynamic density functional theory
�DDFT�13–15 formalism, since the structure of the relevant

equations becomes similar to that of the Euler–Lagrange
equations describing a fluid at thermodynamic equilibrium.16

On the other hand, the present authors in a recent
paper,17 hereafter referred as Ref. 1, have considered how the
inertia of the particles may modify the DDFT picture. They
assumed that the colloidal particles have inertia, i.e., are gov-
erned by a second order stochastic equation. The governing
equation for the associated phase-space distribution turns out
to be the Kramers equation18 and represents the evolution of
both positions and momenta of the particles. Since such a
representation is still too complex and is often redundant, the
authors considered a contraction of such a description by
rewriting the Kramers equation in terms of the infinite hier-
archy of equations for the velocity moments of the phase-
space distribution. In Ref. 1 the hierarchy was systematically
truncated by means of a multiple time scale technique, which
lead to a self-consistent equation involving only the one-
body density. This equation is similar to the DDFT equation,
but it contains additional terms taking into account the pres-
ence of momentum and energy currents. While in Ref. 1, we
considered only transient effects, namely, the decay of initial
perturbations toward the equilibrium, time independent, and
state, in the present work, we illustrate how the inertial dy-
namics affects the behavior of systems in situations in which
a steady state is induced by the presence of an external time-
dependent potential. The results of the present paper show
pronounced differences with respect to the DDFT study of
Penna and Tarazona and, in particular, display an exponential
decay in the structure of the density profile behind the barrier
which was not predicted by the DDFT. Moreover, we alsoa�Electronic mail: bettolou@romal.infn.it.
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found that the local temperature is nonuniform throughout
the system due to the heating produced by the barrier.

We believe that these findings are generic to nonequilib-
rium systems where the equilibration mechanism provided
by the heat bath is not very rapid. We have shown that when
the friction is not sufficiently high, the density alone is not
sufficient to characterize the steady state of the system, and
additional fields are necessary to provide a complete descrip-
tion.

Generally speaking, we believe that the use of the DDFT
is justified when the currents are of diffusive character, while
in the cases where convective terms are present, it is neces-
sary to include extra terms which describe the transport of
momentum and energy.19,20

The present paper is organized as follows. In Sec. II,
after presenting the model, we give the structure of the gen-
eral solution of the Kramers equation in the region where the
vanishing potential is small. In Sec. III, we specialize the
treatment to the case of steady state conditions and explicitly
derive the behavior of the phase-space distribution in the
region where the traveling potential vanishes. We also derive
the relation between the total force exerted by the barrier on
the particles and the friction due to the bath. Finally, in Sec.
IV, we give explicit numerical solutions of the Kramers
equation in the case of an inverted parabolic barrier. We con-
clude the paper with a short discussion in Sec. V.

II. KRAMERS EQUATION FOR SHIFTING POTENTIAL
BARRIERS AND ITS FREE MODES

The problem of the steady states in a fluid, under the
action of a shifting external potential, has been considered
within the DDF under several conditions and model
interactions.12,21,22 In all these treatments, the inertia of the
particles did not play any role. Here, we wish to consider
how the inertial effects modify that picture, and to such a
purpose, we consider here the simplest case, which could
describe a dilute solution of colloidal particles dragged along
a narrow channel under the action of a moving potential
barrier, modeled by a time-dependent external potential,
Vext�x , t�=Vext�x−ct�, which acts on the colloidal particles
but has negligible effects on the solvent. To such a purpose,
here, we consider an assembly of noninteracting identical
particles of mass m moving in one dimension, and described
by the following stochastic dynamics:23,24

m
d2x

dt2 = − m�
dx

dt
+ fext�x − ct� + ��t� , �1�

with a bath providing the particles a friction constant �, and
a thermalizing noise with

���t���s�� = 2�mkBTo��t − s� , �2�

at temperature To. The external force associated with the
traveling potential is fext�x , t�=−d /dxVext�x−ct�, and the
properties of the system can be studied by considering the
equation governing p�x ,v , t�, the density distribution in
phase space of a single particle. The associated Kramers
equation25,26 reads as

�

�t
p�x,v,t� + �v

�

�x
+

fext�x − ct�
m

�

�v
�p�x,v,t�

= �� �

�v
v +

To

m

�2

�v2�p�x,v,t� . �3�

We assume that the shifting external potential is local-
ized within a finite region and vanishes outside. There-
fore, far away from such a region, we should have
a time independent equilibrium distribution po�x ,v�
=�o exp�−v2 / �2vT

2�� / �	2�vT�, where �o is the density of
particles and vT=	kBTo /m is the Gaussian width for their
velocity distribution. For a static external potential, i.e., the
c=0 limit of Eq. �1�, the distribution p�x ,v , t� would evolve
in time toward the thermal equilibrium value peq�x ,v�
= po�x ,v�exp�−Vex�x� /kBTo�, which would be reached
�sooner or later� from any initial distribution p�x ,v ,0�. For
c�0, the continuous shift of the external potential implies a
permanent perturbation of the thermal equilibrium, but still
there would be a transient evolution from any p�x ,v ,0� to a
unique stationary state p̃�x−ct ,v� in which the time depen-
dence is reduced to a shift of the x coordinate, to follow the
external potential Vext�x−ct�. This steady state is the object
of the present study. All of the results presented here may be
translated to a purely static distribution in the presence of a
time independent external potential V�x�=−fox+Vext�x�, with
a constant slope plus the same potential barrier which we
considered in Eq. �3�. The time derivative in the first term of
Eq. �3� vanishes, but there is an extra term proportional to fo

to take into account the constant background force added to
the localized barrier force fext�x�. Away from the barrier, the
particles move at constant mean velocity vo= fo / �m��, and a
change of reference framework from v to v�
v−vo leads to
exactly the same equation �Eq. �3�� for p�x ,v� , t�, when the
barrier appears as moving at rate c=−vo. These two equiva-
lent versions of the same problem have been studied within
the DDFT formalism,12,27–29 valid for large �. The same ex-
act mapping between the moving barrier in a flat background
and the static barrier in a sloped potential would be valid for
partially damped systems explored here.

It is convenient to introduce the following dimensionless
variables:

� 
 tvT�o, V 

v
vT

, X 
 x�o, C 

c

vT
, �4�

� 

�

vT�o
, Fext�X,�� 


fext�x − ct�
mvT

2�o

,

�5�

P�X,V,�� 

vT

�o
p�x,v,t� .

Accordingly, Kramers’ evolution equation for the phase
space distribution function can be rewritten with the help of
relations �4� and �5� as
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1

�

�P�X,V,��
��

= LFPP�X,V,�� −
1

�
V

�

�X
P�X,V,��

−
1

�
Fe�X,��

�

�V
P�X,V,�� �6�

having introduced the “Fokker–Planck” operator LFP, whose
eigenfunctions H��V� have the following property:

LFPH��V� 

�

�V
� �

�V
+ V�H��V� = − �H��V� , �7�

for �=0,1 , . . ., and have the explicit representation,

H��V� 

1

	2�
�− 1�� ��

�V� exp�−
1

2
V2� . �8�

It is convenient to define raising and lowering operators
in the eigenfunctions series, a	H��V�=H�	1�V�, so that the
contributions of the damping and the external forces in the
last two terms of Eq. �6� may be represented through

VH��V� = H�+1 + �H�−1�V� 
 �a+ + �a−�H��V� �9�

and

�H�

�V
= − H�+1�V� 
 − a+H��V� . �10�

The exact solutions of Eq. �6� in the regions where the ex-
ternal force vanishes may be written in terms of the infinite
series of modes, �=0,1 , . . ., with the generic form17

P����X,V,�� = exp�− ����exp�−
a+

�

�

�X
�


�1 +
a−

�

�

�X
��

H��V������X,�� . �11�

The function �����X ,��, which fully defines the mode

P̃����X ,V ,��, represents any solution of the diffusion equa-
tion

�

��
�����X,�� =

1

�

�2

�X2�����X,�� . �12�

From Eq. �11� in the case �=0, we explicitly obtain

P�0��X,V,�� = H0�V���0��X,�� −
H1�V�

�

���0��X,��
�X

+
H2�V�
2!�2

�2��0��X,��
�X2 + ¯ , �13�

which describes a density inhomogeneity, represented by the
term �0�X ,��, and the associated momentum current, the
term of the order of 1 /�, kinetic energy current, the term of
the order of 1 /�2, and so on. These terms are slaved by the
density and their shapes are given by the successive deriva-
tives of �0�X ,�� with respect to X. Similarly, from Eq. �11�,
the solution with �=1 has the explicit representation

P�1��X,V,��

= exp�− �����H1�V���1��X,�� −
H2�V�

�

���1��X,��
�X

+
H3�V�
2!�2

�2��1��X,��
�X2 + ¯ �

+
1

�
�H0�V�

���1��X,��
�X

−
H1�V�

�

�2��1��X,��
�X2 + ¯ �� ,

�14�

where the first line in the right hand side has the interpreta-
tion of a master current inhomogeneity ��1��X ,��, which
slaves higher order moments with decreasing amplitudes
�1 /� , . . . �, while the second line in the right hand side has
the same structure as P�0��X ,V ,�� with amplitude ��0�

=�−1�X��1�, and both terms have fast decay of the exponen-
tial prefactor. The physical interpretation of such a combina-
tion is that an initially pure current fluctuation, which is de-
scribed by H1�V��1�X ,0�, would die very fast, as exp�−���,
but leaving a density fluctuation proportional to �−1�X��1�


�X ,0� behind, which would evolve diffusively. The par-
ticular combination in Eq. �14� is such that it completely
cancels the remnant density fluctuations, i.e., it orthogonal-
izes P�1��X ,V ,�� to P�0��X ,V ,��, and leaves a purely fast
decaying form. The generic free mode of the order of �, is a
master term �����X ,��H��V�exp�−���, representing a density
��=0�, current ��=1�, temperature ��=2�, heat ��=3�, etc.,
perturbation of the equilibrium distribution po�x ,v�. The
master distribution ������X ,�� slaves the perturbation com-
ponents associated with any other H���V�, with increasing
powers of the inverse damping 1 /�, so that the whole distri-
bution P����X ,V ,�� decays toward equilibrium with an expo-
nential decay time ����−1. For time independent external
potentials, the high order modes are only visible as very
short transient states of P�X ,V ,�� toward po�x ,v�, and in the
large damping limit, ��1, the modes are essentially reduced
to their master component.17 In this work, we analyze the
role of these modes under the continuous shift of the external
potential, for finite values of the damping constant �.

III. STEADY STATE SOLUTION

A. The steady state form of the free modes

Now, we impose the steady state condition P�X ,V ,��
= P̃�X−C� ,V�, which shifts with time to follow the boundary
conditions in the moving potential barrier, in terms of the

variable X̃=X−C�. We analyze first the form of the free
modes of the expansion to represent the solution of Eq. �6� in
the regions where the external force vanishes. Since the
steady solution has the property

�

��
�P����X,V,��� = − C

�

�X
�P����X,V,��� , �15�

it follows that
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�

��
�exp�− ���������X,���

= − C exp�− ����
�

�X
������X,��� , �16�

so that we can transform the diffusion equation �Eq. �12�� for
the master distribution into an ordinary differential equation

�2

�X2�����X,�� + �C
�

�X
�����X,�� − ��2�����X,�� = 0,

�17�

whose solutions are proportional to exp�
	
���X� with


	
���

�
=

− C 	 	C2 + 4�

2
. �18�

Finally, the product exp�−���������X ,�� featured in Eq.
�11� has the form consistent with Eq. �15�:

exp�− ���������X,�� = 

�=	

A�
��� exp�
�

����X − C��� . �19�

The amplitudes A	
��� determine the contribution of each mode

in any region where the external potential vanishes. Since we
assumed that the potential barrier is restricted to a finite re-

gion around X̃
X−C��0, we shall refer the positive values

of X̃ as the front region, whereas the negative values of X̃
represent the wake region.

For the first mode, �=0, the exponent 
+
�0� vanishes, so

that A+
�0�=1, to represent the only possible constant contribu-

tion to P�X ,V ,��, the equilibrium distribution p�x ,v , t�
=�oHo�v /vT� /vT, away from the perturbation. The second
exponent for �=0, is 
−

�0�=−�C, so that it can only contrib-
ute to P�X−C� ,V� in the front region of the advancing po-
tential barrier, with an amplitude A−

�0� to be fixed by the
boundary condition at the advancing front of the external
barrier. In the left region behind the barrier, the amplitude
A−

�0� has to vanish, since otherwise P�0��X−C� ,V� would di-
verge as exp�−CX� for X�0. Therefore, substituting the so-
lution �19� with �=0 into Eq. �13�, we obtain the structure

P̃�0��X̃,V� = H0�V� + A−
�0�e−�CX̃�H0�V� + CH1�V�

+
C2H2�V�

2!
+ ¯ � , �20�

for X̃=X−C� in the front side of the advancing barrier, while
behind the barrier, we have the pure equilibrium structure

P̃�0��X̃ ,V�=H0�V�, with no remnant wake structure.

The contribution proportional to H0�V� in P�0��X̃ ,V� has
precisely the shape obtained from the analysis of Eq. �1� in
the strong damping limit,12 when the particles are always at
their velocity limit and the inertial term can be neglected. In
this limit, the Smoluchowski30 description of the system is
sufficient, and the solution can be written as P�X ,V ,��
=��X ,��Ho�V� /�o, where ��X ,�� satisfies the following dif-
fusion equation with drift:

���X,��
��

=
1

�

�2��X,��
�X2 −

1

�

�

�X
���X,��Fe�X − C��� , �21�

and the stationary solution ��X−C�� for shifting potential
barriers has the exponential front and the complete lack of
wake identical to the H0�V� contribution to Eq. �20�. The
only qualitative difference between the fully damped system
described by the Smoluchowski equation, and the �=0 mode
solution of Eq. �20� is that the front density perturbation
slaves a current CH1�V�, a kinetic energy increase
C2H2�V� /2, and similar higher order terms which may be
resumed to give exactly the form

P̃�0��X̃,V� = H0�V� + A−
�0�e−�CX̃H0�V − C� , �22�

i.e., the whole perturbation of P̃�0��X̃ ,V� over the equilibrium
value H0�V� has a Maxwellian distribution of velocities but
shifted to the reference frame of the advancing potential bar-
rier.

All higher order terms are characterized by 
+
����0 and


−
����0, so that the exponent 
−

���, has to be taken at the
front side and 
+

��� behind the barrier, so that there is one free
amplitude A	

��� for each mode at each side of the barrier. The
distribution functions for these modes may also be written in
terms of the shifted eigenfunctions of the operator LFP,
H��V+
	

��� /��. Thus, the �=1 mode has the form

P̃�1��X̃,V� = A	
�1�e
	

�1�X̃�H1�V +

	

�1�

�
�

+

	

�1�

�
H0�V +


	
�1�

�
�� , �23�

whereas for the �=2 mode, we find

P̃�2��X̃,V� = A	
�2�e
	

�2�X̃�H2�V +

	

�2�

�
�+2


	
�2�

�
H1�V+


	
�2�

�
�

+ �
	
�2�

�
�2

H0�V +

	

�2�

�
�� , �24�

and the generic structure of the � mode is

P̃����X̃,V� = A	
���e
	

���X̃�1 +

	

���a−

�
��

H��V +

	

���

�
� . �25�

Notice that all P����X̃ ,V� contributions for ��0 exponen-
tially decay away from the barrier.

The inclusion of higher order terms creates a wake den-
sity fluctuation structure, with exponential decays

exp�
+
���X̃�, which have 
+

����	� for C�1 and 
+
���

�� /C�� for C��. The front density structure contains

several exponential decays exp�
−
���X̃�, with 
− /��−	� for

C�1 and 
+
��� /��−C for C��. Both at the front and the

wake regions, the density fluctuations go together with fluc-
tuations in the velocity distribution, which may be described
as shifted equilibrium distributions, H0�V+
	

����, shifted cur-
rent distributions H1�V+
	

����, etc. The front region is broad
if the damping is weak and the barrier velocity small because
the restoring force is proportional to the velocity of the
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colloidal particles with respect to the quiescent solvent. The
velocity distribution changes in front of the barrier and de-
velops secondary peaks at V=C, V=−
−

�1� /�, V=−
−
�2� /�,

etc.

B. Generic properties of the steady state produced
by a shifting barrier

We now consider the generic solution of Eq. �6�, includ-
ing the regions inside the moving barrier, where we have to
include the force term. The steady state condition

P�X ,V ,��= P�X−C� ,V�
 P̃�X̃ ,V� transforms Eq. �6� into

�V − C�
�P̃�X̃,V�

�X̃
= �LFPP̃�X̃,V� − Fe�X̃�

�P̃�X̃,V�
�V

. �26�

The general solution of this equation may be represented as

P̃�X̃,V� = 

�=0

�

���X̃�H��V� , �27�

with generic functions ���X̃�, to be determined from the pro-
jections of Eq. �26� on each of the FP eigenfunctions H��V�.
The projections for �=0 and �=1 give

��1�X̃�

�X̃
− C

��0�X̃�

�X̃
= 0 �28�

and

2
��2�X̃�

�X̃
− C

��1�X̃�

�X̃
+

��0�X̃�

�X̃
= Fe�X̃��0�X̃� − ��1�X̃� .

�29�

The general form for any ��1 is

�� + 1�
���+1�X̃�

�X̃
− C

����X̃�

�X̃
+

���−1�X̃�

�X̃

= Fe�X̃���−1�X̃� − �����X̃� . �30�

In the absence of the force term Fe�X�, the general solution
of this �infinite� set of coupled ordinary linear differential
equations may be written in terms of the free modes �Eq.
�25��, with arbitrary amplitudes A+

��� at the back side, and
A−

��� at the front side of the moving barrier.

The structure of Eq. �28� is independent of Fe�X̃�, and it
represents the continuity equation, relating the mass density

��X̃�
�o�0�X̃� to the current density j�X̃�
�o�1�X̃�, to
keep the mass balance under a steady flow,

�j�X,��
�X

= C
���X − C��

�X
. �31�

The integration of Eq. �28� from the boundary conditions

�0�X̃�=1 and �1�X̃�=0, far away from the moving barrier,
gives

�1�X̃� = C��0�X̃� − 1� , �32�

i.e., any positive excess �0�X̃�−1�0 in the distribution of
particles near the moving barrier is associated with a current

j�X̃�=C���X̃�−�o� following the barrier shift. The regions

with �0�X̃��1 imply a depletion of the density and a coun-
tercurrent with opposite sign to the barrier displacement. In
the strong damping limit12 such a depletion and countercur-
rent were limited to the interior of the potential barrier, since
there was no wake left behind it. Here, the inertial effects
included open the possibility of such wake, so that we may
find regions outside of the moving barrier where the mean

velocity �V�=�1�X̃� /�0�X̃�=C�1−1 /�0�X̃�� has sign oppo-
site to C.

Equation �29�, from the projection of Eq. �26� on H1�V�,
represents the local balance of momentum. If we integrate it
across the whole inhomogeneity, from far, from the rear to
far, from the front of the moving potential barrier, the inte-
grals of all the derivatives vanish, and we obtain that the
total force FT, produced by the barrier on the particles bal-
ances the friction force created by the bath on the total cur-
rent

FT 
 �
−�

�

dX̃Fe�X̃��0�X̃� = ��
−�

�

dX̃�1�X̃� , �33�

i.e., it gives the global force balance in the system. Notice
that only the region of potential barrier contributes to the first
integral in the left hand side, while the entire volume con-
tributes to the right hand side.

The integration of Eq. �29� from �0�X�=1, �1�X�=0,
and �2�X�=0, at any point far from the barrier gives the
local excess of kinetic energy at any point,

�2�X̃� =
1

2�C�1�X̃� − �0�X̃� − 1 + �
−�

X̃
dX̃�Fe�X̃��0�X̃�

− ��1�X̃��� . �34�

Therefore, once we have the particle distribution �0�X̃�, we
may obtain the mean velocity of the particles �V�
=�1�X̃� /�0�X̃� from Eq. �32�, and their local temperature

relative to that of the bath, T�X̃� /To=1+�2�X̃� /�0�X̃� from
Eq. �34�.

Similarly, the equation for �=2 in the series �Eq. �30��
corresponds to the energy balance. Its integration from a

point far behind the barrier to an arbitrary point X̃ gives

direct access to the heat current �3�X̃�, while its integral
across the whole inhomogeneity gives the total power trans-
ferred from the barrier to the particles

W 
 �
−�

�

dX̃Fe�X̃��1�X̃� = 2��
−�

�

dX̃�2�X̃� , �35�

where the last integral has to be interpreted as the total heat
dissipated by the particles due to the local temperature dif-

ference over the bath, �2=�0�X̃��T�X̃� /To−1�. Notice that
the steady state conditions, and the fact that the potential
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energy vanishes both at the front and at the rear of the mov-
ing barrier, gives a direct relation, W=CFT, between the
power and the force. Through Eqs. �32�, �33�, and �35� we
also obtain a relationship between the total excess of par-
ticles and the excess kinetic energy. Written in terms of the
original variables,

� dx��x��T�x� − To� =
mc2

2
� dx���x� − �o� , �36�

this should be a generic property of the steady state distribu-
tions, independent of the damping �.

C. Expansion in terms of the steady free modes

The above expressions for �1�X̃�,�2�X̃� , . . ., given in

terms of �0�X̃� can only be used after the whole set of ordi-
nary differential Eqs. �28�–�30� are solved. That requires ei-
ther a resumation of all the terms, as done for the free modes
in Eq. �22�, or some truncation scheme to perform a numeri-

cal integration for the regions with Fe�X̃��0. Unless the
force is very weak everywhere, a direct truncation scheme of

the expansion in Eq. �27�, e.g., taking �3�X̃�=0, and solving

the first three equations to get �0�X̃�, �1�X̃�, and �2�X̃�,
leads to unphysical results, strongly dependent on the order
of the truncation. On the contrary, we have found very good
convergence, at least for any ��1, using a finite parametri-

zation of P̃�X̃ ,V� based on the natural modes for the free
particles. We fix the number �max of such modes to be used
in the front and in the wake regions, so that the solution,

P̃�X̃ ,V�, is described by �max+1 constants A−
��� at the first

region, and �max constants A+
��� at the second region, besides

the trivial contribution A+
�0�=1. Within the barrier region we

use 2�max+1 independent functions, �	
����X̃� to parametrize

P�X̃ ,V� as

P̃�X̃,V� = 

�=0

�max



�=	

��
����X̃��1 +


�
���a−

�
��

H��V +

�

���

�
� .

�37�

Therefore, each term �� in the expansion �Eq. �27�� is ex-

pressed as a linear combination of the functions �	
����X̃� to be

determined by means of Eqs. �28�–�30�, for all values �
�2�max+1.

The simplest parametrization within this scheme corre-
sponds to include only the �=0 mode, with 
+

�0�=0 and

−

�0�=−C�, so that

P�X̃,V� = �+
�0��X̃�H0�V� + �−

�0��X̃�H0�V − C� . �38�

Hence, all the terms in expansion �Eq. �27�� are given in
terms of these two functions,

�0�X̃� = �+
�0��X̃� + �−

�0��X̃�, �1�X̃� = C�−
�0��X̃� ,

�39�

�2�X̃� =
C2

2!
�−

�0��X̃� etc.

The projections of Eq. �26� on the first two FP eigen-

functions are enough to determine �+
�0��X̃� and �−

�0��X̃�. From

Eq. �28�, we obtain that �+
�0��X̃� has to be constant all over

the system, both inside and outside the potential barrier,

therefore, it is fixed by the asymptotic value �+
�0��X̃�=1, and

we may use the particle distribution �0�X̃�=1+�−
�0��X̃� as the

only free functional variable. Regarding now the projection
on H1�V�, we obtain that the contributions from the deriva-

tives of �1�X̃� and �2�X̃� on the left hand side of Eq. �29�
cancel each other, so that

��0�X̃�

�X̃
= Fe�X̃��0�X̃� − C���0�X̃� − 1� . �40�

which is exactly the DDF equation obtained and solved by
Penna and Tarazona12 from the integration of Eq. �21�. No-

tice that this simplest parametric description of P�X̃ ,V� is,
therefore, consistent with respect to the mass and momentum
balances, but it has no flexibility to recover the equivalent
balances of energy ��=2�, heat current ��=3�, etc., required
by Eq. �30�. A direct substitution of Eq. �39� into Eq. �30�
shows that the local balance for ��2 fails by a term

C�−1Fe�X̃� / ��−1�!, at each ��2. Such a failure is less im-
portant for low shifting rate, C�1, and for modes ��C.
Also, the global balance represented by Eqs. �33�–�35�
would be kept at any order �, since the total integral of Fe�X̃�
has to vanish. The inertial effects appear to recover the local
balances missed by the DDF approximation, and we may

include them in a systematic way including in P̃�X̃ ,V� the
contributions of the higher order free modes. That enlarges

the set of free functions �	
����X̃�, and allow the solution of

Eq. �26� up to higher order eigenfunctions of the FP operator.

IV. NUMERICAL RESULTS FOR A PARABOLIC
POTENTIAL BARRIER

As an application we study a parabolic potential barrier

of the form, U�X̃�=��1− X̃2� /2 creating a linear force

Fe�X̃�=�X̃, restricted to the interval −1� X̃�1. As we con-
sider only the steady case we have to solve Eq. �30� within
the barrier, and to find the solutions matching with the physi-

cal solutions Eq. �25� at the front �X̃�1� and at the wake

�X̃�−1�. The matching of P̃�X̃ ,V� inside and outside the

barrier is achieved by requiring that P̃�X̃ ,V� in Eq. �26�
should be continuous at X̃= 	1, but with a discontinuous

first derivative with respect to X̃, to match the discontinuity

in Fe�X̃�, i.e.,

�V − C����P̃�X̃,V�

�X̃
�

X̃=1+�

− ��P̃�X̃,V�

�X̃
�

X̃=1−�

�
= ���P̃�X̃,V�

�V
�

X̃=1
, �41�

and a similar condition at X̃=−1. Most of the results pre-
sented here have been obtained with �max=4, i.e., with nine
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independent functions �	
����X̃�, besides the trivial �+

�0�=1, to
ensure the correct projection of Eq. �26� up to the order of
H9�V�. Nearly identical results are obtained with �max=3,
and even with �max=2 for ��2. However, qualitative dif-
ferences appear with respect to the DDF result ��max=0�,
unless we have both large damping � and a low shifting rate
C for the barrier. In any case, we have to deal with a set of
linear differential equations, with a shooting boundary prob-
lem, to get the physical match with the free modes, so that

A+
���=0 at X̃=1, and A−

���=0 at X̃=−1.
In Fig. 1, we present results for a high potential barrier,

�=10, moving with respect to the bath at a relatively low
velocity, C=0.2. For large damping, the system is in the
strong drift limit.12 The density distribution is strongly de-
pleted within the barrier, while the density in the front region
grows to a large value, more than 60 times the asymptotic
density in this case, so that there are enough particles going
over the barrier to keep the stationary state. We observe that
for ��1, the inertial effects have little influence in the struc-

ture of the front region. When �0�X̃� is rescaled in terms of

��X̃−1�, as in Fig. 2�a�, the curves collapse into a single
large � limit. This is consistent with the fact that the velocity
distribution at the front region is dominated by the shifted
Maxwellian form �Eq. �38��. The effect of reducing � below
a value of 1 renders smaller the amplitude of the exponential
contribution in the formula �0�X�=1+A exp�−C�X�. Never-
theless, for the lowest value of � presented in that figure the
expansion in modes is still far from convergence for �max

=4.
In Fig. 2�b�, we present the structure of the wake by

rescaling the distance from the left edge of the barrier by the
�C factor. The profile saturates for low �, while is continu-
ously reduced as � increases. This is consistent with the
no-wake prediction in the large damping limit, when the in-

ertial effects are fully suppressed. Nevertheless, the decrease
in the wake structure with increasing � is very slow, so that
the presence of such region, with ��x���o and, hence, mean
velocity �v�=vT�1−�o /��x���0, behind the shifting poten-
tial barrier, is an important qualitative effect induced by the
inertial dynamics of the particles, and which was neglected
within the DDF analysis.12

In Fig. 3, we present the results for the same barrier, as
in Fig. 1, but with a much larger velocity C=2. In the large
damping limit such a situation corresponds to a “high coun-
tercurrent” regime,12 in which the barrier moves too fast to
produce a strong perturbation in the density distribution.
When the bath damping parameter is reduced, the inertial
dynamics creates a strong amplification of the front structure,
which is now much more symmetric with respect to the ad-

FIG. 1. Steady state scaled density profile, �0�X�=��X� /�o, in the reference
frame of the moving parabolic barrier. The barrier strength is �=10, its
width is 2 and moves at a relatively low velocity, C=0.2, while the damping
constant � takes on several values. Panel �b� shows the structure of the
region within the barrier �−1�X�1�, and the inertial wake left behind by
the advancing barrier. The position X is relative to the barrier. Adimensional
units �Eqs. �4� and �5�� are used for all the quantities.

FIG. 2. Scaled density profile, �0�X�=��X� /�o, at the front �a� and wake �b�
regions in Fig. 1 is presented in reduced distances �X	1�C�, to take into
account the natural decay length of the zeroth order mode. The front struc-
ture curves collapse for ��1, while the wake region is reduced for increas-
ing �. The position X is relative to the barrier. Adimensional units �Eqs. �4�
and �5�� are used for all the quantities.

FIG. 3. Steady state density distribution, �0�X�=��X� /�o, induced by the
same potential barrier as in Fig. 7, but moving at a higher velocity, C=2.
The damping constants are �=5 �full line�, �=4 �long-dashed line�, �=3
�dot-dashed line�, and �=2 �short-dashed line�. Panel �a� gives a general
view of the high density structure at the advancing front. Panel �b� shows
the structure of the depleted region within the barrier �−1�X�1�, and the
inertial wake left behind by the advancing barrier. The position X is relative
to the barrier. Adimensional units �Eqs. �4� and �5�� are used for all the
quantities.
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vancing barrier front at X̃=1. Roughly speaking, half of the
particles at the front region are actually within the potential

barrier, for 0� X̃�1. This is to be compared to the result at

low C where the advancing front was mainly located at X̃
�1. The density depletion is limited to the rear edge of the

barrier X̃�−1, and the density is never lower than 0.5 the
asymptotic value. The structure of the wake region does not
show a strong scaling effect with � observed in Fig. 1�b�, for
the low C case. The scaled structure of the front region in

terms of �C�X̃−1� is presented in Fig. 4�a�, and shows that
the decay of the density is still well represented by the ex-

ponential form A− exp�−�CX̃� of the zeroth order mode, but
with a � dependent amplitude A−. The maximum amplitude
of the wake, just behind the moving barrier seems to be
similar for all the cases with large �, while the decay in-
creases with �. The results in terms of the scaled distance

�C�X̃+1� may be compared to those in Fig. 2�b� for the
slowly moving barrier, and we observe that the wake extends
now further away from the barrier edge.

We now turn to the study of the local rescaled
temperature31 obtained from Eq. �34�. The results for the C
=0.2 case in Fig. 5 indicate that the shifting barrier produces
a very strong heating of the system within the barrier, with

maximum T�X̃��25To at the rear side of the barrier, in the

region of lower density. At the scale of the maximum T�X̃�,
the temperature is apparently constant at the front side, but
the inset shows that there is a sharp rise of temperature at

X̃�1, and also we observe a kind of precursor plateau over

distances of the order X̃�20 /� from the barrier edge, and

with a � independent value T�X̃� /To�1.5. The width of that
plateau may be understood from the huge enhancement of
the density on the front side of the barrier, so that until the

exponential decay makes �0�1�exp�−�C�X̃−1���1, the

large majority of the particles contributing to �0�X̃� belongs
to the exponential component of that front, and the value of

T�X̃� at the plateau would represent the temperature of the

advancing front. The structure of T�X̃� of the wake is much

narrower than at the front, and it indicates a moderate heat-
ing within the density depletion shown in Fig. 1.

In Fig. 6, we present the temperature distribution for the
high velocity case, C=2, described in Figs. 3 and 4. The

maximum temperature is T�X̃��5.5To, and it is still located
at the rear half of the barrier, associated with the minimum
density. The “precursor film” at the front is much shorter and
higher, so that only for the lowest value of � may be inter-
preted as an incipient “plateau,” this is consistent with the
interpretation given above when we consider the density dis-

tributions in Fig. 3. The most peculiar feature of T�X̃� at this
high value of C is the appearance of local minimum between
the main maximum and the front edge of the barrier. The
relative importance of this feature increases with decreasing
�, i.e., as the inertial effects become more important. A pos-

sible interpretation could be that the decrease in T�X̃� for X̃
�1 is a signature of the adiabatic expansion of the ideal fluid
when it climbs the potential barrier. Therefore it should be
restricted to large C and low �, to avoid the thermalization
with the bath.

Finally, we present in Fig. 7 the results for the total force

FIG. 4. The structure of the relative density �0�X�=��X� /�o, at the front �a�
and wake �b� regions in Fig. 3 is presented in reduced distances �X	1�C�,
to take into account the natural decay length of the zeroth order mode. The
position X is relative to the barrier. Adimensional units �Eqs. �4� and �5�� are
used for all the quantities.

FIG. 5. Steady state temperature profile induced by a parabolic potential
barrier shifted at rate C=0.2. The position X is relative to the barrier and the
vertical dotted lines are the barrier edges. The inset shows the structure of
for T�X��To. Adimensional units �Eqs. �4� and �5�� are used for all the
quantities.

FIG. 6. Steady state temperature profile induced by a rapid drift, C=2, of
the parabolic potential barrier. The position X is relative to the barrier and
the vertical dotted lines are the barrier edges. Adimensional units �Eqs. �4�
and �5�� are used for all the quantities.
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FT, from Eq. �33�, obtained both for the low and high shift-
ing rates, as functions of the damping �. We present the
results for three different choices of the parametrization,
�max from 2 to 4, so that they give also a picture of the
convergence of our treatment in terms of the free modes of
the system. Notice that from Eqs. �33� and �35�, the same
results may be scaled to get the total power pumped by the
barrier, and are directly associated with the excess of mass,
and of kinetic energy through the relationship �Eq. �36�� im-
posed by the steady state condition. The results shows a clear
difference between the C=0.2 case, with very little depen-
dence of FT on �, and the high rate shift, C=2, with a very
rapid decay of the force for increasing damping.

V. CONCLUSIONS

Colloidal particles when subjected to external driving
forces may exhibit properties which are different from those
of the equilibrium systems. In the present paper, we have
described the effect of a barrier moving at constant velocity
in a one dimensional colloidal fluid in the approximation that
the solvent is unaffected by the barrier. In contrast with pre-
vious approaches which have considered only overdamped
dynamics, we have studied the case where inertia plays a
role. The two major effects of inertial terms are first to de-
termine the appearance of a wake structure, completely ab-
sent in the DDF treatment and of an infinite set of character-
istic lengths in the regions near the moving barrier; and
second to produce not only a strongly structured density dis-
tribution near the barrier, and the associated current density
but also the higher order moments of the velocity distribu-
tion, which may be represented as a local temperature pro-
file, very different from that of the thermalizing bath, and
which shows interesting characteristics. It is also interesting
that the method used here, based on the natural expansion of
the distribution P�X ,V ,�� for free systems, gives an intuitive
connection with the previous results based on the DDF treat-

ment, i.e., using the density distribution ��X ,��=�o�0�X ,��
as the only relevant field. That approach is recovered in as
the limit of the simplest description of P�X ,V ,�� in terms of
the first free mode �the only one with a purely diffusive
dynamics, without an exponential decay time�. The local bal-
ance of mass and force reproduce the DDF result of a Smolu-
chowski equation. To achieve the equivalent local balances
for the energy, heat currents, etc., we have to enlarge the
parametrization for P�X ,V ,��, to include exponential decay-
ing modes, which represent the effects of the inertial dynam-
ics of the particles.

Here, we have analyzed only the simplest case, of one-
dimensional spatial distributions in the dilute, ideal gas,
limit. The equivalent results under other geometrical condi-
tions, when the particles can bypass the moving barrier,21,32

and including the effects of the particle interactions,12,21 have
been explored under the DDF assumptions, and it would be
interesting to generalize them to the present approach.

It is perhaps worth to comment that the wake region is
not specific to the flow of particles with inertia. Very similar
effects were also found in higher dimensions for over-
damped, Brownian particles driven past colloids, which act
in this case as the potential barriers.32 As shown by Penna et
al.,22 there exists a sum rule stating that the integral for the
wake in any transversal plane to the direction of the drift
vanishes, so that the depletion along the axis through the
obstacle is exactly cancelled by the contribution from the
lateral wings. Such a sum rule is valid in any dimension, but
of course, in D=1 implies that there is no wake at all. The
presence of a wake structure in D=1, in the inertial case,
would correspond to a breaking of the sum rule for its trans-
verse integral in D�1.

The present results perhaps are of relevance for micro-
fluidic devices where colloidal particles move along narrow
channels in order to understand what external forces are
needed to induce a drift in the presence of Brownian fluctua-
tions. The hydrodynamics interaction, which have been ne-
glected here, could not be important in one dimension due to
the screening effect, and we may expect that, at least at a
qualitative level, the predictions made here could be acces-
sible to experimental observation.
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