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We study the properties of a one-dimensiofid)) granular gas consisting &f hard rods on a line

of lengthL (with periodic boundary conditionsThe particles collide inelastically and are fluidized

by a heat bath at temperatufg and viscosityy. The analysis is supported by molecular dynamics
simulations. The average properties of the system are first discussed, focusing on the relations
between granular temperatungm(vz), kinetic pressure, and densip=N/L. Thereafter, we
consider the fluctuations around the average behavior obtaining a slightly non-Gaussian behavior of
the velocity distributions and a spatially correlated velocity field; the density field displays
clustering: this is reflected in the structure factor which has a peak ik-t@eregion suggesting an
analogy between inelastic hard core interactions and an effective attractive potential. Finally, we
study the transport properties, showing the typical subdiffusive behavior of 1D stochastically driven
systems, i.e.{|x(t) —x(0)|?)~Dt2, whereD for the inelastic fluid is larger than the elastic case.
This is directly related to the peak of the structure factor at small wave vector200@ American
Institute of Physics.[DOI: 10.1063/1.1630957

I. INTRODUCTION methods which have been successfully applied to ordinary
Scientists and engineers have been studying granule‘ilrmds‘5 This allovys.not only to e”."p'oy concepts already de-
materials for nearly two centuries for their relevance both inveloped by physicists and chemists, but also to stress analo-
natural processegandslides, dunes, Saturn ringand in in- i i
dustry(handling of cereals and minerals, fabrication of phar- The purpose of the present paper is to establish such a
maceuticals, ett!™* The understanding of the “granular connection for a.system of stochasfucally driven .|nelas'F|C
state” still represents an open challenge and one of the mo&@rd rods constrained to move on a ying. The elastic version
active research topics in nonequilibrium statistical mechanic! this system has a long traditidrt® and is particularly
and fluid dynamics. For instance, a way to attack the probsuitable to test approximations and theories since many of its
lem consists of fluidizing the grains by shaking them so thagquilibrium properties can be derived in a closed analytical
the system behaves as a nonideal gas, a problem relativeflgrm. Even though the one-dimensional geometry introduces
easier to study. The difficulty, but also the beauty, of thesome peculiarities not shared by real fluids, we shall show
dynamics of granular gases, meant as rarefied assemblies tbit the model provides much useful information and a very
macroscopic particles, stems from the inelastic nature ofich phenomenology which closely recalls the behavior of
their collisions which leads to a variety of very peculiar phe-microscopic particles confined in tubules or cylindrical pores
nomena. Several theoretical methods have been employed wath little interconnection. A second reason to investigate
deal with granular gases ranging from hydrodynamic equasuch a model is to show how the inelasticity of interactions
tions, kinetic theories, to molecular dynamics. Engineers ofinfluences not only the average global properties of a system,
ten prefer the strategy of the continuum description becauseut also its microscopic local structure.

it gives a better grasp of real-life phenomena, while natural A basic requirement to a theoretical description of a
scientists tend to opt for a microscopic approach to bettegranular gas is to provide an equation of state linking the
control each Step of the modelization. The |atter, as far as th%|evant control parameters and possib|y to relate it to the
interaction between particles is concerned, regards granulgicroscopic structure of the system. This connection is well
systems as peculiar fluids, and treats them through the sam@own for classical fluids, where thermodynamic and trans-
port properties are linked to the microscopic level via the
dE|ectronic mail: cecconif@romad.infn.it correlation function formalism.

gies and substantial differences.
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One-dimensional models have been employed by several do;
authors as simple models of granular gaseé’ The differ- m-g¢ = ~Myvit &), ©)
ences between the various models stem chiefly from the
choice of the thermalizing device. In fact, granular gasesvherevyis the viscous friction coefficieng;(t) is a Gaussian
would come to rest unless supplying energy compensating/hite noise with zero average and correlation
the losses due to the inelastic collisions. We call, by analogy,
“ heat batfi the external driving mechanism maintaining the (&i(1)¢j(8)=2ymTy 5 8(t—s), (4)

system in a statistically steady state. whereT, is the “heat-bath temperature” ard) indicates the

For the history, the first 1D models which were prolooseoiaverage over a statistical ensemble of noise realizations.

.he_ld no periodic bqundary conditio.ns, and th(_a ENergy was  \ne have developed a numerical simulation code for hard
injected by a vibrating wal{stochastic or not This kind of rods interacting through momentum-conserving but energy-

external driving, however, was not able to keep the SySteryqqinating collisions. In our simulations the motion between

hpmog_eneou; becguse only t?e first and Iast.parncle hadtﬁlo consecutive collisions is governed by the dynanti®s
direct interaction with the walfl® As an alternative, a uni-

¢ heati hani v aG ) hi ; and(3). Thus, we determine the instant when the first colli-
form heating mechanism, namely a Gaussian white n0|251e 2%on among theN particles occurs and change its velocities
ing on each particle, was introductiLater, Puglisiet al:

and positions according to the equations of motion. The ef-

added a second ingredient, consisting of a friction term thaFect of the collision is taken into account by updating the
prevents the kinetic energy from diverging. With such 8, elocities according to the rulg)

modification the system reaches a steady regime and time We tested our code on the elastic case=1) and

averages can b? safely computed. In thg prgsent Paper Wecked that our simulations faithfully reproduced the well-
shall focus on this last model, characterizing its steady—statEnOWn properties of the equilibrium hard rod system
properties. '

The layout is the following: In Sec. Il we introduce the
model, in Sec. lll we obtain numerically and by approximate
analytical arguments equations for the average kinetic energyl. AVERAGE PROPERTIES
and pressure. Section IV is devoted to fluctuations of the
system observables around their average values. In Sec. t}wle
we study the diffusion properties of the system. Finally, in
Sec. VI we present the conclusions.

We begin by considering the steady-state properties of
model. The aim is to derive relations connecting the mi-
croscopic parameters to the “thermodynamic” observables
such as temperature and pressure, and eventually to obtain an
“equation of state” relating these two quantities. In order to
achieve this goal we assume that the system is homogeneous,
Inelastic hard sphere models are perhaps the simplesb that its density is constant.
mc_)dels able to capture the two sali_ent features of granulaA_ Kinetic temperature
fluids, namely the hard-core repulsion between grains and
the dissipation of kinetic energy due to the inelastic colli-  Collisions and the Kramers’ dynamics entail that the
sions. Since many of the equilibrium properties of the 1Dtime derivative of the average kinetic energy per particle is
elastic hard rods are known in closed analytical form, such a
system represents an excellent reference model even for the — =y, (1)2)= Y(Tp—Tg) —W(t), (5)
inelastic case. Let us considdridentical impenetrable rods, dt 2

of coordlnates>_<i(t), massm, an_d Slz€a, constralne_d_ to WhereTg=mEiN:1vi2/N is the granular temperature andt)
move along a line of length. Periodic boundary conditions . - L .
is the average power dissipated by collisions, givenwby

are assumgd. The hard-core _charactgr of the.repuls!ve forp(a:s[(l_rz)/s] m( 5vz>/%’ where sv is the difference be-
among particles reduces the interactions to single binary, in- - - -~ .

- . tween the precollisional velocities of the colliding pair. The
stantaneous collision events occurring whenever two con-

secutive rods reach a distandét) = x.(t) — x; _1(t) equal to average collision timer; is estimated by assuming a mean

their lengtho. When two inelastic hard rods collide, their {/r\?eeoplig;g:ir(lLte_rgn':)c/J:‘\lt,h\évzeglér; zgl:ngithil;‘[ee volume.
postcollisional velocitiegprimed symbolsare related to pre- ' Y ¥

Il. THE MODEL

collisional velocities(unprimed symbolsthrough the rule N 1l-ap \F
’ 14t o= p T_g (6)
Ui:Ui_T(Ui_Uj)! (1)
Thus, the average power dissipated per grain reads
wherer indicates the coefficient of restitution. The interac- 5
tion of each particle with the heat bath is represented by the 1 o PNTgM
N ; . . = (6v°) — ) (7)
combination of a viscous force proportional to the velocity 8 l1-0p
and a stochastic force. Then each particle follows the so- ) ) )
called Kramers dynamics In order to estimatd’y we assume thamn( 6v“)=4T, since
the velocities of the colliding pairs are strongly correlated.
dx; Thus, imposing the solution of E@5) to be stationary we

dar v @ obtain forT4 the following expression:
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FIG. 1. Comparison between the numerical results for the granular temperdIG. 2. Comparison between the kinetic pressure obtained from the simu-
ture versus density and the corresponding theoretical expressiorf8)Eg. lations and the prediction of E@11) at different densities for inelastic hard
The simulation data refer to=0.2, y=0.2, T,=1.0,r=0.6, andr=0.8. rods with coefficients of restitutiom=0.6 andr=0.8. The dashed line
We kept the system size fixed lto=40 but varied the number of particlss ~ refers to the pressure of the corresponding elastic system.

to change the density.

sought for the inelastic system. Let us recall that in the elas-
tic case, Eq(11) can be written in the virial form

T Th ®) P(p)=Tq(p)p[1+pog(a)], (12)

9 2 :
1-r T

1+ P \[-2
2y 1-po Vm

showing the connection between the macroscopic and the
microscopic level, sincg(o) =1/(1— po) is the equilibrium

In Fig. 1 we compare formulé8) with the results of numeri- P&ir correlation at contact.

cal simulations at various densities. In spite of the simplicity e see from Fig. 2 that the presence of the prefactor
of the argument used to derive E@), the agreement be- 1g(P), Which is a decreasing function of the density, makes

tween T, extracted by simulations and its theoretical esti-P(p) increase more slowly than the corresponding pressure
mate is fairly good. of the elastic system in the same physical conditi@res,

same density and contact with the same heat)bath
Equations(8) and(10) for temperature and pressure co-

In a granular system the total pressufe, can be ob- incide, in the limity—0, 0—0, yTp={=const, with those
tained via its mechanical or kinetic definition, i.e., as thederived by Wiliams and MacKintosf?. _ _
impulse transferred across a surface in the unit of finfé. Following the standard approach to fluids, we define,

The pressure contains both the ideal gas and the collision&ven for the inelastic system, the response of the density to a
contribution Py and P, respectively uniform change of the pressure for a fixed value of the heat-

bath temperature

_1 ap
~p P’
where the second equality stems from the virial theofém. which is plotted in Fig. 3. We observe that the response of

Here, to, is the observation time, the sum runs over Mg 6 jnelastic system to a compression is much larger than the

collisions, andsp,=méu) represents the impulse variation ¢,responding elastic system at the same density, due to the
due to thekth collision. tendency to cluster.

An approximate formula foP,. can be derived as fol-
lows. The average collision frequency per particle can bg,, FLUCTUATIONS
estimated as_ '=(M_/t,,)/N. By replacing in Eq.9) to,
with (M./N) 7. and usingr. given by Eq.(6), we obtain, for
the excess part of the pressure, the expression

No p?o
Pexc:,rc_l_m<5vc>: ng(P)- (10

B. Kinetic pressure

7 %C
=P .+ = +—
P=Pig+ Pexc PTg(P) Ltopiss 6Pk 9 YT (13)

So far, we have considered only the global average prop-
erties of the granular gas. It is well known, on the other hand,
that these systems may exhibit strong spontaneous deviations
from their uniform state. In this section we shall study fluc-
tuations of the main observables in order to understand the

Collecting pieces together, we arrive at qualitative effect of inelasticity on such a peculiar fluid.

5 A. Velocity distributions

op
_—Up} =Ty(p)

p+1 P

P(p)=Tgy(p) [ (13) One of the signatures of the inelasticity of the collisions
ap . . o
is represented by the shape of the velocity distribution func-
which reproduces the well-known Tonks formliia the case tion (VDF), P(v). Non-Gaussian VDFs, displaying

of elastic particles and constitutes the equation of statéow-velocity and high-velocity overpopulated regions, have

Downloaded 09 Mar 2007 to 141.108.2.9. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



38 J. Chem. Phys., Vol. 120, No. 1, 1 January 2004
15.01 R e N B
XX |
r 10¢
10'0: --r=10 F
N e r=08
X % 4 1=06
50:_ 1||||I.|.|I|.|‘I||||I||
[ 0 0.2 . 0.6 0.8
L po
00F TR EEE
PR S TN WA N ST T S TS TN ST SN AN SO WO ST SN NS SO W'

0.0 0.2 0.4 0.6 0.8

pPo

FIG. 3. Compressibility, computed from E(.3), plotted versus density, for
inelastic hard rods with coefficient=0.6 (the remaining parameters are the
same as in Fig. )1 Symbols refers to simulations while solid lines are the
theoretical predictions obtained via the expression for the pregsiirerhe
curve for the elastic system=1 (dashed lingis also reported for sake of
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FIG. 5. Energy fluctuation as a function of the number of partidiesor
r=1.0, 0.8, 0.6. The elastic case agrees with the theoretical predictign 2/
whereas the inelastic case gives a value of the relative fluctuation slightly
larger. The remaining parameters are the same as in Fig. 4.

comparison. The inset shows the ratio between the inelastic and elastic

compressibility.

been measured experimentafty*® and in numerical
simulations?34In Fig. 4 we show two VDFs corresponding
to two different values of.

Theoretical, numerical, and experimental studies have

shown that the VDF for inelasticr 1) gases usually dis-

m2
<Ez>—<|5>2=7i2j ((vfof) = (o) (vP)). (14)

Under the hypothesis that the variablgsare independently
distributed, we get

2

plays overpopulated tails. The literature seems to indicate thgjnce for Gaussian variablés®) = 3(v2)2, we find

lack of a universal VDF: ird>1 the solution of the homo-
geneous Boltzmann equation with inelastic collisignith a
stochastic driving similar to ours but without viscogityas
overpopulated tails of the king exp(—v%?).%

B. Energy fluctuations

Interestingly, the energy fluctuations of our systefn,
EmEiviZ/Z, display a scaling with respect to the number of
particles. We are interested in the quantifgt)—(E)?)/
(E)? as a function ofN (at fixed densityp). Defining (v")
= [v"P(v)dv, we have
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FIG. 4. Velocity distributionsP(v) for three values of the coefficient of
restitutionr = 1.0 (circles, 0.8 (squarej 0.6 (triangles. The remaining pa-
rameters ardN=1000, L=1000, 0=0.2, T,=1.0, y=0.2. Dashed lines
indicate the corresponding Gaussian fit.
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which is a well-known formula for equilibrium systens.
This scaling is fairly well verified in Fig. 5.

In the case of a granular fluie’(v;) is no longer Gauss-
ian, exhibiting fatter tails, so one observe$)=3(v?)? (for
example, in the case=0.6 we have(v*)/(v?)~3.3). This
leads to the conclusion that the scalird/N of formula(16)
still holds, but with a coefficient larger than 2. Simulation
runs forr=0.6 confirm this predictior{Fig. 5. The renor-
malization of the multiplicative constant occurring in the in-
elastic system could be interpreted also as an “effective re-
duction” of the number of degrees of freedom. Indeed, the
inelastic system has the tendency to cluster, as it will be
shown, and therefore the effective number of independent
“particles” appears smaller. Another appealing interpretation
is that the inelastic systems possesses an effective “specific
heat” larger than that of elastic systems.

C. Velocity correlations

A universal signature of the inelasticity is the presence
of correlations between the velocities of the particles. We
measured the structure function of the velocitigs S, (k)
=(v(k)T(—k)), wherev (k) is the Fourier transform af; .

In Fig. 6, we show thre&, (k) corresponding to the elastic
(r=1) and inelastic system with=0.8 andr =0.6. As men-
tioned above, the elastic system is characterized by uncorre-
lated velocities, and this reflects on a constant structure func-
tion. A certain degree of correlation is instead evident in the
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FIG. 6. Structure function of the velocity field} , for elastic and inelastic  F|G, 8. Distributions of collision times. The dashed line indicates the expo-
systems. The control parameters are the same as in Fig. 4. nential law expected for the elastic systésee the text Control parameters
as in Fig. 7.

inelastic system. In fact, the inelasticity reduces by a factor

the relative velocity of two colliding particles, and this leadsthe way shown in Fig. 7. In this case, the probability of
to an increasing correlation among velocities. However, thdinding two particles at small separation increases together
noise induced by the bath competes with these correlationsyith that of finding large voids. Such a picture is consistent
making the structure function not very steep. More specifiwith the idea of the clustering phenomenrfwo particles,
cally, S, (k) can be fitted, in the middle range bfvalues, by  after the inelastic collision, have a smaller relative velocity
an inverse power-k~ %5 while at highk values it reaches a and therefore reach smaller distances, eventually producing
constant plateau. This is the fingerprint of a persistent interdense clusters and leaving larger empty regions with respect
nal noise(velocity fluctuations are not completely frozen by to the elastic case.

inelastic collisiong’ On the contrary, the probability distribution of collision
times, shown in Fig. 8, appears to always follow the theoret-

D. Distribution of interparticle spacing ical (elastig form P(t) = 1/7. exp(~t/7). Apart from a trivial

and of collision times rescaling due to the change of the thermal velocity witlit
seems not to depend appreciably on the coefficient of resti-

The probability distribution,P(6x), of distances be- tution
tween nearest-neighbor particléx=x;—x;_1, shown in ’

. . . . . Such a finding is in contrast with the situation observed
Fig. 7, provides information about the spatial arrangement o{n 2D vibrated granular system&3 A possible explanation
the system. In the elastic case, one easily finds

for this discrepancy is the following: In the inelastic 1D sys-
1 tem, there is a correlation between the relative velocities and
P(oX) = L-exfl — (ox—a)/A], (17 the free pathsor free timeg; otherwise, the distributioR (t)

) andP(6x) would have had the same shape due to the trivial
for 6x=o0 and 0 foréx<o with A=(1—po)/p. The pres- rejationx=uvt, v being the the average velocity of the rods.
ence of inelasticity modifies such a simple exponential law iny, particular, the fact that the peak B{dx) in dx=0 does
not yield a corresponding peak in the=0 region of P(t)
suggests that the shorter the distance between particles the
smaller their relative velocity.

— theory
r=1.0 E
r=08| 1 E. Density fluctuations
r=0.6 _

We turn now to the study of the structural properties of
] the inelastic hard rod gas, by considering the pair correlation
4 function or the structure factor. As mentioned in Sec. Il, the
] virial equation(12) relates the pressure of an elastic hard rod
system to its microscopic structure. In the presence of inelas-

P(8%)

& 3 2 .
- g‘&fgﬁbog ticity, however, we expect that the tendency to cluster is
R ot W mirrored by a change in the structural properties of the fluid.
: é‘a' <9 10 Therefore, we considered the behavior of the stétialy
speaking steady statstructure factor
FIG. 7. Distributions of distances between nearest-neighbor partides _ _ ikx
=x;—X;_1, for elastic and inelastic systems, with the same parameters used S(k)=1+ Pf dx{g(x)—1]e"™*, (18)
before. The solid line indicates the exponential expected in the elastic case ] ) o
(see the teyt The state parameters are the same as in Fig. 4. for different values ofpo and inelasticity.
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3.0 T ] the long-wavelength modes of the velocity field with the

C ] stochastic nonconserved driving force. In fact, due to the
inelastic collisions, the velocities of the particles tend to
align, thus reducing the energy dissipation. On the other
hand, these modes adsorb energy from the heat bath and
grow in amplitude, and only the presence of friction prevents
these excitations from becoming unstable. The density field,
which is coupled to the velocity field by the continuity equa-
tion, also develops long-range correlations, and the structure
factor displays a peak at small wave vectors.

2.0

S(k)

V. TRANSPORT PROPERTIES

One-dimensional hard-core fluids exhibit an interesting
' _ ' _ connection between the microscopic structural properties and
FIG. 9. Typical behavior of the structure function 8tk) for different diffusive ones. In the present section, we present numerical
values of the coefficients=1.0,0.8,0.6. Notice the growth of the peak at Its for th llecti diffusi d,f the diffusi f
smallk whenr decreases. results for the collective diffusion and for the diffusion of a
tagged particle, and show how these are connected to the
structure.
_The spgtlal structure of the syst_em is determln_ed, as i collective diffusion and self-diffusion
ordinary fluids, by the strong repulsive forces. Their role is _
seen in the oscillating structure gx). The inelastic nature Let us turn to analyze the perhaps simplest transport
of the collisions provides a correction g§x), which can be ~ property of the hard rods system, namely the self-diffusion,
better appreciated by studying the small wavelength behavidre-. the dynamics of a grain in the presenceNof 1 part-

of S(k) which develops a peak at smail recalling the Ners. The problem is highly nontrivial since the single grain
Ornstein—Zernike behavior degrees of freedom are coupled to those of the remaining

grains. Such a single-filing diffusion is also relevant in the
S(K) = 19 study of transport of particles in narrow pofes.
( )_ 571 0 k2 . ( ) . . .

(0)+cz The diffusing particles can never pass each other. The
excluded volume effect represents a severe hindrance for the
particles to diffuse. In fact, a given particle in order to move
must wait for a collective rearrangement of the entire system.
Only when the cage of a particle expands is the tagged par-

The coefficientc, is negative for hard rods, whereas it is
positive for the inelastic system. For hard ro®&k) is
known'? and reads

S(k) = 1 (20) ticle free to diffuse further. This is a peculiar form of the
sin(ko) 2sinz(ka/2) ' so-called cage effect, which is enhanced by the one-
1+2bpa Ko +(bpo (ka/2)2 dimen_sional geometry. In add_iti_on, the cage effect producgs a
. negative region and a slow tail in the velocity autocorrelation
with p: 1/(1-po). . . . function.
Figure 9 shows the typical behaviors 8fk) for elastic As an appropriate measure of the self-diffusion, we con-
and inelastic systems. The numerically computed structurgjger the average square displacement of each particle from
factor of the elastic system agrees rather well with &§). its position at a certain time, that we assume totbed

The inelastic system, instead, displays a peak in the small \\ithout loss of generality
region, reflecting the tendency of the fluid to cluster. The \ 5
peak increases with inelasticity, demonstrating that the en- S ([xi()—x(0)]%)
ergy dissipation in collisions is responsible for these long- N '
range correlations. Incidentally, we comment that such a be- e .

; . At an early stage, the self-diffusion is expected to dis-
havior ofS(k). could be. attnbuted.to the presence of a long- lay ballistic b);:hav?orR(t)~|v|2t2 with |U|2:|?|_ m. be-
range attractive effective potential between the rods, as gore any perturbatiortheat bath al’"n d coIIisior)nﬁ?ang;e the
free motion of particles, i.e., wher<1/y andt<r..

result of dynamical correlatiorfS.
A system of noninteracting.e., noncolliding particles

MackIntosh and William® found that, in the case of
randomly kicked rods in the absence of viscosity, the pair_ | . , - .

subjected to Kramers’ dynamid®), (3) displays, after the
ballistic transient, normal self-diffusion of the forf(t)

correlation function decays as an inverse power Ig{x)
-7 I -

=X 7, with =0 forr -1 and - 1/2 for 1—0. Corme- 5 4\ it Do=T,/y. This is well verified in Fig. 10

écircleg.

spondingly, one expec&(k) to diverge ak 2 ask—0, for
Lebowitz and Percd$ studied the tagged particle diffu-

very inelastic systems. In other words, the inelasticity lead
to long-range spatial correlations which are revealed by th%ion problem for systems govemed by nondissipative dy-
namics without heat bath and found a diffusive behavior de-

R(t)= (21)

peak at smallk of S(k). We remark that, in spite of the
apparent similarity between the equations of state for elastic

. . . : . _,scribed by
and inelastic systems, their structural properties are radically
different. Such a phenomenon is the result of the coupling of ~ R(t)=2Dyt=\(|v|)t, (22

Downloaded 09 Mar 2007 to 141.108.2.9. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 120, No. 1, 1 January 2004 Fluid-like behavior of a one-dimensional granular gas 41

4

10 RN | TS TrTrl : Y.
2 t <pk(t>p_k<0>>zk2i2j (U0 (D); (26)
Wik 4 . _ hence
* 00'....l——’
o o".:..::l'...l’lﬂ A A (pe(t)p—k(0))
(sassiien® ) (O(D)_(0)) = 7. 27)
R ¢ gt Nk?
100 =|l" = We assume now that the density correlator varies as
% a r=1.0 2
* =06 (P p—(0))=(p(0)p_(0))e™ Pk, (28)
E . * 1o collisions E L. . .
102% . ] whereD =D /S(0) (this is demonstrated in the Appendig
| S RN R BNy the collective diffusion coefficient, wittDo=Ty/y. Now,
10" 10° 10' 10° 10° the mean square displacement per parti2ty can be writ-

ten asR(t) == ([u,(t)—u;(0)]?)/N and, in Fourier compo-
FIG. 10. Self-diffusion: Behavior oR(t) for three different systems: one nents, reads
without collisions(free particleg one with elastic collisions, and the third

with inelastic collisions (=0.6). R(t)= NE <0k(0)0—k(0)_Gk(t)ﬁ—k(0)>- (29)
K
with A=(1—po)/p. Since(|v|)=T/2mm, one obtains Employing Eq.(27), we find
—Dk%t
1-po T — -
D= < /m- (23 RO=22 {pd0)p-(0) iz (30

On the other hand, almost in the same years, H3rris Approximaﬂpag the sum with —an integral, =
studied the behavior oR(t) in the case ofN identical —L/(2m)J77,dk, and recalling that
Bro_wnian_ particles _vyith hard-core_ interactions, i.g., obeying NS(K)={pe(0)p_(0)), (31)
a single-filing condition, and obtained a subdiffusive behav-

ior increasing as we obtain
Dot 2 2L (madk  1—e DK
R(t)=2)\(?> , (29 R(t)= Wf Zs(k)T’ (32
whereDy is the single(noninteracting particle diffusion co- and therefore
efficient.
In Fig. 10, we plot the self-diffusioR(t) for elastic and R(t)= iS(O)\/m: E DoS(O)t. 33
inelastic systems in the presence of heat bath and viscosity, pT p T

obtaining two different regimes separated by a typical timeNotice that such a formula in the case of hard rods is iden-
7¢. In the first transient regimee< 7, we observe the ballistic tica| to formula(24).
motion. In the second Stage, instead, we eXpeCt the subdiffu- We see that the tagged particle diffusion depends on the
sive behavior,R(t)~t"? predicted by Harris and other structure of the fluid. In the granular fluid the-0 part of
authors®~**The inelastic system displays the same subdifthe spectrum is enhanced and thus we expect a stronger
fusive behavior, but with a multiplicative constant larger thaniagged particle diffusion. This is what we observe. Physically
1,i.e., atequal times the granul@melastio fluid has a larger  there are larger voids and particles can move more freely. Let
absolute value oR(t). us notice that as far as the collective diffusion is involved the
It is interesting to analyze the connection between thisspread of a group of particles is faster in the presence of
transport property and the compressibility of the system, agepulsive interactions than withotft.
remarked by Kollmanfi*

VI. CONCLUSIONS

B. Connection between self-diffusion and structure i ) i i
In this paper we have studied a one-dimensional system

We follow Alexander and Pincus’ arguméhin order to  of inelastic hard rods coupled to a stochastic heat bath with
derive a formula for the self-diffusion and show the connec-he idea that it can represent a reference system in the area of
tion with the compressibility of the system. Let us considergranular gases to test theories and approximations. Due to

the two-time correlator the relative simplicity of the one-dimensional geometry, we
_ _ have shown that it is possible to obtain relations between the
(pe(D)p_(0))y= >, (ek*iVgikxj(O)y (25  macroscopic control parameters such as kinetic temperature,
]

pressure, and density. We tested these analytical predictions
We setx;(t)=X;+(xi(t)—X;)=X;+u;, whereX; are the against the numerical measurements and found a fairly good
nodes of the 1D lattic&;=ia (a being the lattice spacing agreement. It also appears that many properties of the heated
Expanding around; one-dimensional inelastic hard rod system are similar to
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