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We study the properties of a one-dimensional~1D! granular gas consisting ofN hard rods on a line
of lengthL ~with periodic boundary conditions!. The particles collide inelastically and are fluidized
by a heat bath at temperatureTb and viscosityg. The analysis is supported by molecular dynamics
simulations. The average properties of the system are first discussed, focusing on the relations
between granular temperatureTg5m^v2&, kinetic pressure, and densityr5N/L. Thereafter, we
consider the fluctuations around the average behavior obtaining a slightly non-Gaussian behavior of
the velocity distributions and a spatially correlated velocity field; the density field displays
clustering: this is reflected in the structure factor which has a peak in thek;0 region suggesting an
analogy between inelastic hard core interactions and an effective attractive potential. Finally, we
study the transport properties, showing the typical subdiffusive behavior of 1D stochastically driven
systems, i.e.,̂ux(t)2x(0)u2&;Dt1/2, whereD for the inelastic fluid is larger than the elastic case.
This is directly related to the peak of the structure factor at small wave vectors. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1630957#

I. INTRODUCTION

Scientists and engineers have been studying granular
materials for nearly two centuries for their relevance both in
natural processes~landslides, dunes, Saturn rings! and in in-
dustry~handling of cereals and minerals, fabrication of phar-
maceuticals, etc.!.1–4 The understanding of the ‘‘granular
state’’ still represents an open challenge and one of the most
active research topics in nonequilibrium statistical mechanics
and fluid dynamics. For instance, a way to attack the prob-
lem consists of fluidizing the grains by shaking them so that
the system behaves as a nonideal gas, a problem relatively
easier to study. The difficulty, but also the beauty, of the
dynamics of granular gases, meant as rarefied assemblies of
macroscopic particles, stems from the inelastic nature of
their collisions which leads to a variety of very peculiar phe-
nomena. Several theoretical methods have been employed to
deal with granular gases ranging from hydrodynamic equa-
tions, kinetic theories, to molecular dynamics. Engineers of-
ten prefer the strategy of the continuum description because
it gives a better grasp of real-life phenomena, while natural
scientists tend to opt for a microscopic approach to better
control each step of the modelization. The latter, as far as the
interaction between particles is concerned, regards granular
systems as peculiar fluids, and treats them through the same

methods which have been successfully applied to ordinary
fluids.5 This allows not only to employ concepts already de-
veloped by physicists and chemists, but also to stress analo-
gies and substantial differences.

The purpose of the present paper is to establish such a
connection for a system of stochastically driven inelastic
hard rods constrained to move on a ring. The elastic version
of this system has a long tradition6–12 and is particularly
suitable to test approximations and theories since many of its
equilibrium properties can be derived in a closed analytical
form. Even though the one-dimensional geometry introduces
some peculiarities not shared by real fluids, we shall show
that the model provides much useful information and a very
rich phenomenology which closely recalls the behavior of
microscopic particles confined in tubules or cylindrical pores
with little interconnection. A second reason to investigate
such a model is to show how the inelasticity of interactions
influences not only the average global properties of a system,
but also its microscopic local structure.

A basic requirement to a theoretical description of a
granular gas is to provide an equation of state linking the
relevant control parameters and possibly to relate it to the
microscopic structure of the system. This connection is well
known for classical fluids, where thermodynamic and trans-
port properties are linked to the microscopic level via the
correlation function formalism.a!Electronic mail: cecconif@roma1.infn.it
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One-dimensional models have been employed by several
authors as simple models of granular gases.13–24 The differ-
ences between the various models stem chiefly from the
choice of the thermalizing device. In fact, granular gases
would come to rest unless supplying energy compensating
the losses due to the inelastic collisions. We call, by analogy,
‘‘ heat bath’’ the external driving mechanism maintaining the
system in a statistically steady state.

For the history, the first 1D models which were proposed
had no periodic boundary conditions, and the energy was
injected by a vibrating wall~stochastic or not!. This kind of
external driving, however, was not able to keep the system
homogeneous, because only the first and last particle had a
direct interaction with the wall.19 As an alternative, a uni-
form heating mechanism, namely a Gaussian white noise act-
ing on each particle, was introduced.20 Later, Puglisiet al.21

added a second ingredient, consisting of a friction term that
prevents the kinetic energy from diverging. With such a
modification the system reaches a steady regime and time
averages can be safely computed. In the present paper we
shall focus on this last model, characterizing its steady-state
properties.

The layout is the following: In Sec. II we introduce the
model, in Sec. III we obtain numerically and by approximate
analytical arguments equations for the average kinetic energy
and pressure. Section IV is devoted to fluctuations of the
system observables around their average values. In Sec. V
we study the diffusion properties of the system. Finally, in
Sec. VI we present the conclusions.

II. THE MODEL

Inelastic hard sphere models are perhaps the simplest
models able to capture the two salient features of granular
fluids, namely the hard-core repulsion between grains and
the dissipation of kinetic energy due to the inelastic colli-
sions. Since many of the equilibrium properties of the 1D
elastic hard rods are known in closed analytical form, such a
system represents an excellent reference model even for the
inelastic case. Let us considerN identical impenetrable rods,
of coordinatesxi(t), massm, and sizes, constrained to
move along a line of lengthL. Periodic boundary conditions
are assumed. The hard-core character of the repulsive forces
among particles reduces the interactions to single binary, in-
stantaneous collision events occurring whenever two con-
secutive rods reach a distancedi(t)5xi(t)2xi 21(t) equal to
their lengths. When two inelastic hard rods collide, their
postcollisional velocities~primed symbols! are related to pre-
collisional velocities~unprimed symbols! through the rule

v i85v i2
11r

2
~v i2v j !, ~1!

wherer indicates the coefficient of restitution. The interac-
tion of each particle with the heat bath is represented by the
combination of a viscous force proportional to the velocity
and a stochastic force. Then each particle follows the so-
called Kramers dynamics

dxi

dt
5v i , ~2!

m
dv i

dt
52mgv i1j i~ t !, ~3!

whereg is the viscous friction coefficient,j i(t) is a Gaussian
white noise with zero average and correlation

^j i~ t !j j~s!&52gmTbd i j d~ t2s!, ~4!

whereTb is the ‘‘heat-bath temperature’’ and^•& indicates the
average over a statistical ensemble of noise realizations.

We have developed a numerical simulation code for hard
rods interacting through momentum-conserving but energy-
dissipating collisions. In our simulations the motion between
two consecutive collisions is governed by the dynamics~2!
and ~3!. Thus, we determine the instant when the first colli-
sion among theN particles occurs and change its velocities
and positions according to the equations of motion. The ef-
fect of the collision is taken into account by updating the
velocities according to the rule~1!.

We tested our code on the elastic case (r 51) and
checked that our simulations faithfully reproduced the well-
known properties of the equilibrium hard rod system.

III. AVERAGE PROPERTIES

We begin by considering the steady-state properties of
the model. The aim is to derive relations connecting the mi-
croscopic parameters to the ‘‘thermodynamic’’ observables
such as temperature and pressure, and eventually to obtain an
‘‘equation of state’’ relating these two quantities. In order to
achieve this goal we assume that the system is homogeneous,
so that its densityr is constant.

A. Kinetic temperature

Collisions and the Kramers’ dynamics entail that the
time derivative of the average kinetic energy per particle is

d

dt

1

2
m^v~ t !2&5g~Tb2Tg!2w~ t !, ~5!

whereTg5m( i 51
N v i

2/N is the granular temperature andw(t)
is the average power dissipated by collisions, given byw
5 @(12r 2)/8# m^dv2&/tc , where dv is the difference be-
tween the precollisional velocities of the colliding pair. The
average collision timetc is estimated by assuming a mean
free pathl5(L2sN)/N, whereL2sN is the free volume.
We obtain, in terms of the system densityr5N/L

tc5
l

v
5

12sr

r
Am

Tg
. ~6!

Thus, the average power dissipated per grain reads

w5
12r 2

8
^dv2&

rATgm

12sr
. ~7!

In order to estimateTg we assume thatm^dv2&.4Tg since
the velocities of the colliding pairs are strongly correlated.
Thus, imposing the solution of Eq.~5! to be stationary we
obtain forTg the following expression:
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Tg5
Tb

11
12r 2

2g

r

12rs
ATg

m

. ~8!

In Fig. 1 we compare formula~8! with the results of numeri-
cal simulations at various densities. In spite of the simplicity
of the argument used to derive Eq.~8!, the agreement be-
tween Tg extracted by simulations and its theoretical esti-
mate is fairly good.

B. Kinetic pressure

In a granular system the total pressure,P, can be ob-
tained via its mechanical or kinetic definition, i.e., as the
impulse transferred across a surface in the unit of time.25,26

The pressure contains both the ideal gas and the collisional
contribution (Pid andPexc, respectively!

P5Pid1Pexc5rTg~r!1
s

Ltob
(
k51

Mc

dpk , ~9!

where the second equality stems from the virial theorem.27

Here, tob is the observation time, the sum runs over theMc

collisions, anddpk5mdvk represents the impulse variation
due to thekth collision.

An approximate formula forPexc can be derived as fol-
lows. The average collision frequency per particle can be
estimated astc

215(Mc /tob)/N. By replacing in Eq.~9! tob

with (Mc /N)tc and usingtc given by Eq.~6!, we obtain, for
the excess part of the pressure, the expression

Pexc5
Ns

tcL
m^dvc&5

r2s

12sr
Tg~r!. ~10!

Collecting pieces together, we arrive at

P~r!5Tg~r!Fr1
sr2

12srG5Tg~r!
r

12sr
, ~11!

which reproduces the well-known Tonks formula7 in the case
of elastic particles and constitutes the equation of state

sought for the inelastic system. Let us recall that in the elas-
tic case, Eq.~11! can be written in the virial form

P~r!5Tg~r!r@11rsg~s!#, ~12!

showing the connection between the macroscopic and the
microscopic level, sinceg(s)51/(12rs) is the equilibrium
pair correlation at contact.

We see from Fig. 2 that the presence of the prefactor
Tg(r), which is a decreasing function of the density, makes
P(r) increase more slowly than the corresponding pressure
of the elastic system in the same physical conditions~i.e.,
same density and contact with the same heat bath!.

Equations~8! and ~10! for temperature and pressure co-
incide, in the limitg→0, s→0, gTb5V5const, with those
derived by Williams and MacKintosh.20

Following the standard approach to fluids, we define,
even for the inelastic system, the response of the density to a
uniform change of the pressure for a fixed value of the heat-
bath temperature

xT5
1

r

]r

]P
, ~13!

which is plotted in Fig. 3. We observe that the response of
the inelastic system to a compression is much larger than the
corresponding elastic system at the same density, due to the
tendency to cluster.

IV. FLUCTUATIONS

So far, we have considered only the global average prop-
erties of the granular gas. It is well known, on the other hand,
that these systems may exhibit strong spontaneous deviations
from their uniform state. In this section we shall study fluc-
tuations of the main observables in order to understand the
qualitative effect of inelasticity on such a peculiar fluid.

A. Velocity distributions

One of the signatures of the inelasticity of the collisions
is represented by the shape of the velocity distribution func-
tion ~VDF!, P(v). Non-Gaussian VDFs, displaying
low-velocity and high-velocity overpopulated regions, have

FIG. 1. Comparison between the numerical results for the granular tempera-
ture versus density and the corresponding theoretical expression, Eq.~8!.
The simulation data refer tos50.2, g50.2, Tb51.0, r 50.6, andr 50.8.
We kept the system size fixed toL540 but varied the number of particlesN
to change the density.

FIG. 2. Comparison between the kinetic pressure obtained from the simu-
lations and the prediction of Eq.~11! at different densities for inelastic hard
rods with coefficients of restitutionr 50.6 and r 50.8. The dashed line
refers to the pressure of the corresponding elastic system.
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been measured experimentally28–33 and in numerical
simulations.21,34 In Fig. 4 we show two VDFs corresponding
to two different values ofr .

Theoretical, numerical, and experimental studies have
shown that the VDF for inelastic (r ,1) gases usually dis-
plays overpopulated tails. The literature seems to indicate the
lack of a universal VDF: ind.1 the solution of the homo-
geneous Boltzmann equation with inelastic collisions~with a
stochastic driving similar to ours but without viscosity! has
overpopulated tails of the kind;exp(2v3/2).35

B. Energy fluctuations

Interestingly, the energy fluctuations of our system,E
[m( iv i

2/2, display a scaling with respect to the number of
particles. We are interested in the quantity (^E2&2^E&2)/
^E&2 as a function ofN ~at fixed densityr!. Defining ^vn&
5*vnP(v)dv, we have

^E2&2^E&25
m2

4 (
i , j

~^v i
2v j

2&2^v i
2&^v i

2&!. ~14!

Under the hypothesis that the variablesv i are independently
distributed, we get

^E2&2^E&25
m2

4
@N^v4&2N^v2&2#. ~15!

Since for Gaussian variables^v4&53^v2&2, we find

^E2&2^E&2

^E&2 5
2

N
, ~16!

which is a well-known formula for equilibrium systems.36

This scaling is fairly well verified in Fig. 5.
In the case of a granular fluid,P(v i) is no longer Gauss-

ian, exhibiting fatter tails, so one observes^v4&>3^v2&2 ~for
example, in the caser 50.6 we havê v4&/^v2&'3.3). This
leads to the conclusion that the scaling;1/N of formula~16!
still holds, but with a coefficient larger than 2. Simulation
runs for r 50.6 confirm this prediction~Fig. 5!. The renor-
malization of the multiplicative constant occurring in the in-
elastic system could be interpreted also as an ‘‘effective re-
duction’’ of the number of degrees of freedom. Indeed, the
inelastic system has the tendency to cluster, as it will be
shown, and therefore the effective number of independent
‘‘particles’’ appears smaller. Another appealing interpretation
is that the inelastic systems possesses an effective ‘‘specific
heat’’ larger than that of elastic systems.

C. Velocity correlations

A universal signature of the inelasticity is the presence
of correlations between the velocities of the particles. We
measured the structure function of the velocitiesv i , Sv(k)
5^ṽ(k) ṽ(2k)&, whereṽ(k) is the Fourier transform ofv i .
In Fig. 6, we show threeSv(k) corresponding to the elastic
(r 51) and inelastic system withr 50.8 andr 50.6. As men-
tioned above, the elastic system is characterized by uncorre-
lated velocities, and this reflects on a constant structure func-
tion. A certain degree of correlation is instead evident in the

FIG. 3. Compressibility, computed from Eq.~13!, plotted versus density, for
inelastic hard rods with coefficientr 50.6 ~the remaining parameters are the
same as in Fig. 1!. Symbols refers to simulations while solid lines are the
theoretical predictions obtained via the expression for the pressure~11!. The
curve for the elastic systemr 51 ~dashed line! is also reported for sake of
comparison. The inset shows the ratio between the inelastic and elastic
compressibility.

FIG. 4. Velocity distributionsP(v) for three values of the coefficient of
restitutionr 51.0 ~circles!, 0.8 ~squares!, 0.6 ~triangles!. The remaining pa-
rameters areN51000, L51000, s50.2, Tb51.0, g50.2. Dashed lines
indicate the corresponding Gaussian fit.

FIG. 5. Energy fluctuation as a function of the number of particles,N for
r 51.0, 0.8, 0.6. The elastic case agrees with the theoretical prediction 2/N,
whereas the inelastic case gives a value of the relative fluctuation slightly
larger. The remaining parameters are the same as in Fig. 4.

38 J. Chem. Phys., Vol. 120, No. 1, 1 January 2004 Cecconi et al.
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inelastic system. In fact, the inelasticity reduces by a factorr
the relative velocity of two colliding particles, and this leads
to an increasing correlation among velocities. However, the
noise induced by the bath competes with these correlations,
making the structure function not very steep. More specifi-
cally, Sv(k) can be fitted, in the middle range ofk values, by
an inverse power;k20.5, while at highk values it reaches a
constant plateau. This is the fingerprint of a persistent inter-
nal noise~velocity fluctuations are not completely frozen by
inelastic collisions!.37

D. Distribution of interparticle spacing
and of collision times

The probability distribution,P(dx), of distances be-
tween nearest-neighbor particlesdx5xi2xi 21 , shown in
Fig. 7, provides information about the spatial arrangement of
the system. In the elastic case, one easily finds

P~dx!5
1

l
exp@2~dx2s!/l#, ~17!

for dx>s and 0 fordx,s with l5(12rs)/r. The pres-
ence of inelasticity modifies such a simple exponential law in

the way shown in Fig. 7. In this case, the probability of
finding two particles at small separation increases together
with that of finding large voids. Such a picture is consistent
with the idea of the clustering phenomenon:38 Two particles,
after the inelastic collision, have a smaller relative velocity
and therefore reach smaller distances, eventually producing
dense clusters and leaving larger empty regions with respect
to the elastic case.

On the contrary, the probability distribution of collision
times, shown in Fig. 8, appears to always follow the theoret-
ical ~elastic! form P(t)51/tc exp(2t/tc). Apart from a trivial
rescaling due to the change of the thermal velocity withr , it
seems not to depend appreciably on the coefficient of resti-
tution.

Such a finding is in contrast with the situation observed
in 2D vibrated granular systems.30,39A possible explanation
for this discrepancy is the following: In the inelastic 1D sys-
tem, there is a correlation between the relative velocities and
the free paths~or free times!; otherwise, the distributionP(t)
andP(dx) would have had the same shape due to the trivial
relationx5vt, v being the the average velocity of the rods.
In particular, the fact that the peak ofP(dx) in dx50 does
not yield a corresponding peak in thet50 region of P(t)
suggests that the shorter the distance between particles the
smaller their relative velocity.

E. Density fluctuations

We turn now to the study of the structural properties of
the inelastic hard rod gas, by considering the pair correlation
function or the structure factor. As mentioned in Sec. II, the
virial equation~12! relates the pressure of an elastic hard rod
system to its microscopic structure. In the presence of inelas-
ticity, however, we expect that the tendency to cluster is
mirrored by a change in the structural properties of the fluid.
Therefore, we considered the behavior of the static~truly
speaking steady state! structure factor

S~k!511rE dx@g~x!21#eikx, ~18!

for different values ofrs and inelasticity.

FIG. 6. Structure function of the velocity fieldv i , for elastic and inelastic
systems. The control parameters are the same as in Fig. 4.

FIG. 7. Distributions of distances between nearest-neighbor particlesdx
5xi2xi 21 , for elastic and inelastic systems, with the same parameters used
before. The solid line indicates the exponential expected in the elastic case
~see the text!. The state parameters are the same as in Fig. 4.

FIG. 8. Distributions of collision times. The dashed line indicates the expo-
nential law expected for the elastic system~see the text!. Control parameters
as in Fig. 7.
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The spatial structure of the system is determined, as in
ordinary fluids, by the strong repulsive forces. Their role is
seen in the oscillating structure ofg(x). The inelastic nature
of the collisions provides a correction tog(x), which can be
better appreciated by studying the small wavelength behavior
of S(k) which develops a peak at smallk recalling the
Ornstein–Zernike behavior

S~k!.
1

S21~0!1c2k2 . ~19!

The coefficientc2 is negative for hard rods, whereas it is
positive for the inelastic system. For hard rods,S(k) is
known12 and reads

S~k!5
1

112brs
sin~ks!

ks
1~brs!2

sin2~ks/2!

~ks/2!2

, ~20!

with b5 1/(12rs).
Figure 9 shows the typical behaviors ofS(k) for elastic

and inelastic systems. The numerically computed structure
factor of the elastic system agrees rather well with Eq.~20!.
The inelastic system, instead, displays a peak in the smallk
region, reflecting the tendency of the fluid to cluster. The
peak increases with inelasticity, demonstrating that the en-
ergy dissipation in collisions is responsible for these long-
range correlations. Incidentally, we comment that such a be-
havior of S(k) could be attributed to the presence of a long-
range attractive effective potential between the rods, as a
result of dynamical correlations.40

MackIntosh and Williams20 found that, in the case of
randomly kicked rods in the absence of viscosity, the pair
correlation function decays as an inverse power law,g(x)
}x2h, with h→0 for r→1 and h→1/2 for r→0. Corre-
spondingly, one expectsS(k) to diverge ask21/2 ask→0, for
very inelastic systems. In other words, the inelasticity leads
to long-range spatial correlations which are revealed by the
peak at smallk of S(k). We remark that, in spite of the
apparent similarity between the equations of state for elastic
and inelastic systems, their structural properties are radically
different. Such a phenomenon is the result of the coupling of

the long-wavelength modes of the velocity field with the
stochastic nonconserved driving force. In fact, due to the
inelastic collisions, the velocities of the particles tend to
align, thus reducing the energy dissipation. On the other
hand, these modes adsorb energy from the heat bath and
grow in amplitude, and only the presence of friction prevents
these excitations from becoming unstable. The density field,
which is coupled to the velocity field by the continuity equa-
tion, also develops long-range correlations, and the structure
factor displays a peak at small wave vectors.

V. TRANSPORT PROPERTIES

One-dimensional hard-core fluids exhibit an interesting
connection between the microscopic structural properties and
diffusive ones. In the present section, we present numerical
results for the collective diffusion and for the diffusion of a
tagged particle, and show how these are connected to the
structure.

A. Collective diffusion and self-diffusion

Let us turn to analyze the perhaps simplest transport
property of the hard rods system, namely the self-diffusion,
i.e., the dynamics of a grain in the presence ofN21 part-
ners. The problem is highly nontrivial since the single grain
degrees of freedom are coupled to those of the remaining
grains. Such a single-filing diffusion is also relevant in the
study of transport of particles in narrow pores.41

The diffusing particles can never pass each other. The
excluded volume effect represents a severe hindrance for the
particles to diffuse. In fact, a given particle in order to move
must wait for a collective rearrangement of the entire system.
Only when the cage of a particle expands is the tagged par-
ticle free to diffuse further. This is a peculiar form of the
so-called cage effect, which is enhanced by the one-
dimensional geometry. In addition, the cage effect produces a
negative region and a slow tail in the velocity autocorrelation
function.

As an appropriate measure of the self-diffusion, we con-
sider the average square displacement of each particle from
its position at a certain time, that we assume to bet50
without loss of generality

R~ t !5
( i 51

N ^@xi~ t !2xi~0!#2&
N

. ~21!

At an early stage, the self-diffusion is expected to dis-
play ballistic behavior,R(t);uvu2t2, with uvu25Tg /m, be-
fore any perturbation~heat bath and collisions! change the
free motion of particles, i.e., whent!1/g and t!tc .

A system of noninteracting~i.e., noncolliding! particles
subjected to Kramers’ dynamics~2!, ~3! displays, after the
ballistic transient, normal self-diffusion of the formR(t)
;2D0t with D05Tg /g. This is well verified in Fig. 10
~circles!.

Lebowitz and Percus42 studied the tagged particle diffu-
sion problem for systems governed by nondissipative dy-
namics without heat bath and found a diffusive behavior de-
scribed by

R~ t !52Dcollt5l^uvu&t, ~22!

FIG. 9. Typical behavior of the structure function ofS(k) for different
values of the coefficientsr 51.0,0.8,0.6. Notice the growth of the peak at
small k when r decreases.

40 J. Chem. Phys., Vol. 120, No. 1, 1 January 2004 Cecconi et al.
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with l5(12rs)/r. Since^uvu&5AT/2pm, one obtains

Dcoll5
12rs

r
A T

2pm
. ~23!

On the other hand, almost in the same years, Harris43

studied the behavior ofR(t) in the case ofN identical
Brownian particles with hard-core interactions, i.e., obeying
a single-filing condition, and obtained a subdiffusive behav-
ior increasing as

R~ t !52lS D0t

p D 1/2

, ~24!

whereD0 is the single~noninteracting! particle diffusion co-
efficient.

In Fig. 10, we plot the self-diffusionR(t) for elastic and
inelastic systems in the presence of heat bath and viscosity,
obtaining two different regimes separated by a typical time
tc . In the first transient regimet,tc we observe the ballistic
motion. In the second stage, instead, we expect the subdiffu-
sive behavior,R(t);t1/2, predicted by Harris and other
authors.43–45 The inelastic system displays the same subdif-
fusive behavior, but with a multiplicative constant larger than
1, i.e., at equal times the granular~inelastic! fluid has a larger
absolute value ofR(t).

It is interesting to analyze the connection between this
transport property and the compressibility of the system, as
remarked by Kollmann.41

B. Connection between self-diffusion and structure

We follow Alexander and Pincus’ argument44 in order to
derive a formula for the self-diffusion and show the connec-
tion with the compressibility of the system. Let us consider
the two-time correlator

^rk~ t !r2k~0!&5(
i j

^eikxi (t)e2 ikxj (0)&. ~25!

We set xi(t)5Xi1(xi(t)2Xi)5Xi1ui , where Xi are the
nodes of the 1D latticeXi5 ia (a being the lattice spacing!.
Expanding aroundXi

^rk~ t !r2k~0!&.k2(
i j

eik(Xi2Xj )^ui~0!uj~ t !&; ~26!

hence

^ûk~ t !û2k~0!&5
^rk~ t !r2k~0!&

Nk2 . ~27!

We assume now that the density correlator varies as

^rk~ t !r2k~0!&5^rk~0!r2k~0!&e2Dk2t, ~28!

whereD5D0 /S(0) ~this is demonstrated in the Appendix! is
the collective diffusion coefficient, withD05Tb /g. Now,
the mean square displacement per particle~21! can be writ-
ten asR(t)5( l^@ul(t)2ul(0)#2&/N and, in Fourier compo-
nents, reads

R~ t !5
2

N (
k

^ûk~0!û2k~0!2ûk~ t !û2k~0!&. ~29!

Employing Eq.~27!, we find

R~ t !52(
k

^rk~0!r2k~0!&
12e2Dk2t

N2k2 . ~30!

Approximating the sum with an integral, (k

→L/(2p)*2p/a
p/a dk, and recalling that

NS~k!5^rk~0!r2k~0!&, ~31!

we obtain

R~ t !5
2L

N E
0

p/a dk

2p
S~k!

12e2Dk2t

k2 , ~32!

and therefore

R~ t !.
2

rp
S~0!ApDt5

2

r
AD0S~0!t

p
. ~33!

Notice that such a formula in the case of hard rods is iden-
tical to formula~24!.

We see that the tagged particle diffusion depends on the
structure of the fluid. In the granular fluid thek→0 part of
the spectrum is enhanced and thus we expect a stronger
tagged particle diffusion. This is what we observe. Physically
there are larger voids and particles can move more freely. Let
us notice that as far as the collective diffusion is involved the
spread of a group of particles is faster in the presence of
repulsive interactions than without.46

VI. CONCLUSIONS

In this paper we have studied a one-dimensional system
of inelastic hard rods coupled to a stochastic heat bath with
the idea that it can represent a reference system in the area of
granular gases to test theories and approximations. Due to
the relative simplicity of the one-dimensional geometry, we
have shown that it is possible to obtain relations between the
macroscopic control parameters such as kinetic temperature,
pressure, and density. We tested these analytical predictions
against the numerical measurements and found a fairly good
agreement. It also appears that many properties of the heated
one-dimensional inelastic hard rod system are similar to

FIG. 10. Self-diffusion: Behavior ofR(t) for three different systems: one
without collisions~free particles!, one with elastic collisions, and the third
with inelastic collisions (r 50.6).
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those of ordinary fluids. However, when we have considered
how various physical observables fluctuate about their equi-
librium values, many relevant differences have emerged.
These range from the non-Gaussian behavior of the velocity
distribution, the peculiar form of the distribution of distances
between particles and of the energy fluctuations, to the shape
of the structure factor at small wave vectors. Finally, we have
found that the diffusive properties of the system are affected
by the inelasticity and, in particular, the self-diffusion is en-
hanced.

To conclude, in spite of the similarity between ordinary
fluids and granular fluids, which has been recognized for
many years and has made it possible to formulate hydrody-
namical equations for granular media in rapid, dilute flow,
the presence of anomalous fluctuations in the inelastic case
indicates the necessity of a treatment which incorporates in a
proper way both the local effects such as the excluded vol-
ume constraint and the long-ranged velocity and density cor-
relations. Such a program has been partially carried out by
Ernst and co-workers,37 but needs to be completed regarding
the description of the fluid structure.

APPENDIX: COLLECTIVE DIFFUSION COEFFICIENT

In the case of overdamped dynamics~i.e., large values of
g! one finds that the collective diffusion is given by46

]r~x,t !

]t
5

1

g

]

]x H r~x,t !
]m~r~x!!

]x J , ~A1!

wherem(r(x)) is the local chemical potential. Expandingm
about its average valuer0 , we obtain

]m~r~x!!

]x
5Fdm

dr G
r0

]r~x!

]x
. ~A2!

Substituting into Eq.~A1!, we find

]r~x,t !

]t
5

1

g
r0Fdm

dr G
r0

]2r~x!

]x2 , ~A3!

and using

S~0!5
KBTb

r0
F]r0

]m G
T

~A4!

in the case of elastic hard rods, we obtain

]r~x,t !

]t
5

1

g

KBTb

S~0!

]2r~x!

]x2 5
D0

S~0!

]2r~x!

]x2 . ~A5!

Thus, the renormalized diffusion coefficient isD
5D0 /S(0).
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