
Theory of thermostatted inhomogeneous granular fluids: A self-consistent
density functional description

Umberto Marini-Bettolo-Marconi
Dipartimento di Fisica, Via Madonna delle Carceri, 68032 Camerino (MC), Italy

Pedro Tarazona
Departamento de Fisica Teórica de la Materia Condensada, Universidad Autonoma de Madrid,
E-28049 Madrid, Spain and Instituto Nicolás Cabrera, Universidad Autonoma de Madrid,
E-28049 Madrid, Spain

Fabio Cecconi
INFM Center for Statistical Mechanics and Complexity, and Institute for Complex Systems, CNR,
Via dei Taurini 19, 00182 Rome, Italy

�Received 27 December 2006; accepted 16 March 2007; published online 26 April 2007�

The authors present a study of the nonequilibrium statistical properties of a one dimensional
hard-rod fluid dissipating energy via inelastic collisions and subject to the action of a Gaussian heat
bath, simulating an external driving mechanism. They show that the description of the fluid based
on the one-particle phase-space reduced distribution function, in principle necessary because of the
presence of velocity dependent collisional dissipation, can be contracted to a simpler description in
configurational space. Indeed, by means of a multiple-time-scale method the authors derive a
self-consistent governing equation for the particle density distribution function. This equation is
similar to the dynamic density functional equation employed in the study of colloids, but contains
additional terms taking into account the inelastic nature of the fluid. Such terms cannot be derived
from a Liapunov generating functional and contribute not only to the relaxational properties, but
also to the nonequilibrium steady state properties. A validation of the theory against molecular
dynamics simulations is presented in a series of cases, and good agreement is found. © 2007
American Institute of Physics. �DOI: 10.1063/1.2723744�

I. INTRODUCTION

Granular fluids �GFs� represent one of the current para-
digms of open nonequilibrium systems and, for this reason,
in the last two decades have been the subject of a huge
amount of experimental, numerical, and theoretical
studies.1–7 GFs can be conveniently modeled as assemblies
of macroscopic particles, experiencing instantaneous binary
collisions during which a fraction of the kinetic energy is
dissipated, i.e., transferred into internal degrees of freedom.
Under the action of a vigorous external driving force, GFs
may appear similar to ordinary molecular fluids, but crucial
differences remain because inelasticity leads to the appear-
ance of a series of peculiar behaviors, such as clustering,
non-Gaussian velocity distribution, and velocity correlations.
These phenomena have no counterparts in molecular fluids
and render the study of GFs difficult but particularly fasci-
nating.

In spatially uniform systems, relations have been ob-
tained between static average quantities such as density, ki-
netic temperature, and pressure, which may be regarded as
the analog of the equation of state. In addition, a granular
hydrodynamics has been developed which, due to the inelas-
ticity of collisions, differs nontrivially from standard hydro-
dynamics. The majority of these studies focus on large scale
properties of the fluid. However, in strongly inhomogeneous
systems, the connection between the microscale typical of
the particles and the macroscale is still incomplete. Recently,

some authors8 have proposed phenomenological theories
based on local mass and momentum conservation laws, in-
corporating nonideal gas effects via an effective free energy
functional suitably designed to describe the spontaneous for-
mation of loosely and densely packed regions. This approach
sounds very appealing because the free energy density
functional,9 besides being a method computationally simple
and physically clear, has proven to be a useful tool in the
theory of nonuniform fluids with applications to interfacial
and freezing phenomena. The basic assumption of all density
functional theories is that the thermodynamic potential of a
nonuniform system may be approximated knowing the struc-
tural and thermodynamic properties of the corresponding
uniform system. Two questions are in order before proceed-
ing to generalize the density functional theory �DFT� to
granular materials: Does the same method offer any new
insight in this new area? How far meaningful concepts for
standard molecular fluids, such as free energy and chemical
potential, can be extended to systems which are not at ther-
modynamic equilibrium? The answer to the second question
seems to be desolately negative, and therefore in order to
construct a theory of nonuniform GF, alternative techniques
not involving free energy functional derivations have to be
developed. A step towards this new direction has been re-
cently made, and an equation of evolution for the particle
density was obtained in the case of nonequilibrium colloidal
systems.10 Interestingly, such an equation is very similar to
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the equation considered within the dynamic density func-
tional method.11 It differs from the latter only for the pres-
ence of some higher order corrections. The derivation of Ref.
10 employs standard tools of kinetic theory and, in particular,
the revised Enskog equation.12,13 In this paper we generalize
such an approach to fluids of inelastic hard core particles
subject to a stochastic forcing.

We consider a one dimensional model of granular fluid
which is simple enough as to lend itself to analytic work, but
is endowed with a sufficient complexity as to display inho-
mogeneous behavior.14–24 One dimensional models may play
a useful role since they can be employed to test approxima-
tions of more general applicability and allow us to link easily
the structural properties to the dynamical behavior. More-
over, at equilibrium the qualitative differences between one
dimension and higher dimensions appear in the development
of long-range ordering or any kind of phase transitions, but
not in the short-range packing structure. In the collision ki-
netics, the qualitative difference between one dimension and
higher dimensions appears in purely inertial and elastic sys-
tems through the conservation of the velocity distributions
despite the collisions. The role of the bath, and also the in-
elastic collisions, kills the peculiarity of the one dimensional
case. A basic feature of this work is the assumption of a
uniform thermostat to describe the external energy supply.
The balance between thermostatting and dissipation mecha-
nism gives rise to nonequilibrium steady states which are
achieved without fine-tuning of the model parameters. Few
kinds of thermostats have been employed in the literature,
namely, the white noise thermostat,25 the Gaussian
thermostat,26 and the Langevin thermostat27–29 which in-
cludes both the white noise term and the friction force pro-
portional to the velocity of the particles.30 The present study
is based on the Langevin thermostat because it can be easily
realized in numerical experiments and lends itself to a great
deal of analytical work.

The paper is organized as follows. In Sec. II, we intro-
duce the equations describing the dynamics of the stochasti-
cally driven inelastic hard-rod fluid model. We start from the
stochastic equations for the trajectories of each particle and
discuss how these can be reduced under some suitable ap-
proximations to the Fokker-Planck-Boltzmann equation for
the single-particle phase-space distribution. Next, in order to
make analytical progress, we separate the velocity and the
spatial dependence of the distribution function and obtain an
infinite hierarchy of coupled integrodifferential equations. In
Sec. III we analyze the steady state uniform properties of the
system. In Sec. IV we introduce the evolution equation for
the density of the system, which is obtained in Appendix A
by applying the multiple-time-scale method, and in Sec. V
we perform a series of numerical tests of our theory using a
few selected examples. The tests compare the two levels of
description: the results obtained studying the single-particle
trajectories with those obtained from the density equation.
Finally, conclusions are drawn in Sec. VI.

II. MODEL

Let us consider a one dimensional fluid consisting of N
identical inelastic hard rods of mass m, length �, coefficient

of restitution �, positions xi, and velocities vi, with i=1,N.
For the sake of generality we also consider an arbitrary ex-
ternal force fext�x�. When the separation of particles i and i
+1 is � a binary inelastic collision occurs. The collision
conserves the total momentum and is described by the linear
transformation,

v1� = v1 +
1 + �

2�
�v2 − v1� ,

�1�

v2� = v2 −
1 + �

2�
�v2 − v1� ,

connecting the precollisional velocities �primed symbols�
and the postcollisional velocities �unprimed symbols�. Since
in a single collision the amount of total kinetic energy,

�E = −
m

4
�1 − �2��v1� − v2��

2, �2�

is dissipated, without energy injection the particles would
come to rest. On the contrary, a steady state regime can be
reached if the energy loss through collisions is balanced by
an energy injection that we assume to be realized by the
combination of a friction force −m�vi and a stochastic force
�i�t�. These two forces represent the Langevin thermostat.
The complete dynamics can be represented by the following
2N coupled stochastic differential equations:

d

dt
xi = vi, �3�

m
dvi

dt
= − m�vi + fext�xi� + f i

coll + �i�t� , �4�

where f i
coll indicates symbolically the resultant of the impul-

sive forces acting on particle i in possible hard core colli-
sions against other particles. The stochastic force �i�t� has
zero average ��i�t�� and white noise correlation

��i�t�� j�t��� = 2�mT0�ij��t − t�� . �5�

The amplitude T0 is the “heat-bath temperature” and �·� in-
dicates the average over a statistical ensemble of realizations
of the noise. A statistical description of the system in terms
of the one-particle phase-space distribution f �1��x ,v , t�, giv-
ing the number of particles in the volume element �x ,x
+dx ,v ,v+dv�, can be worked out by taking the average over
all realizations of the stochastic noise and following Ref. 10.
Moreover, the distribution f �1��x ,v , t� evolves according to
the governing equation,

�

�t
f �1��x,v,t� + �v

�

�x
+

fext�x�
m

�

�v
� f �1��x,v,t�

= �� �

�v
v +

T0

m

�2

�v2� f �1��x,v,t� + k�x,v,t� . �6�

In the left-hand side, the term between the square brackets
describes the free streaming of the particles subject to the
external force fe�x�, the first term in the right-hand side is the
one-particle Fokker-Planck collision term representing the
interaction with the heat bath, while k�x ,v , t� describes the
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collisions among the particles. We treat these interactions
within the revised Enskog theory �RET�, developed by van
Beijren and Ernst.12 The RET for elastic collisions is accu-
rate over the entire fluid range and describes the crystal
phase too. It has been generalized to the inelastic regime and
used to derive transport coefficients.31,32 We write the RET
collision operator as

k�x,v,t� = 	
s=±1


 dv2��sv12��sv12�

�� 1

�2g2�x,x − s��	�f �1��x,v1�,t�f �1��x − s�,v2�,t�

− g2�x,x + s��	�f �1��x,v1,t�f �1��x + s�,v2,t�� . �7�

Notice that at variance with the elastic case, a quadratic fac-
tor �−2 in the gain term, specific to granular gases, appears.
One power is the consequence of the Jacobian dv1�dv2�
= �1/��dv1dv2 and the second power stems from the reflec-
tion law v12=−�v12� . The sum over s= ±1 is the analog in
d=1 of the integration over the d-dimensional surface of the
hypersphere with radius �. The RET embodies spatial corre-
lations through the hard-rod pair correlation function
g2�x ,x±� ;n� evaluated at contact. As a simplifying approxi-
mation, to obtain a theory at the level of the one-particle
distribution, we take g2�x ,x±� �	� to be given by its equilib-
rium value33 evaluated when the local density is 	�x , t�,

g2�x ± ��	� =
1

1 − 
�x ± �/2�
. �8�

The time and density dependence occurs entirely via the lo-
cal packing fraction 
�x , t�=�x−�/2

x+�/2dx�	�x� , t�. Therefore, the
collision operator �Eq. �8�� is approximated by an explicit
nonlocal functional of the one-particle density distribution,
with the terms f �1��x ,v1 , t�f �1��x±� ,v2 , t�, set by the collision
distance, and the nonlocal density dependence through

�x±� /2�, to include the particle correlations.

In the following we shall employ the nondimensional set
of variables which are obtained by measuring the velocities
in units of the thermal velocity vT=
kBT0 /m and lengths in
unit of �, i.e., V�v /vT and X�x /�. The remaining vari-
ables can be nondimensionalized according to the transfor-
mations �� tvT /�, �=�� /vT. F�X���fext�x� /mvT

2. Finally,
the distribution function and the collision term are rescaled
according to the transformations P�X ,V ,����vTf �1��x ,v , t�
and K�X ,V ,����2k�x ,v , t�.

Equation �6� can be cast in the following nondimen-
sional form:

1

�

�P�X,V,��
��

= LFPP�X,V,�� −
1

�
V

�

�X
P�X,V,��

−
1

�
F�X,��

�

�V
P�X,V,�� +

1

�
K�X,V,�� ,

�9�

where we have introduced the Fokker-Planck operator LFP by
the equation

LFPP�X,V,�� =
�

�V
� �

�V
+ V�P�X,V,�� . �10�

The eigenfunctions of LFP read explicitly as

H
�V� �
1


2�
�− 1�
 �


�V
 exp�−
1

2
V2� �11�

and correspond to discrete eigenvalues 
=0,−1,−2, . . .. We
separate the velocity from the spatial dependence by expand-
ing, over the basis set H
�V�, both the phase-space distribu-
tion

P�X,V,�� = 	



�
�X,��H
�V� �12�

and the collision term

K�X,V,�� = 	



C
�X,��H
�V� . �13�

As shown in Appendix A, the coefficients C
�X ,�� can be
expressed as nonlocal products of the moments �
�X ,�� with
coefficients which are nonlocal functionals of the density
distribution. Substituting Eqs. �12� and �13� in Eq. �9� and
using the orthogonality of the H
�V�’s, we obtain a system of
coupled equations: for the moments �
�X ,�� which can be
written in compact form as

� ��
�X,��
��

+ �
�
�X,�� − C
�X,���
+ �
 + 1�

��
+1�X,��
�X

+ � �

�X
− F�X���
−1�X,�� = 0

�14�

with �−1=0.
We identify the moment �0�X ,��=�dVP�X ,V ,��

with the number density, �1�X ,��=�dVVP�X ,V ,�� with
the momentum density, and �2�X ,��+�0�X ,�� /2
= 1

2 �dVV2P�X ,V ,�� with the kinetic energy density. For 

=0,1 ,2 Eq. �14� encodes the balance equations for these
moments, i.e., the hydrodynamic equations characterizing a
viscous one dimensional fluid.34 Finally, we introduce a local
kinetic temperature, often called granular temperature, via
the definition

T�X,�� = ��V2� − �V�2� = 1 + 2
�2�X,��
�0�X,��

− ��1�X,��
�0�X,���2

.

�15�

III. HOMOGENEOUS STEADY STATE
PROPERTIES

Before embarking upon the task of solving the evolution
equations, we illustrate the peculiarity of the inelastic system
by choosing the simplest case, namely, a time-independent
spatially uniform system with F�X�=0. We consider the glo-
bal velocity distribution function ��V� and show that in the
steady state it does not relax to the Maxwellian, as it would
occur in the case of a molecular fluid. To this purpose let
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�i=�̃i, where �̃i are some constants. The value of the am-

plitude �̃2, through Eq. �14�, can be expressed in terms of

the uniform density �̃0,

2��̃2 = C2 = −
�1 − �2�


�
g2��̃0

2 + 3�̃0�̃2 +
3

4
�̃2

2� , �16�

where the second equality follows from the definition of C2

and the expressions of Appendix A. To first order in the

inelasticity parameter �1−�2� we obtain: �̃2=−��̃0 /2,

where �= ��1−�2� /
���g2�̃0. The procedure can be carried
on for values of 
 larger than 2 with the following result:

�̃4 =
1

4�
C4 �

�1 − 2�2�
96

��̃0, �17�

�̃6 =
1

6�
C6 � −

�3 − 12�2 + 8�4�
5760

��̃0, �18�

�̃8 =
1

8�
C8 � −

�15 − 20�2 + 50�4 − 16�6�
215 040

��̃0. �19�

Hence, ��V� can be written as

��V� =
e−V2/2


2�
��̃0 + �V2 − 1��̃2 + �V4 − 6V2 + 3��̃4

+ �V6 − 15V4 + 45V2 − 15��̃6 + �V8 − 28V6

+ 210V4 − 420V2 + 105��̃8� . �20�

Two remarks are in order: if we retain only the two leading
terms in the expansion, the distribution function can be ap-
proximately rewritten as a Maxwellian,

��V� = �̃0�1 − �V2 − 1�
�

2
� e−V2/2


2�

�
exp�− V2/2�1 − ���


2��1 − ��
�̃0, �21�

and we interpret � as the reduced temperature shift induced
by the inelastic dissipation. Secondly, the expansion �Eq.
�21�� can be compared with an exact solution of Eq. �9�,
valid when F�X�=0 and in the limit �1−��→0,35 obtained
by Benedetto et al. These authors showed that a spatially
uniform solution, �p�V�, of Eq. �9� is given implicitly by the
following nonlinear integral equation:

�p�V� =
e−V2/2


2�Z
exp�−

�1 − ��g2

6� �

0

�

duu3�p�u + V�

− 

−�

0

duu3�p�u + V��� , �22�

where Z is the constant which ensures the correct normaliza-
tion of the probability distribution function. Interestingly,
such a distribution has high-velocity tails which decay as
exp�−c�V�3�, whereas the central region of the distribution is
approximately a Maxwellian. Clearly, the high-velocity tails
cannot be well reproduced by the present expansion, which

is applicable when ��1, but the kurtosis associated with Eq.
�21� compares reasonably with the kurtosis computed from
the distribution Pp�V�, as shown in Fig. 1.

IV. EVOLUTION EQUATION

We shall consider, in the following, the nearly over-
damped regime ��1.36–42 Since only the particle number is
conserved, one expects that after a transient of duration of
the order of �−1, the momentum and the energy current be-
come slaved by the density field. This remark allows us to
simplify the task posed by the open hierarchy of Eq. �14�. In
Ref. 10, we showed that for a system undergoing perfectly
elastic collisions, the problem can be treated conveniently by
employing a multiple-time-scale technique. As a result, we
found a reaction-diffusion self-consistent equation involving
only the amplitude �0�X ,��. The evolution of all remaining
partial amplitudes �
�X ,��, �
�1� could be deduced from
the knowledge of �0�X ,��. Physically, the reason for such a
complexity reduction can be attributed to the fact that the
marginal velocity probability distribution attains its local
equilibrium rapidly, in a time span of the order of �−1, during
which the one-particle density changes slowly. Indeed, the
positional degrees of freedom reach an equilibrium distribu-
tion on a much slower time scale than the velocities.

Since the method of solution follows closely the deriva-
tion of Ref. 10, we report the details of the present case in
Appendix B and proceed to illustrate the resulting equation
of evolution. We only recall that the method is based on a
systematic expansion in powers of �−1, which takes into ac-
count the fact that in Eq. �9� the time derivative is multiplied
by the small parameter �−1. For such a reason a multiple-
time-scale method has to be applied. We also need to intro-
duce the following expansions of the moments and of the
collision integrals in inverse powers of �:

�
�X,�� = 	
n

1

�n�n
�X,�� �23�

and

FIG. 1. Kurtosis of the velocity distribution as a function of � for 	0=0.8
and �=5. The dashed line represents the data of the present theory, while the
continuous line refers to the results from formula �22� by Benedetto et al.. In
the inset we display the corresponding kinetic temperatures.
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C
�X,�� = 	
n

1

�ncn
�X,�� . �24�

The key result of the analysis contained in Appendix B is the
following equation for the density amplitude �00:

��00

��
�X,�� =

1

�
�X���X − F�X���00�X,�� − c01�X,��

−
1

�
c11�X,�� +

1

�
�Xc02�X,��� . �25�

Equation �25� is the fundamental equation of this work and
constitutes a closed expression, once the collisional terms cs


and the amplitudes �s
 are specified in terms of the scaled
density �00�X ,��. As we will show below, the density field
�00�X ,�� fully characterizes the state of the system and
slaves the remaining hydrodynamic fields. Indeed, the ampli-

tudes of the H1�V� and H2�V� components are completely
determined from the knowledge of �00�X ,��. Such a com-
plexity reduction occurs because the density is the only con-
served field in our thermostatted model.

Using Eq. �B4�, we obtain the following at order �−1:

c01�X,�� = −
�1 + ��

2
�00�X,���g2�X,X + 1��00�X + 1,��

− g2�X,X − 1��00�X − 1,��� , �26�

and the following at order �−2:

c02�X,�� = −
�1 − �2�

2
�
�00�X,���g2�X,X + 1��00�X + 1,��

+ g2�X,X − 1��00�X − 1,��� , �27�

and

c11�X,�� =
�1 + ��


�
�00�X,���g2�X,X + 1��11�X + 1,�� + g2�X,X − 1��11�X − 1,��� −

�1 + ��

�

�11�X,��

��g2�X,X + 1��00�X + 1,�� + g2�X,X − 1��00�X − 1,��� −
�1 + ��

2
�00�X,���g2�X,X + 1��12�X + 1,��

− g2�X,X − 1��12�X − 1,��� −
�1 + ��

2
�12�X,���g2�X,X + 1��00�X + 1,�� − g2�X,X − 1��00�X − 1,��� , �28�

where

�11�X,�� = − ��X − F�X���00�X,�� + c01�X,�� �29�

and

�12�X,�� = 1
2c02�X,�� . �30�

It is now clear that the quantities cs
�X ,��, which depend
locally on time but nonlocally on space, play the role of
effective fields because they encode the influence of the re-
maining particles on the particle located at X. They are also
functionals of the scaled density �00�X ,��, so that Eq. �25� is
self-consistent and can be solved numerically by iteration.
Relation �25� is a continuity equation for the particle density,
whose current can be written as �1�X ,��=�11�X ,�� /�
+�21�X ,�� /�2.

Interestingly, for �=1 Eq. �29� can be rewritten as

�11�X,�� = − �00�X,���X��Frod��00�
��00�X,��

+ Vext�X�� ,

where Frod��00� is the hard-rod density functional of the in-
stantaneous density �00�X ,��.

The term c02 vanishes in the limit �→0 and describes a
tendency of the particles to form denser aggregates due to
their inelasticity.

Also notice that at the zero order in �−1, Eq. �25� may be
rewritten as a dynamic density functional equation10 since
the only change with respect to the �=1 case11 is the pres-
ence of a prefactor �1+�� /2 in the c01 term in Eq. �26�.
Hence, if we define an inelastic free energy density func-
tional as F��	�=Fideal�	�+ �1+�� /2Fexcess�	� scaling the ex-
act hard-rod excess of the equilibrium case, we would cast
Eq. �25� into a DDF equation for arbitrary values of �. A
particular result would be that, always at the leading order in
�−1, the equilibrium density profiles should be given by the
minimum of such inelastic free energy density functional.
The results in Figs. 5 and 7 are qualitatively consistent with
that effect since the reduction of the excess free energy re-
duces the oscillations. As we shall see below, the equation of
state for the uniform fluid �Eq. �40�� predicts a lowering of
the pressure with respect to the elastic case also consistent
with such a scaling of the nonideal part of the free energy.

Hereafter, we briefly derive some useful relations be-
tween the density profile, the temperature, and the pressure
in the nonuniform steady state where the current �1

vanishes.

A. Steady state temperature profile

In the limit �→� we determine the granular temperature
profile, using the previous results and Eq. �15�,
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T�X� = 1 +
2

�

�12�X�
�00�X�

= 1 −
�1 − �2�
2�
�

�g2�X,X + 1��00�X + 1,��

+ g2�X,X − 1��00�X − 1�� , �31�

where we suppressed the time argument and the functions of
the single spatial argument have to be understood as their
asymptotic limiting values when �→�. The constant 1 on
the right-hand side represents �in our reduced units� the heat-
bath temperature, whereas the second term is the shift in the
local temperature induced by collisions. In fact, it amounts to
the product of three factors: the kinetic energy dissipated, the
collision rate �E �Enskog collision frequency46�, and the
typical time �−1 of the heat bath. The average Enskog fre-
quency at each side of the particle located at X is

�E�X ± 1�
�

=
2

�
�
g2�X,X ± 1��00�X ± 1� , �32�

and in the case of a uniform system it reduces to the bulk
Enskog frequency �E=2vT	�g2 /
�. where vT is the thermal
velocity of the gas.

B. Steady state pressure profile

We now turn our attention to the pressure profile
��X ,��, which can be separated into a kinetic and a colli-
sional contribution,

��X� = �kin�X� + �coll�X� . �33�

The total pressure ��X ,�� is implicitly determined from the
momentum balance equation, obtained by considering Eq.
�14� with 
=1 in the �→� limit,

F�X��0�X� −
���kin�X� + �coll�X��

�X
= 0. �34�

We identify the first term as

�kin�X� =
 dVV2P�X,V� = �0�X� + 2�2�X� , �35�

or using the results of the � expansion, we rewrite

�kin�X� = �00�X� +
2

�
�12�X� = T�X��00�X� , �36�

where we used Eq. �31� to obtain the last equality. In Ref. 10
we showed that the spatial derivative of the collisional pres-
sure is related to the collision integral via the relation

�X�coll�X� = − C1�X� = − c01�X� −
1

�
c11�X� . �37�

By manipulating expressions �26� and �28� �see Ref. 10
for details� we formally integrate Eq. �37� with the following
result:

�coll�X� =
�1 + ��

2



0

1

dzg2�X − �1 − z�,X + z���00�X − �1 − z���00�X + z� +
1

�
��00�X − �1 − z���12�X + z�

+ �12�X − �1 − z���00�X + z�� −
2

�
�
��00�X − �1 − z���11�X + z� − �11�X − �1 − z���00�X + z��� . �38�

In the case of constant density, the z integration can be trivi-
ally performed, and we obtain

�coll =
�1 + ��

2

�00
2

1 − �00
�1 +

2

�

�12

�00
� . �39�

Finally, using Eq. �36�, we cast the equation of state in the
uniform nonequilibrium steady state in the form

� = T�00�1 +
�1 + ��

2

�00

1 − �00
� . �40�

Expressing the temperature as a function of the density �from
Eq. �31��

T = 1 −
�1 − �2�

�
�
g2�00, �41�

we see that Eq. �40� describes the lowering of the pressure
due to the collisional reduction of the temperature and be-

comes the familiar hard-rod pressure equation for �=1.

V. APPLICATIONS

A. Temporal decay of a small density modulation

We begin by considering the decay of an infinitesimal
sinusoidal perturbation of wave-vector K with respect to a
uniform density profile, and how the relaxation time varies
as a function of K. We assume that the sinusoidal density
perturbation is small with respect to some uniform back-
ground density �0 and write

�00�X,�� = �0 + 	̂K���sin�KX� . �42�

After some simple algebra we arrive at the following equa-
tion of evolution for the modulation:
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�	K���
��

= − R�K�	K��� = −
K2

�
	K�����1 +

�1 + ��
2

�2p0�
sin�K�

K
+

4�p0��2

K2 sin2�K

2
���

��1 − 2
�1 + ��
�
�

p0��1 − cos�K��� −
�1 − �2�

�
�

�1 + ��
2

p0�
1

2
�2p0�

sin�K�
K

+
4�p0��2

K2 sin2�K

2
��

−
�1 − �2�

�
�
�p0��1 + cos�K�� + �p0��2sin�K�

K
��1 +

�1 + ��
2

p0�
sin�K�

K
�� , �43�

with p0=�0 / �1−�0� being the bulk hard-rod reduced pres-
sure. Taking the long wavelength limit K→0, we obtain the
following expression for the diffusion coefficient:

D = lim
K→0

R�K�
K2

=
1

�
�1 + �1 + ���p0� + p0

2�2/2�

−
�1 − �2�

�
�
�2 + 3

1 + �

2
p0���p0 + p0

2�/2�� . �44�

As shown in Fig. 2, the relaxation time of the inelastic fluid,
for small values of K, is longer than the corresponding quan-
tity in the elastic fluid. This occurs because, being the granu-
lar temperature of the former lower, the diffusion is weaker.
In addition, while the excluded volume favors diffusion with
respect to the noninteracting case, the inelasticity operates in
the opposite direction. For K→0 the temperature field
T�X ,�� is anticorrelated with the density fluctuation 	�X ,��,
and the local maxima of T correspond to the regions where
the density is lower. On the other hand, for K larger and
close to K=�, the temperature maxima occur in correspon-
dence with the density maxima, and thus we observe that the
relaxation time of the inelastic system is shorter than the
relaxation time for �=1.

B. Numerical tests

To validate the theory we shall compare the predictions
of Eq. �25� with those obtained by a numerical solution of
the dynamical equations for the trajectories of the particles,
using the algorithm illustrated in Ref. 22. The comparison is
performed by considering an ensemble of “noise” histories
�typically 104� and averaging the observables over such an
ensemble. The first category of checks concerns the homo-
geneous static properties of the system, namely, temperature
and pressure. The dependence of the temperature on the den-
sity predicted by Eq. �41� is shown in Fig. 3, where it is
displayed against the numerical results obtained at two dif-
ferent values of the coefficient of restitution. A similar com-
parison between pressure �Eq. �40�� and the simulation re-
sults is shown in Fig. 4, showing a satisfactory agreement.

The second category regards the inhomogeneous static
properties, which can be probed by measuring the response
of the model to some specific nonuniform external perturba-
tions.

The third category of tests aims, instead, to probe some
genuinely time-dependent properties of the system, and we
have chosen as examples the free expansion of a packet of
particles initially localized in a narrow region and the escape
of a packet from a potential well.

C. Inhomogeneous steady state properties

Soft repulsive potential. We consider, first, a fixed exter-
nal potential of the form

FIG. 2. Decay rate R�K� of a small sinusoidal density perturbation around a
constant background 	0=0.68 as a function of the reduced wave vector K.
The dimensionless friction constant is �=5. The nonmonotonic dependence
of R�K� on K increases as the density increases. Therefore, collisions can
accelerate or slow down the relaxation with respect to an ideal gas behavior.
The dashed line represents the decay rate of a system of noninteracting
particles, the dash-dotted line the density functional result, the full line the
system with �=1, and the dotted line the inelastic system with �=0.8.

FIG. 3. Uniform system: temperature vs reduced density for �=0.9, �
=0.8, and �=5. Comparison between Brownian dynamics simulations
�points� and the predictions of our theory �lines�.
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V�X� = V0 tanh�X/�� , �45�

representing a soft repulsive wall located at X=0 and char-
acterized by a softness parameter �=0.2 and height V0=4. In
Fig. 5 we compare the density profiles, obtained from the
stationary solution of the dynamical equation �Eq. �25�� for
two values of coefficient of restitution and for �=5 with the
corresponding profiles extracted from molecular dynamics
simulation. The wall perturbs the fluid by inducing a non-
monotonic profile, and a stationary state is achieved when
hydrostatic equilibrium is reached.

Both the molecular dynamics and the integral equation
reveal the same feature: near the wall the elastic density pro-
file is slightly higher than the corresponding profile with �
=0.8. Intuitively, such a difference can be understood by
considering that the bulk pressures, approximately propor-
tional to the corresponding values of the the density near the
wall, display a similar difference. The temperature profile,
shown in Fig. 6, varies nonmonotonically from the value
inside the wall to a lower value in the bulk and is the signa-
ture of the nonequilibrium nature of the system.

We study, now, the stationary profile induced by a static
periodic external potential of the form

V�X� = V0 cos�2�

w
X� . �46�

For moderate values of the bulk packing fraction the
asymptotic value of the induced density profile turns out to
be modulated with the same period as the potential. The
height of the peaks is lower than the corresponding height of
the noninteracting case because the hard-core repulsion tends
to smear the particles over the wells away from the minimum
energy configuration. On the other hand, one can appreciate
a difference between the elastic and the inelastic case. The
latter displays peaks slightly higher and narrower, as shown
in Fig. 7, a fingerprint of the tendency toward clustering
induced by the inelasticity of collisions.

D. Inhomogeneous dynamical properties

We consider the free expansion of N hard rods in the
absence of external fields. In Fig. 8, we display the evolution
of the variance of the positions of the particles, with respect
to their center of mass, W=1/N	i��xi−xc.m.�2� for different
values of the inelasticity �. The average is meant over dif-
ferent and independent noise realizations. In the case of free
particles D=�−1. We observe a linear growth of this quantity,
which is well described by the diffusive law, W���=2D�. In
agreement with our analytical prediction of Sec. VI, the co-
efficient D is a growing function of the coefficient of resti-

FIG. 4. Uniform system: pressure vs reduced density for �=0.9, �=0.9, and
�=5. Comparison between Brownian dynamics simulations �points� and the
predictions of our theory �lines�.

FIG. 5. Density profiles in the presence of a repulsive soft wall at x=0,
indicated by a dashed line and implemented in the simulations through the
potential V�X�=V0 tanh�X /�� with V0=4. Data refer to �=1, �=0.5, and
�=5. Points indicate the results of the simulations, while the lines are the
corresponding results from our theory. The agreement between simulation
and theory is excellent, and it is also interesting to note that the elastic
system ��=1� presents a higher peak near the wall corresponding to a larger
pressure exerted, toward the wall, on each particle by the rest of the system.

FIG. 6. Temperature profiles in the presence of the same repulsive soft wall
in Fig. 5 for a system with �=5 and inelasticities �=0.8 and �=0.5.

FIG. 7. Density profiles of a system with an average density 	=0.45 in an
external potential defined by Eq. �46� with well size w=8 and �=5. Black
circles correspond to simulation results with �=0.8, while shaded circles
refer to simulations with �=1.0. Dashed and full lines indicate the corre-
sponding results from the present theory for �=1.0 and �=0.8, respectively.
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tution and of the number of particles. The first effect can be
interpreted by noticing that smaller values of � correspond to
larger dissipation and thus to lower local kinetic tempera-
tures. Since one expects D to be proportional to the ratio
between temperature and friction coefficient, a lowering of
the kinetic temperature determines a decrease of the spread-
ing. On the other hand, one can compare the spreading of the
same initial configuration in the case of noninteracting par-
ticles. Figure 8 shows that the ideal gas case corresponds to
a diffusion slower of all cases where the hard core repulsion
is at work. The importance of the corrections to the DDF
equation can be appreciated by rescaling the data corre-
sponding to different values of � according to the formula
W /�. The free particle case, of course, gives a perfect col-
lapse, whereas the interacting cases display increasing devia-
tions as � decreases.

Finally, we consider the escape process of a group of
particles from a well of the sinusoidal potential. This numeri-
cal experiment amounts to preparing initially a set of par-
ticles in a potential well and measuring the fraction nin�t� that
populates the well at that instant. Figure 9 reports the log-log
plot of decay in time of nin�t�, obtained by averaging over
300 independent runs, for different well widths w. For com-

parison we also show the corresponding quantity computed
through the DDFT �dashed lines� which correctly reproduces
the dynamical features of the escape process. We see that the
rate at which particles exit the original well decreases with w
because the particles spend more time in that well. The col-
lisionless particle systems generally displays a longer escape
time than interacting systems because the absence of ex-
cluded volume effects does not entail an effective reduction
of the depth of the potential well, which, instead, is the rel-
evant feature characterizing the escape experiments involv-
ing hard core particles. The inelasticity, on the other hand,
tends to decrease the escape rate due to the energy loss
caused by collisions, but this does not counterbalance the
excluded volume effect so that the rate of the inelastic par-
ticles remains faster than the corresponding rate of the colli-
sionless model.

VI. CONCLUSIONS

In this paper we have derived a method to study the
dynamics of an assembly of particles interacting inelastically
and driven by a stochastic thermostat. We have found that the
particles adopt spatial configurations which are very close to
those of an equilibrium system, in spite of the fact that our
system is driven and dissipative. The reason for such a simi-
larity is twofold, as suggested by a recent study of Reis et
al.47 the homogeneous energy feeding mechanism and the
importance of the repulsive forces. However, the present
work shows that there is no need to invoke entropic forces to
explain the observed inhomogeneities. A kinetic approach, in
which the short-range repulsion is suitably accounted for by
means of a suitable treatment of spatial correlations, predicts
fairly well the observed structural properties.48 Our theory
indicates that the steady state configurations occur not as a
result of the minimization of some hypothetical coarse
grained free energy functional but as a result of the compe-
tition between the uniform energy injection and the energy
dissipation. These two effects are described by an Enskog
collision operator and by a Fokker-Planck collision operator,
respectively. The evolution of the phase-space distribution
function is thus governed by a Fokker-Planck-Enskog equa-
tion, whose solution still remains an extremely difficult task
for dense fluids due to the complexity of the collision kernel
and to the computer resources needed to resolve the distri-
bution function. However, when the friction is sufficiently
high, one can derive a simpler description by an iterative
elimination of the fast degrees of freedom, such as the ve-
locities of the particles. Such a procedure is based on the
intuition that these achieve locally their equilibrium distribu-
tion, whereas the positions evolve more slowly. Truncating
this iteration at the first order in the inverse friction param-
eter �−1 is equivalent to approximating the velocity distribu-
tion functions by Maxwellians at temperatures equal to that
of the heat bath. Further terms, associated with non-
Maxwellian contributions to the velocity distribution func-
tion, are included in the expansion and contribute to the evo-
lution. The result is a self-consistent time-dependent
equation for the local density, where the “internal field” is
determined by the density itself either through the standard

FIG. 8. Free expansion of a cluster of 128 particles initially concentrated
over a region of size 150�. The curves represent the time growth of the
variance of the particle distribution with respect to their center of mass for
inelastic systems with different values of � but same �=5. The inset shows
the values of the diffusion coefficient estimated by the asymptotic slope of
the curves.

FIG. 9. Time decay of the number of particles initially located in a single
well of width w for �=0.8 and �=5. The same numerical experiment is
repeated for different well sizes, but maintaining the barrier height fixed.
Broken lines represent the theoretical predictions, and the symbols the simu-
lation results obtained as an average over 300 independent runs.
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hard-rod entropic contribution or by the velocity and energy
currents generated by spatial density gradients.

At a technical level Eq. �25� is derived by applying a
multiple-time-scale method to the Fokker-Planck-Enskog
equation. The resulting equation bears a strong similarity
with the dynamic density functional equation, but it is not
based on the notion of coarse grained free energy, a concept
which cannot be applied to open nonequilibrium systems,
such as the inelastic fluid we have studied in this work.
Equation �25� is a density functional equation for the density
field �00�X ,��, where its evolution depends on a functional
of �00 itself and its derivatives. It is local in time, but does
not possess a generating Liapunov functional; therefore, we
cannot prove that the associated dynamics minimizes some
cost function.

In more detail we have found the following:

�a� The inelasticity induces changes even in the stationary
properties of the fluid with respect to the elastic refer-
ence system to order �−1. The changes can be observed
both in the velocity distribution and in the structure of
the nonuniform fluid.

�b� Whereas in the description of a colloidal fluid the fric-
tion � is relevant only for the relaxation properties, in
the inelastic fluid � determines its stationary properties
also.

�c� The theory holds in the region �E /��1, when the

typical time scale of the heat bath is shorter than the
Enskog collision frequency.46

As far as future perspectives are concerned, the method
can be generalized to higher dimensions and different types
of interparticle forces and to systems with a nonuniform dis-
tribution of heat sources.49 A second type of generalization
consists in performing the same multiscale expansion at the
level of the two particle phase-space distribution function by
truncating the Bogoliubov-Born-Green-Kirkwood-Yvon hier-
archy one step further, which would allow us to compute
self-consistently the pair correlation function of the system.
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APPENDIX A: COLLISION INTEGRALS

In this appendix we show how to perform the velocity
integrations and reduce the collision integrals to simple func-
tions of space and time only. Using the definition of collision
integral given in the text by Eq. �8� and setting u=V2−V, we
obtain the following explicit expression:

Cn�X,�� = g2�X,X + 1��

−�

�

dV�n�V��

−�

0

duuP�X,V,��P�X + 1,u + V,�� +
1

�2

0

�

duuP�X,V + su,��P�X + 1,V + qu,����
− g2�X,X − 1��


−�

�

dV�n�V�
1

�2�

−�

0

duuP�X,V + su,��P�X − 1,V + qu,��

+ 

0

�

duuP�X,V,��P�X − 1,u + V,���� , �A1�

where s= �1+�� /2�, q=−�1−�� /2�, �0�V�=1, �1�V�=V, and �2�V�=V2 /2. After substituting the expression of P�X ,V ,�� in
terms of its partial amplitudes into Eq. �A1�, one can eliminate the velocities, obtaining

Cn�X,�� = g2�X,X + 1�	
�,


�N�

�n��� = 1� +

1

�2 M
�
�n��������X,���
�X + 1,�� − g2�X,X − 1�

�	
�,


�M�

�n��� = 1� +

1

�2N
�
�n��������X,���
�X − 1,�� , �A2�

where the matrix elements M�

�n� and N�


�n� are defined as

N�

�n���� = 


−�

0

duu

−�

�

dV�n�V�H��V + qu�H
�V + su� ,

�A3�

M�

�n���� = 


0

�

duu

−�

�

dV�n�V�H��V + qu�H
�V + su� �A4�

and have the symmetry property

N�

�n���� = �− 1��+
+n+1M�


�n���� , �A5�
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so that it is sufficient to calculate only the matrix elements of M�

�n���� in order to compute Eq. �A2�

M�

�1����
�2 = �

− �/2
1 − 2�

2
�

1

2
�1 − ��

1

2
�
�1 + 2�� �/2 −

1

4
�
�1 − 2��

−
1

2
�1 + �� −

1

4
�
�1 + 2�� 0

� ,

M�

�2����
�2 = �

−
1

4
�
�1 − 2�2� −

1

8
�1 + 2� − 3�2�

1

8
�
�1 − 8� + 6�2�

1

8
�1 − 2� − 3�2�

3

8
�
�1 − 2�2�

1

8
�1 − ���1 + 3��

1

8
�
�1 + 8� + 6�2� −

1

8
�1 + ���1 − 3�� −

3

16
�
�1 − 2�2�

� .

In addition, we verify that in the case n=0 the following
combinations vanish

�N�

�0��� = 1� +

1

�2 M
,�
�0� ���� = 0,

�M�

�0��� = 1� +

1

�2N
�
�0����� = 0,

so that C0�X ,��=0 since collisions conserve the number of
particles.

APPENDIX B: MULTIPLE-TIME-SCALE METHOD

Our previous work11 has extended to the case of collid-
ing particles a method to derive the Smoluchonski equation
starting from the Kramers equation. It was originally pro-
posed in the 1970s for a gas of noninteracting particles by
Titulaer43 and nicely reviewed by Bocquet.44

It represents a particular application of multiple-time-
scale analysis45 designed to handle singular perturbations. In
the present case the singularity stems from the fact that when
��1, the time derivative occurs among the small terms of
Eq. �14�.

Because the inelasticity brings about some remarkable
new features, we shall report the derivation of the salient
parts of the multiple-time-scale method in this particular
case. The multiple time-scale analysis introduces a set of
auxiliary time scales �n=�−n�, with n=0,1 ,2 , . . .. The �n are
treated as independent variables so that the time derivative
with respect to � is replaced by

�

��
=

�

��0
+

1

�

�

��1
+

1

�2

�

��2
· �B1�

The partial amplitudes �
�X ,�� and the collision terms
C
�X ,�� are also treated as functions of the auxiliary time
scales and expanded perturbatively as

�
�X,�0,�1,�2, . . . � = 	
n=0

�
1

�n�n
�X,�0,�1,�2, . . . � �B2�

and

C
�X,�0,�1,�2, . . . � = 	
n=0

�
1

�ncn
�X,�0,�1,�2, . . . � . �B3�

By substituting Eqs. �B1�–�B3� into Eq. �14� and equating
equal powers of �, one obtains iteratively a series of equa-
tions which must be satisfied by the coefficients
�s
�X ,�0 ,�1 ,�2,. . .� and cs
�X ,�0 ,�1 ,�2,. . .�. The latter coeffi-
cients are obtained using the formula

cs
�X,�� = 	
l+m=s

	
�,


g2�X,X + 1�

��N�

�n��� = 1� +

1

�2 M
�
�n������l��X,���m
�X

+ 1,�� − g2�X,X − 1��M�,

�n� �� = 1� +

1

�2N
�
�n�����

��l��X,���m
�X − 1,�� . �B4�

Notice that the cs
’s are functionals of the �s
’s.
We begin with the order �0,

LFP�	



�0
H
� = 0, �B5�

having the solution �0
=0 for 
�0, which inserted in Eq.
�9� determines the expansion coefficients of order �−1 in
terms of �0
=0,
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LFP��11H1 + �12H2 + �13H3 + �14H4 + ¯ �

=
��00

��0
H0 + DX�00H1 − c01H1 − c02H2

− c03H3 − c04H4 ¯ , �B6�

where we have employed the abbreviation DX���X−F�X��.
We also perform our expansion by setting �s0=0 for all s
�0. By equating the coefficients of the same H
 in Eq. �B7�
we find the following relations:

��00

��0
= 0, �B7�

�11 = − DX�00 + c01, �B8�

and for 
�1

�1
 =
1



c0
. �B9�

The procedure can be iterated to the order �−2, writing the
equation

LFP�	

�1

�2
H
� = 	

�1

��1


��0
H
 +

��00

��1
H0 + DX�11H2

+ �X�11H0 + DX�12H3 + 2�X�12H1

+ DX�13H4 + 3�X�13H2 + DX�14H5

+ 4�X�14H3 − 	

�1

c1
H
, �B10�

which leads to the following conditions:

��00

��1
= − �X�11, �B11�

��11

��0
= − �21 − 2�X�12 + c11 = 0, �B12�

��12

��0
= − 2�22 − DX�11 − 3�X�13 + c12 = 0, �B13�

and

��13

��0
= − 3�23 − DX�12 − 4�X�14 + c13 = 0. �B14�

The amplitude �11, being a functional of �00, does not de-
pend on �0. Hence, the left-hand side of Eq. �B12� vanishes,
and we obtain

�21 = − 2�X�12 + c11. �B15�

Similarly, we obtain the following for 
�1:

�2
 = −
1



�DX�1�
−1� + �
 + 1��X�1�
+1� + c1
� . �B16�

Explicitly, we write

�22 = − 1
2 �DXDX�00 + DXc01 + �Xc03 − c12� , �B17�

�23 = − 1
3� 1

2DXc02 + �Xc04 − c13� , �B18�

�24 = − 1
4� 1

3DXc03 + �Xc05 − c14� . �B19�

Finally, by equating the coefficients of H0, we obtain the
equation

��00

��1
= �X�DX�00 − c01� . �B20�

In order to obtain the derivative of �00 with respect to
the time �2, we iterate the procedure at order �−3 by writing

LFP�	

�1

�3
H
� =
�

��0
	

�1

�2
H
 +
�

��1
	

�1

�1
H


+
��00

��2
H0 + 	


�1
�DX�2
H
+1

+ 
�X�2
H
−1� − 	

�1

c2
, �B21�

and equating the coefficients of H0�V�, we obtain the follow-
ing equation:

��00

��2
= − �X�21 = − �Xc11 + �X

2c02, �B22�

where the second equality follows from Eqs. �B9� and �B15�.
We now collect together the different orders in �n, given

by Eqs. �B1�, �B11�, and �B22�, thus restoring the original
physical time �, and obtain the evolution equation for the
density amplitude �Eq. �25��.
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