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Dynamic density functional theory of fluids
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We present a new time-dependent density functional approach to study the relaxational dynamics of
an assembly of interacting particles subject to thermal noise. Starting from the Langevin stochastic
equations of motion for the velocities of the particles we are able by means of an approximated
closure to derive a self-consistent deterministic equation for the temporal evolution of the average
particle density. The closure is equivalent to assuming that the equal-time two-point correlation
function out of equilibrium has the same properties as its equilibrium version. The changes in time
of the density depend on the functional derivatives of the grand canonical free energy functional
F@r# of the system. In particular the static solutions of the equation for the density correspond to
the exact equilibrium profiles provided one is able to determine the exact form ofF@r#. In order to
assess the validity of our approach we performed a comparison between the Langevin dynamics and
the dynamic density functional method for a one-dimensional hard-rod system in three relevant
cases and found remarkable agreement, with some interesting exceptions, which are discussed and
explained. In addition, we consider the case where one is forced to use an approximate form of
F@r#. Finally we compare the present method with the stochastic equation for the density proposed
by other authors@Kawasaki, Kirkpatrick etc.# and discuss the role of the thermal fluctuations.
© 1999 American Institute of Physics.@S0021-9606~99!51508-0#
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I. INTRODUCTION

In recent years the off-equilibrium properties of e
tended systems have represented a very active field o
search. In fact, while the present understanding of system
thermodynamic equilibrium is rather satisfactory and
based on well established theoretical methods, the com
hension of their dynamical aspects is far from complete
spite of massive experimental and theoreti
investigations.1,2

In the present article we shall focus attention on the d
sity functional method, which represents a powerful a
widely used tool to investigate the static properties of ma
particles systems3 and consider the possibility of extendin
this approach to off-equilibrium situations. Some auth
have already employed similar approaches on a purely p
nomenological basis by analogy with the popular Ginzbur
Landau time dependent equation and the Cahn–Hilli
equation, but these methods are not applicable to the hi
structured density profiles that one observes at the onse
crystallization.

The density functional~DF! formalism, with advanced
models for the nonlocal functional dependence of the He
holtz free energy on the density distribution, has provide
good framework to study the solid–liquid transition a
other highly structured systems. There have been prev
attempts to derive a dynamic density functional~DDF!

a!Electronic mail: umberto.marini.bettolo@roma1.infn.it
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theory from the microscopic equations of motions,4–8 so that
the density functional approximations developed for syste
at equilibrium might be extended to the dynamics of the
systems. However, none of these proposals is fully satis
tory as we shall demonstrate, while the derivation that
consider makes direct contact with the equilibrium DF fo
mulation and is therefore consistent with thermodynamic
quirements.

The theoretical foundations of the density function
methods are based on the concept that the intrinsic He
holtz free energy of a fluid that exhibits a spatially varyin
equilibrium densityr(r ), is a unique functionalF@r# and is
independent of the applied external fields for a given int
molecular potential. An exact knowledge ofF@r# allows ob-
taining in a self-consistent fashion the profiler(r ) and all the
n-point correlations via functional differentiation. Whe
dealing with nonequilibrium situations, caused by som
changes of the external constraints, such as the tempera
the pressure, or electric field, it would be extremely usefu
have similar methods at our disposal. Mode coupli
theories9 provide a kinetic approach to the dynamic of sup
cooled fluids and structural glass transitions, but fail to p
dict the crystallization process. In other cases the phase
dering dynamics of liquids has been based on schem
model Hamiltonians of the Ginzburg–Landau type, whi
neglect the microscopic structure or on heuristic approxim
tions for the free energy.10

In principle the density is not the only relevant variab
in a dynamical description. The velocity distribution and co
2 © 1999 American Institute of Physics
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relation are crucial in the understanding of hydrodynam
modes, while they do not appear in the equilibrium DF
classical fluids. However, one could argue following Coh
and de Schepper11 that when the density is large, the mome
tum and the energy flow quickly through the system via c
lisions, while the density variable decays slowly. The hyd
dynamic modes should become irrelevant for the dynam
of dense and strongly structured systems; the only rele
variable should be the density distribution, as in the equi
rium case, and the use of the equilibriumF@r# is a promising
starting point to include the effects of the density corre
tions.

In the present study we restrict ourselves to systems w
such ‘‘relaxational dynamics,’’ in which the velocity distr
bution plays no relevant role. Instead of starting directly w
the Newtonian dynamics of the particles, we force the irr
evance of the velocity distribution at microscopic level a
begin from the stochastic Brownian equations of motion o
system ofN particles interacting via two-body forces. In th
equilibrium limit, as a very long time average of the dynam
evolution, the Newtonian and the Brownian equations of m
tion should give the same results and be equal to those o
equilibrium statistical ensemble. The relaxational dynam
of dense systems has also to be similar for the two type
microscopic dynamics: the rapid flow of momentum and
ergy due to particle-particle collisions in the Newtonian d
namics, is given~most efficiently! by the bath in the Brown-
ian dynamics. Of course, there are cases~including some of
the examples analyzed in this work! for which the Newton-
ian and the Brownian dynamics have very different resu
In those cases our proposed DF approach to the dyna
would still be useful for systems following the Brownia
equation of motion, like colloidal particles in a bath, but
would not be appropriate for systems in which the mic
scopic dynamics is Newtonian and the velocity distributi
becomes relevant.

The article is organized as follows: in Sec. II we deri
the dynamic density functional theory starting from the s
chastic equations of motion of the particles and discuss
main features of the resulting DDF approach. In Sec. III
apply the method to few systems of hard molecules in
dimension, for which the exact equilibrium free energy de
sity functional is known; the comparison between the D
and the averages over the Langevin simulations gives a c
view of the validity of our proposal. In Sec. IV we explor
the same systems but using now approximate forms
F@r#, of the same type as those developed for realistic s
tems in three dimensions; in this way we analyze the effe
of the approximations used forF@r#, which would be un-
avoidable in the practical use of the DDF formalism. In S
V we draw the conclusions, discuss previous approac
and present the future perspectives.

II. TRANSFORMATION FROM BROWNIAN
TRAJECTORIES TO THE EQUATION FOR THE
DENSITY VARIABLE

One considers an assembly ofN Brownian particles of
coordinatesr i interacting via an arbitrary pair potentialV(r i
2r j) and experiencing an external fieldVext(r i) . Neglecting
Downloaded 09 Mar 2007 to 141.108.2.9. Redistribution subject to AIP
c
r
n
-
-
-
s
nt
-

-

th

l-

a

-
he
s
of
-
-

.
ics

-

-
e

e
e
-

ar

r
s-
ts

.
s,

the inertial term and the hydrodynamic interaction their m
tion can be described by the following set of coupled s
chastic equations:

dr i~ t !

dt
52G¹iF(

j
V~r i2r j !1Vext~r i!G1hi~ t !, ~1!

where the termhi(t)5@h i
x(t),h i

y(t),h i
z(t)# represents the in-

fluence of the thermal bath and has the properties:

^h i
a~ t !&50 ~2!

and

^h i
a~ t !h j

b~ t8!&52Dd i j d
abd~ t2t8!, ~3!

where the average is over the Gaussian noise distribution
a,b run overx,y,z. The constantsG andD give the mobility
and the diffusion coefficient of the particles, respective
The Einstein relation givesG/D5b[1/T, and from here on
we takeG51 to fix the unit of time and haveD5T5b21.
The evolution law drives the system towards the equilibriu
situation which is described by the canonical Gibbs proba
ity measure. Instead of considering all the trajectories gen
ated from Eq.~1! we shall consider the evolution of th
density of particles.

In order to render the paper self-contained we reder
briefly the transformation,4 using the rules of the Ito stochas
tic calculus. In order to do so, we recall that iff is an arbi-
trary function ofx(t) given by the process:

dx

dt
5a~x,t !1b~x,t !j~ t ! ~4!

with ^j(t)j(t8)&52d(t2t8) its evolution is given by the
following Ito prescription for the change of variables~see
Ref. 12!:

d f~x,t !

dt
5a~x,t !

d f~x,t !

dx
1b~x,t !

d f~x,t !

dx
j~ t !

1
1

2
@b~x,t !#2

d2f ~x,t !

dx2
. ~5!

Thus employing Eqs.~5! and ~1! we obtain

d f@r i~ t !#

dt
52¹iF(

j
V~r i2r j !1Vext~r i!G¹ i f ~r i!

1¹ i
2f ~r i!1¹i f ~r i!h i~ t!. ~6!

After inserting the identityf (r i)5*d(r i2r ) f (r )dr and us-
ing the arbitrariness off , we obtain the equation for the
partial density operator,r̂ i(r ,t)[d(r i2r ):

]r̂ i~r ,t !

]t
5T“2r̂ i~r ,t !

1“F r̂ i~r ,t !S E dr 8@ r̂~r 8,t !“V~r2r 8!

1“Vext~r !# D G1h i~1 !“ r̂ i~r ,t !, ~7!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where, after some manipulation, the instantaneous glo
density operator,r̂(r ,t)5( i 51,Nd@r i„t…2r #, can be shown
to obey the following multiplicative noise equation:

]r̂~r ,t !

]t
5“FT“ r̂~r ,t !1 r̂~r ,t !“Vext~r !

1 r̂~r ,t !E dr 8r̂~r 8,t !“V~r2r 8!

1h~r ,t !Ar̂~r ,t !G . ~8!

Equation~7! contains the same information as Eq.~1! but in
a more useful form. Both are stochastic equations for
movement ofN Brownian particles, represented directly b
their positions in Eq.~1! and by theN delta-function spikes
of r̂(r ,t) in Eq. ~7!. This latter form, as derived by Dean4

opens the connection with the density functional formali
which was already suggested by the same author in the
lowing terms: the Helmholtz free energy functional,

F@r#5TE drr~r !$ log@r~r !#21%1E drr~r !Vext~r !

1DF@r#, ~9!

contains the exact ideal gas entropy and the external po
tial contribution in the first two terms, while the third on
includes the effects of interactions and correlations betw
the particles and its exact form is known only for very fe
systems. The first two terms in the bracket of Eq.~8! corre-
spond precisely to the contributions of the ideal gas and
external potential tor¹dF/dr, and within an implicit mean
field approximation it was observed that the third term in
bracket of Eq.~8! can also be cast in terms of the function
derivative of DF@r#. In a slightly different language the
analysis by Kawasaki5,6 led to the same type of proposal:
dynamic density functional equation forr̂(r ,t) in terms of
the functional derivative ofF@r# and a remaining stochasti
contribution, from the noise term in Eq.~8!. However, the
use of the equilibrium functionalF@r# only makes sense
with an ensemble averaged density distribution. The de
function peaks inr̂(r ,t) would give infinite contributions to
the first term in Eq.~9!, because they correspond to a sing
microscopic state and not any statistical ensemble aver
To make the connection between Eq.~8! and a density func-
tional description one has to implement some kind of av
aging over the instantaneous distribution of particles.

Within the microscopic Brownian dynamics the obvio
way to proceed is to average over the realizations of
random noiseh(r ,t). We denote by brackets,^ . . . &, the
results of this averaging and in particular we define
noise-averaged densityr(r ,t)[^r̂(r ,t)&. In the equilibrium
limit, when the system has been allowed to relax for lo
enough time under the Brownian dynamics, this aver
would correspond precisely to the Gibbsian equilibrium a
erage. In the study of the dynamics, out of equilibrium, t
densityr(r ,t) has to be interpreted as an ensemble avera
as in a collection of colloidal systems with the colloidal pa
ticles at the same initial conditions but with different~ther-
Downloaded 09 Mar 2007 to 141.108.2.9. Redistribution subject to AIP
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malized! microscopic states for the bath. We may hop
without demonstration, that this Brownian ensemble m
also give an accurate description of dense systems with N
tonian dynamics near the crystallization, for which the e
semble should be interpreted as a collection of systems
the same initial positions but different~thermalized! veloci-
ties for the particles.

When we proceed to take the noise average over
Brownian evolution Eq.~8! the first effect is to cancel out th
noise contribution in the last term. The stochastic equat
for time evolution ofr̂(r ,t) becomes a deterministic equa
tion for r(r ,t),

]r~r ,t !

]t
5“F E T“r~r ,t !1r~r ,t !“Vext~r !

1E dr 8^r̂~r ,t !r̂~r 8,t !&“V~r2r 8!G , ~10!

in contrast with previous authors,4,6,7 who maintain the sto-
chastic character of the dynamic DF evolution keeping a r
dom noise term.13

Systems of noninteracting ideal particles,V(r2r 8)50,
provide an exact test of this point. In that case the free
ergy density functionalF id@r# reduces to the first two con
tributions in Eq.~9!, sinceDF@r#50, and Eq.~10! may be
written as a closed deterministic equation for the density d
tribution,

]r~r ,t !

]t
5T¹2r~r ,t !1“@r~r ,t !“Vext~r !#

5“•Fr~r ,t !“
dF id@r~r ,t !#

dr~r ,t ! G , ~11!

which is the exact Fokker–Planck equation for the diffusi
and drift of an ideal Brownian gas. In the proposals of Dea4

and Kawasaki6 this equation would include a stochastic noi
term, leading to an overcounting of the fluctuations. In p
ticular the Boltzmann equilibrium state predicted by Eq.~11!
in the static limit would be spoiled by the presence of t
random noise, which would be equivalent to an overestim
tion of the temperature.

In the case of interacting particles Eq.~10! is not a
closed relation, since in order to obtainr(r ,t) one needs
the equal-time two-point correlation r (2)(r ,r 8,t)
[^r̂(r ,t) r̂(r 8,t)&. The simplest mean field approximatio
assumesr (2)(r ,r 8,t)'r(r ,t)r(r 8,t) and gives a closed
equation forr(r ,t), but it would give quite pathological re
sults for the molecular core repulsions. Following the sa
procedure used forr(r ,t) we may obtain an equation for th
time evolution ofr (2)(r ,r 8,t) which in turn depends on the
three-point correlation. In fact eq.~10! is only the first mem-
ber of an infinite hierarchy of relations known as Born
Bogolubov–Green–Kirkwood–Yvon ~BBGKY! integro-
differential equations connecting n-point functions to~n11!-
point functions.14 As in the equilibrium case one can g
approximated results breaking the chain at any level. The
called Kirkwood superposition approximation, replaces
three-point correlation by a product of two-point correlatio
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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as the next step after the mean field approximation and
already give reasonable results for hard core interactions

Here we propose a different strategy, a density fu
tional approach in which the two-point correlation functio
may be approximated with the help of equilibrium free e
ergy density functionals. The excess free energy den
functional DF@r# in principle contains all the equilibrium
correlation structures in the system and, although the e
functional form is known only for very few systems, the
are workable and very accurate approximations for most
tems of interest. We may use the information contained
DF@r#, about the correlation structure at equilibrium, to a
proximate^r̂(r ,t) r̂(r 8,t)& in a system out of equilibrium. In
this way we get a generic, closed, dynamic density functio
relation forr(r ,t) equivalent to Eq.~11! with a clear inter-
pretation of the approximations involved.

Let us consider an equilibrium state of the system ch
acterized by an arbitrary profiler0(r ) ~the subscript 0 indi-
cates the equilibrium average!, which we shall eventually
take equal to the profiler(r ,t) at a given instantt. Such an
equilibrium state certainly exists and represents a minim
of the grand potential functional provided we add an app
priate equilibrating external potential. One can prove, in fa
that for fixed temperature, chemical potential, and pair in
actions there always exists a unique external potentialu(r )
which induces the givenr0(r ). In other words, upon adding
the external potentialu(r ), we would pin the system to be a
equilibrium in a configuration corresponding to the instan
neous average densityr(r ,t); the potentialu(r ) is a func-
tional of r0(r ) and changes witht asr(r ,t) varies.3

From the general properties of the equilibrium functio
als we have that the following two exact equilibrium rel
tions must be satisfied byr0(r ) and u(r ). First, the local
balance of momentum at any point implies the BBGKY r
lation,

1

r0~r !
¹r0~r !1b¹[Vext~r !1u(r )]

52b
1

r0(r )E dr8r0
~2!~r,r 8!¹V~r2r 8!. ~12!

Second, the thermodynamic equilibrium implies that t
functional derivative ofF@r# at any point is equal to a uni
form chemical potentialm. Taking the gradient gives th
equation, first obtained by Lovettet al.,3,15

1

r0~r !
¹r0~r !1b¹@Vext~r !1u(r !]

52“

d

dr0~r )
@bDF@r0##

5E dr 8c~2!~r ,r 8!¹r0~r 8!, ~13!

where

c~2!~r ,r 8!52b
d2DF@r0#

dr0~r !dr0~r 8!
Downloaded 09 Mar 2007 to 141.108.2.9. Redistribution subject to AIP
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is the direct correlation function, related to the function
inverse of the equilibrium two point density-density corre
tion r0

(2)(r ,r 8). The functionalDF@r0# serves to generate th
sequence of inverse linear response or direct correla
functions16 upon functional differentiation with respect tor.
Let us emphasize that Eqs.~12! and ~13! are exact for the
instantaneous potentialu(r ). Comparing these two equation
and assuming that the equal time correlationr (2)(r ,r 8,t),
averaged over the Brownian noise, may be approximated
that of the equilibrium system with the same density dis
bution, we get the last term in Eq.~10! as:

E dr 8^r̂~r ,t !r̂~r 8,t !&“V~r2r 8!5r~r ,t !“
dDF@r~r ,t !#

dr~r ,t !
.

~14!

In summary, we have used the fact that at any instant
can find a fictitious external potentialu(r ) which equilibrates
the system, i.e., constrains its grand potential to be minim
This minimum is characterized by the imposed dens
profile r0(r )5r(r ,t) and by equilibrium correlations
r0

(2)(r ,r 8) consistent with it. The present approximation r
places the true off-equilibrium pair distribution functio

^r̂(r ,t) r̂(r 8,t)& by the equilibriumr0
(2)(r ,r 8), and then uses

the equilibrium density functionalDF@r# to obtain the rel-
evant information on this function.

The assumption that the two routes, Eqs.~12! and ~13!,
are equivalent implies that the fluctuation dissipation th
rem holds, while in general, out of equilibrium, it i
violated.17 In fact the relation connectingr0

(2)(r ,r 8) to
c(2)(r ,r 8) ~the O.Z equation! is an exact equilibrium property
and is based on the idea that the correlation function is
matrix inverse of the second derivative of the functionalF
with respect tor0(r ).

With Eqs.~9! and ~14! we may recast Eq.~10! into the
main result of the dynamic density functional approac
based on the use of the equilibrium functionalF@r#:

]r~r ,t !

]t
5“Fr~r ,t !“

dF@r~r ,t !#

dr~r ,t ! G , ~15!

which has the form of a continuity equation,]r/]t1¹–j
50, with the current of particles given by:

j ~r ,t !52r~r ,t !“
dF@r#

dr~r !
U

r~r ,t !

. ~16!

The main features of this approach are the following:

~a! F@r# is a functional solely of the density field and thu
Eq. ~15! is a closed non linear equation forr(r ,t).

~b! The equation is deterministic, but the variabler(r ,t)
has to be interpreted as the instantaneous density
erator averaged over the realizations of the rand
noise h i(t). The contribution from the ideal gas en
tropy generates the diffusion term in Eq.~11! and re-
flects the presence of the thermal noise.

~c! The only assumptions leading to Eq.~15! are that the
systems follows a relaxative dynamics, which may
described by the Brownian motion of the particles in
thermalized bath, and that the instantaneous tw
particle correlations are approximated by those in
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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equilibrium system with the same density distributio
as given by the~exact or approximated! density func-
tional F@r#.

Before concluding this section we note an interest
feature of the dynamics: using the equation of evolution
r(r ,t) it is straightforward to show that for any system wi
closed or periodic boundary conditions, the dynamics alw
tends to decrease the free energy functional, i.e.,

dF@r#

dt
52E drr~r ,t !F¹ dF

dr G2

<0. ~17!

In the long time limit, the evolution of the system leads to
equilibrium density distribution, which corresponds to a u
form value ofm5dF/dr(r ), i.e., the usual Euler-Lagrang
equation in the equilibrium DF formalism. However, the tr
jectories that lead to the minima ofF are not necessarily
along the directions corresponding to the maximum slo
The continuity equation, implies that the local conservat
of particles is built in and imposes important constrains
the local changes ofr(r ,t).

For any system with a finite number of particles there
a unique canonical equilibrium density distribution,r0(r ),
which corresponds to the unique local~and global! minimum
of the exact free energy density functionalF@r#. However,
the use of approximations forF@r# may lead to the existenc
of several local minima in which the dynamics of Eqs.~15!
and ~17! may get trapped; this deserves further comme
Notice first that these local minima of the free energy den
functional, and the barriers between them, cannot be dire
associated to the local minima, and to the barriers, of
potential energy in the Langevin description. Consider
dynamics of an ideal Brownian gas in an external poten
with two local minima, separated by a barrierVb ; the Lange-
vin representation requires the Gaussian noiseh i(t) to allow
the particles to go over the barrier. The probability of suc
jump is proportional to exp(2Vb /T) and, for large barriers, i
sets the scale of time for the equilibration of the system. T
same time scale appears in the exact Fokker–Planck re
sentation of Eq.~11! through a different mechanism: the fre
energy landscape has a single minimum, at the equilibr
density r0(r );exp@2Vext(r )/T#, there are no free-energ
barriers, and the deterministic time evolution is set by
particle current Eq.~16! along the functional path to equilib
rium. When the equilibration requires moving particl
across a large potential barrier, the relaxation time is
posed by the density there,r(r ,t);exp(2Vb /T), which may
produce a very weak current even if the gradient of the lo
chemical potential is large.

The presence of different local minima in approxima
free energy density functionals is often found in the use
the density functional formalism for equilibrium propertie
The usual interpretation is that the global minimum gives
true equilibrium state, while other local minima are asso
ated with metastable states, and phase transitions are
scribed as the crossover of different minima.18 This is a~gen-
eralized! mean-field level of description, in which the pha
transition is described in terms of an order parameter rela
to the one-particle distribution functions. The exact desc
Downloaded 09 Mar 2007 to 141.108.2.9. Redistribution subject to AIP
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tion should always give convex thermodynamic potenti
and it requires the description of the phase transitions
terms of the N-particle correlations, rather than in terms o
one-particle order parameter.

In the present context, the use of approximate free
ergy density functionals with more than one local minim
poses a problem of interpretation. When the determini
time evolution Eq.~15! gets trapped at a ‘‘metastable state
it can never reach the true equilibrium state. In previo
attempts to useF@r# for dynamics, both Dean4 and
Kawasaki6 have kept an extra random noise term in Eq.~15!,
as a remnant of the original random noise in the Lange
dynamics. This random noise, allows the system to ju
over any ‘‘metastability barrier’’ in a finite time but it leave
the problem of identifying its origin and intensity. From ou
analysis it is clear that the use of the free energy den
functional makes sense only for the densityr(r ,t)

5^r̂(r ,t)&, averaged over the realizations ofh i(t) in the
Langevin dynamics, and this averaging gives the determi
tic Eq. ~15!. We proceed here to explore the results of t
deterministic DDF formalism and come back to this point
the conclusion section.

The practical use of Eq.~15! to study problems like the
growth of a liquid drop from an oversaturated vapor seem
be limited. The classical Lifshitz–Slyozov–Wagner theory19

for the late stages of growth, beyond the critical droplet si
is given directly from Eq.~15!, even if we use the simples
local density approximation forF@r#. However, any avail-
able approximations forF@r#, will be unable to describe the
early stages of nucleation, as they do not include the effe
of long-range critical-like correlations. However, we no
have density functional approximations with a good desc
tion of the short range correlation structure in highly pack
systems. The DF description of the freezing of a liquid20,21or
the study of fluids confined to narrow pores22 are the most
remarkable achievements of the nonlocal density function
developed in the last decades. We believe that the DDF
malism may be used to study the dynamics of dens
packed fluids taking full advantage of the description of t
correlation structure at short range, given by suitable
proximations for the equilibriumF@r#. The most interesting
~and difficult! problem would be the study of a close
packed system, which has not crystallized. The Lange
description in Eq.~1! may give extremely slow dynamic
since either the random noise has to take the system
large energy barriers~like in the ideal gas described above!,
or it has to produce rearrangements which are only poss
through unlikely correlations of many particles. Within th
deterministic dynamic density functional approach in E
~15! this situation may be seen in two possible ways:

~1! The free energy landscape becomes rough and disp
many local minima, whose number grows exponentia
with the size of the system,23 and within our description
the system would remain indefinitely trapped in any
these minima, unless it is annealed at a higher temp
ture. The idea is that when a uniform liquid is forced
have a density larger than the one corresponding t
liquid at coexistence with the solid, the system sta
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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developing inhomogeneous patterns, which are ass
ated with local minima of the free energy.24,25 One con-
jecture relates the origin of the glassy behavior in liqu
to the existence of these minima, as an extension of
well founded theory of mean-field spin glasses.7,23

~2! Alternatively, the free energy landscapeF@r# may be
smooth, with a single minimum, because the correlati
required to relax the system are described well eno
by the free energy functional. In this case, the syst
will never get really frozen, until it reaches the true eq
librium state, but the dynamics may become so slow t
it may appear to be frozen in any practical computati
The slow dynamics of Eq.~15! may be a result of having
very low density along current path~again, as in the
ideal gas above! or of requiring very unlikely~but not
impossible! correlations of many particles. This cas
would correspond to the conjecture that the glassy
havior in liquids is due to a divergence in the viscosi
and in the relaxation times, rather than to the existe
of a metastable freezing.

Within the dynamical density functional approach ha
ing one or the other way would be a result of using a wo
or a better approximation forF@r#. The configurations with
a very large escape time, when described by a good den
functional, may appear like permanent stable states when
dynamics is described with a poorer approximation forF@r#.
In the next section, we present explicit results for a sim
model in one dimension which displays these features
illustrates how the structure of the nearly frozen states m
be given by simple DF approximations, while the actual c
culation of the escape time may require a density functio
giving good account of the many-particle correlations.

III. APPLICATIONS TO 1D PROBLEMS EMPLOYING
THE EXACT FUNCTIONAL

Since neither the correctness nor the feasibility of
approach presented have been tested so far, we shall b
comparing the two levels of description: the Brownian d
namics and DF dynamics and in order not to introduce
necessary sources of discrepancies we consider a one di
sional hard-rod system, whose exact equilibrium DF
known26,27 and which includes strong correlation effects d
to the infinite repulsion between the particles.

Long ago, Percus26 was able to determine the exact for
of the free energy density functional for an assembly of h
rods of lengths. The excess functional due to the intera
tions reads

DF@r~x!#5E
2`

`

dxf@h~x!#
r~x1s/2!1r~x2s/2!

2
,

~18!

where

f~h!52T log@12h~x!#, ~19!

and the local packing fractionh is defined as

h~x!5E
x2s/2

x1s/2

dx8r~x8!. ~20!
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There are other equivalent ways to calculateF ~like taking
the weighting graining only towards the right, or towards t
left! which yield the same value ofF for any density distri-
bution. Using Eq.~15! we obtain the following equation fo
the time evolution of the density:

]r~x,t !

]t
5

]2r~x,t !

]x2
1

]

]xFr~x,t !S r~x1s,t !

12h~x1s/2,t !

2
r~x2s,t !

12h~x2s/2,t ! D G1
]

]xFr~x,t !
dVext~x!

dx G ,
~21!

where we have chosen the energy units such thatT51.
The first term in Eq.~21! represents the diffusion equa

tion for ideal gas case, the second term is the correction
to the hard-rod interaction. It is worthwhile to point out th
r(x)r(x1s)/@12h(x1s/2)# is just the two-point equilib-
rium correlation functionr0

(2)(x,x8) evaluated at contact
i.e., whenx85x1s, so that this term takes into account th
collisions of the rod atx with the remaining particles on th
right hand side. Similarly the other term describes the int
actions with the left sector.

When the density profile varies very smoothly~com-
pared with the hard-rod length! the second term may be writ
ten in terms of the local chemical potential and the co
pressibility and one obtains a diffusion equation with
renormalized constant.

A. Free expansion from a dense state

Our first check has been to compare the results of Lan
vin simulations in Eq.~1! with the results obtained by mean
of the DDF Eqs.~15! and~21!, using the exactF@r#, for the
free expansion ofN hard rods in absence of external pote
tial. In Fig. 1 we present the density profiles for a system
N58 hard rods of unit length,s51. The temperature is

FIG. 1. Density profiles for a system ofN58 hard rods of unit length in
free expansion, at different times. The full lines are the results of the D
equation and the dots are the average over 2000 Langevin simulations
results have been shifted in the vertical direction to allow a clear view.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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fixed to T51 and in the initial configuration, att50, the
rods are set at fixed positions separated by a distance
between their centers. In the first stages of the time evolu
each rod develops a Gaussian density distribution, and
superposition of all the rods gives a total density distribut
with strong oscillations, typical of tightly packed hard mo
ecules. With increasing time the packet expands, the osc
tions become weaker and then disappear. For very lart
~not shown in the figure! the packet becomes very wide, wit
r(x,t)!1 everywhere, so that the collision term in Eq.~21!
is nearly irrelevant. In that limit the system evolves like
ideal gas with a gaussian distribution of width proportion
to A2t.

The dots in Fig. 1 are the average over 2000 Lange
simulations for the same system. The qualitative trend
similar to the DDF results, but the damping of the oscil
tions is clearly slower in the simulation. In Fig. 2 we prese
the time evolution of^x(t)22x(0)2& for packets withN
51, 8, and 20, to give a measure of the rate of expans
The dotted line is the exact result for the ideal gas,^x(t)2

2x(0)2&52t, which is independent ofN. For hard rods
there is a clear enhancement of the effective expansion
because the rods at the two ends of the packet have a s
bias towards moving away from the the packet. The resul
this effect increases withN because it acts until the whol
packet has expanded. Fort@1 and any value ofN the slope
of ^x(t)22x(0)2&52t goes to the ideal value, but the e
hanced expansion at smallt produces a shift of the value
with respect to the ideal gas. The comparison between
DDF and the average over 2000 Langevin simulations ag
shows the same overall trend and also the same depend
with N, but the DDF always gives a slightly larger expansi
rate. The case withN51 offers a clear explanation for thi
discrepancy: with a single rod in the system there should

FIG. 2. Mean squared displacements for systems ofN hard rods of unit
length, in free expansion from highly dense initial state. The full lines
the results of the DDF equation and the open circles are the average
2000 Langevin simulations, for the respective values ofN51, 8, and 20.
The dotted line is the result for any number of ideal, noninteracting, p
ticles.
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no collisions and the results should be those of the ideal
but the second term in the DDF in Eq.~21!, obtained with
the exactF@r#, still gives a contribution, unlessr(x,t)r(x
1s,t)50 for anyx. The reason is that in the exactF@r# Eq.
~18!, as for any density functional used in the DDF, the de
sity distribution has to be interpreted in the grand-canon
ensemble. It corresponds to a system in contact with a
ticle reservoir, in which the chemical potential is set to gi
the average value ofN; however, the configurations contrib
uting to the density distribution may have any number
particles. In the system witĥN&51, there would be contri-
butions from the density distributions withN52, 3, . . .
~compensated with the contribution withN50), and these
contributions include the effects of the collisions.

In general, the fluctuation in the number of particl
opens a relaxation path which is not present in the Lange
simulations, carried with fixedN. This extra relaxation path
produces the faster damping of the oscillations in the den
profiles and the larger diffusion rate of the DDF. The effe
is important only in the intermediate stage of the expans
because fort!1 the compressibility of the system is too lo
to have important fluctuations inN and fort@1 the system is
so diluted that the total effect of collisions is negligible.

B. Collapse to a dense equilibrium state

In Fig. 3 we display the density profiles for a system
four hard rods falling to the bottom of a parabolic potent
well, bVext(x)5ax2, with a510. At t50 the rods are lo-
cated atx563 andx566, well separated from each othe
During the first stages of the time evolution each rod follo
a steady drift due to the external force and, at the same t
they develop Gaussian peaks of increasing width, due to
random diffusion. The collisions between the two rods
each side of the potential well become important fort
'0.05; later the two packets collide and relax to the eq
librium density distribution, which is reached fort50.1,
within our numerical precision. The results of the DDF a
the average over 2000 Langevin simulations are in go
agreement, although small discrepancies may be obse
both in the early drifting peaks and in the final~equilibrium!
profiles. The origin of these discrepancies is again the dif
ence between the Langevin simulation with fixedN and the
grand-canonical DDF. The final equilibrium density distrib
tion with the Langevin simulation corresponds to the cano
cal ensemble and for systems with small number of partic
it is known to be different from the grand-canonic
distribution.28 In our case, the difference depends on t
value of the parametera, in the external potential: fora
@1 the rods are very tightly packed, the compressibility
very low and the fluctuations in the numberN are very small;
for a! the final equilibrium profile is very broad, withou
oscillations, and the effect of the collision is too weak
produce observable differences; but for intermediate val
a'1 the difference between the canonical and the gra
canonical ensemble may be quite important and it is reflec
in the different time evolution predicted by the DDF and
the Langevin simulations. The use of a canonicalF@r# in the
DDF in Eq. ~15! would, in all probability, give a better
agreement between the two methods, but unfortunately
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are not aware of any explicit canonical density functional
interacting particles. Nevertheless, the use of the equilibr
F@r# to include the role of the molecular correlations is
ways an approximation, so that even without considering
difference in the thermodynamic ensemble, it was not ob
ous that the agreement between the DDF and the Lang
simulation would be as good as observed in the preced
figures.

C. Relaxation through highly correlated states

The third check of the theory, being considered, is
relaxation in a system which requires strongly correlated m
tions of all the particles. We place the hard rods in a perio
external potentialVext(x)52Vocos(2px), with minima at
any integer values ofx. The hard-rods length is taken ass
51.6, so that two rods cannot be at the bottom of near
neighbor wells. We take periodic boundary conditions w
total lengthL58 and setN54 rods, which at the initial time
are at the bottom of every second well ofVext(x). The equi-
librium density distribution, which may be obtained direct
by the minimization of the exact free energy density fun
tional, has the full symmetry of the external potential, so t
the relaxation process has to shift~on average! half a particle
from the initially occupied wells to those wells which a
initially empty. However, the jump of a rod over the barrie
to the next potential well, is not compatible with keeping t
next rod at the bottom of its potential well. The system has
pay the extra energy of keeping the two consecutive r
away from the minima or it has to relay on a correlat
motion of theN rods, to shift from one subset of minima t
the other one.

In Fig. ~4! we present the time evolution of the dens
profiles with bVo52 showing different times, for both th
DDF Eqs. ~15! and ~21! and the average of the Langev
simulations over 2000 realizations of the noise. In both ca
the relaxation is slow~compared with the previous ex

FIG. 3. Density profiles of four hard rods of unit length, collapsing to t
equilibrium state, in a parabolic potential. The full lines are the results of
DDF equation and the circles are the average over 2000 Langevin sim
tions. The results have been shifted in the vertical direction and they co
spond, from top to bottom fromt50.01 to t50.09, at 0.02 intervals. The
equilibrium state is very close to the later time results.
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amples! and it becomes much slower for increasing values
bVo or s. In agreement with our general prediction Eq.~17!,
the system flows to the unique equilibrium state, dens
peaks grow at the positions of the potential wells which w
initially empty until the exact equilibrium density profile i
obtained. The comparison of the result clearly shows that
DDF equation, with the exact Percus free energy, approac
the equilibrium state faster than the average of the Lange
simulation. This difference is related again to the use of d
ferent statistical ensembles: the canonical Langevin equa
keeps constantN while the grand-canonicalF@r# allows for
fluctuations in the number of particles, keeping only the a
erage. The changes inN in the DDF open a new relaxatio
path and gives a faster relaxation, even is the final equi
rium density profiles in the canonical and the gran
canonical ensembles are very similar.

To get a quantitative description of the relaxation tim
we define an order parameter which gives, at any time,
relative difference between the occupation of the odd and
even potential wells,j5(Nodd2Neven)/N. The initial condi-
tion setsj51 and the final equilibrium state corresponds
j50. Both in the case of the DDF and of the Langev
dynamics we observe a pure exponential decay,j(t)5exp
(2t/t) so that whole process may be described by the re
ation timet. The importance of the particle correlations
the slowing of the relaxation dynamics is shown in Fig.~5!
through the dependence of the relaxation time with on
size of the hard cores,t(s), keeping the same external po
tential. Both the Langevin dynamics and the DDF show
fast decrease oft, by nearly two orders of magnitude, whe
the rod size decreases froms51.6 tos51, which makes the
occupancy of neighbor potential wells easier.

The increase of the external potential amplitude,

e
la-
e-

FIG. 4. Density profiles of four hard rods of lengths51.6 in a periodic
external potential with eight minima separated by the unit length. In
initial state the rods are in alternate minima, located at the odd inte
values ofx, and the system relaxes towards the equilibrium state in wh
all the potential wells are equally populated. The full lines are the result
the DDF equation and the circles are the average over 2000 Langevin s
lations. The results have been shifted in the vertical direction.
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fixed s51.6, produces similar results, as presented in Fig
The relaxation time grows faster than exponentially w
bVo , and the results of the DDF follow from below th
general trend of the Langevin dynamics, over several or
of magnitude fort. For comparison we present in the sam
figure the relaxation times for the ideal gas in the same
ternal potential.

FIG. 5. Relaxation timet for the system in Fig. 4 as a function of the ro
length s, for fixed amplitude of the external potentialbVo52, calculated
from the results of the DDF equation~dots! and the average over 200
Langevin simulations~circles!, the dispersion of the data reflects the resu
of t52t/ log@j(t)# at different times.

FIG. 6. Relaxation timet for the system in Fig. 4 as a function of th
external potential amplitudebVo , for fixed rod lengths51.6, from the
results of the DDF equation with the exactF@r# ~dots and full line! and the
average over 2000 Langevin simulations~large circles and dashed line!. For
comparison we include the ideal gas results~small circles and dotted line!.
In all the cases the lines are a guide to the eye. We also include the re
of the DDF equation with approximateF@r#: WDA ~1! and RY ~3!. The
vertical dash-dotted line is the approximated location of the divergenc
the WDA relaxation times, for larger values ofbVo the results of this
approximation do not decay toj50.
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The conclusion is that the DDF formalism, with the e
act equilibrium free energy density functional, is able to
produce qualitatively the low relaxational dynamics of a s
tem produced by the packing constraints of molecular h
cores. In our example the final equilibrium state, with eq
occupancy of all the potential wells, represents a superp
tion of highly correlated states, in which all the particles a
in alternate wells, either in the odd or the even positions. T
relaxation from the asymmetric initial state requires stro
correlations, with all the particles moving together or in ca
cade, and the unlikeliness of these correlations gives the
relaxation time. This process may be regarded as a~very
simplified! simile of the relaxation from a very dense, no
crystalline initial state: the approach to equilibrium may r
quire the correlated rearrangement of many molecules,
unlikeliness of these correlations produces relaxation tim
which are so long that the system may appear as frozen i
ill crystallized state.

IV. RESULTS WITH APPROXIMATE DENSITY
FUNCTIONALS

The one-dimensional hard-rod system provides an in
esting test to the DDF, because we may use the exact e
librium density functional. Unfortunately, given the Hami
tonian describing a set ofN interacting particles in a
d-dimensional space, the exact free energy functional is
general unknown, since the exactness would be equivale
calculating the exact partition function of the model in a
external potential. Consequently one must rely on suita
approximation schemes and, in the case of repulsive h
core interactions, there exist several approximate meth
which yield accurate results.3 The requirements imposed ar
first, one must recover the thermodynamic properties of
homogeneous fluid; second, one must reproduce the struc
of highly inhomogeneous systems; finally, the approximat
must satisfy a number of exact relations.

Among the most successful density functionals appro
mations for the free energy of hard spheres we have th
known under the generic name of weighted density appro
mations~WDA!. The main assumption is that for each pa
ticle, at some pointr , there is a contribution to the exces
free energy,f@r̄(r )#, which is a local function of a weighted
density r̄(r ), obtained by averaging the true density profi
r(r ) over a small region centered atr :

r̄~r !5E dr 8w~ ur2r 8u,r̄~r !!r~r 8!. ~22!

The excess free energy per particle,f(r), is obtained
from the bulk equation of state and the weight function is
to get a good~approximate! description of the bulk correla
tion structure. Different recipes have been used and in g
eral they require a density dependent weight function.20,21

However, even the simplest version in whichw(r ) is taken
to be density independent and equal to the normalized Ma
function, f 512exp@2bV(r2r8)#, is enough to give a quali-
tative description of the hard-sphere freezing.20

In this section we explore the consequences of using
DDF formalism, Eq.~15! with approximate forms forF@r#,
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so that the molecular correlations are represented by an
proximation to the true equilibrium correlations. To carry o
this analysis we study the same systems described in
previous section but instead of taking the exact Percus d
sity functional, Eq.~18!, we use an approximate descriptio
of the hard rods similar to those developed for hard sphe
In particular, the WDA for hard rods with the exact bu
equation of state and the zeroth-order constant weight fu
tion takes

DFWDA@r~x!#5E
2`

`

dxf@r̄~x!#r~x!, ~23!

with the exactf(r) given by Eq.~19! and

r̄~x!5E
2`

`

dx8r~x8!w~ ux2x8u!5
1

2sEx2s

x1s

dx8r~x8!.

~24!

The time evolution equation from the DDF in Eq.~15!
with this density functional approximation is similar to E
~21! but with the bracket in the second term given by

dDFWDA@r#

dr~x!
5

1

2S r~x1s,t !

12 r̄~x1s,t !
1

r~x1s,t !

12 r̄~x,t !

2
r~x2s,t !

12 r̄~x2s,t !
2

r~x2s,t !

12 r̄~x,t !
D . ~25!

Notice that the weighted densityr̄(x) averages the densit
profile from x2s to x1s, while the variableh(x), in the
exact DF, takes the average only over half that distan
There is also a different combination of the functions eva
ated in Eqs.~21! and~25!, but it is easy to check that in th
low density limit, truncating at second order in the dens
both equations become identical. This reflects that the W
includes the exact leading term of the molecular correlati
in a density expansion, while the higher-order terms are
proximated. For the equilibrium properties it is known th
this type of zeroth-order WDA overestimates the effects
the hard-core packing and it becomes more accurate w
the weight function is allowed to depend on the weigh
density.

The results obtained with this approximate free ene
for the problems A and B in the previous section are qu
tatively similar to those with the exactF@r#. In the free
expansion of a dense state the WDA keeps the oscillation
r(x,t) for a longer time than the results with Eq.~21!, re-
flecting the overestimation of the hard core packing, but
mean square displacements are very similar to those in
~2!. The equivalent trends are observed in the problem
although there is some difference between the exact and
WDA equilibrium states, the dynamics is rather similar. W
have also checked, in some cases, that the use of a b
WDA approximation, with the density dependence of t
weight function expanded up to second order, gives res
closer to those with the exactF@r#. In this way we have
checked that the practical use of the DDF formalism does
depend on having the exact equilibriumF@r#. The use of
WDA or other density functional approximations opens
wide road for the study of the dynamical properties of ma
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systems, with a level of approximation comparable to
accuracy of the results for the equilibrium properties.

The system studied in the last subsection provided
most severe test for the DDF, since it was the case in wh
the molecular correlations played the most important ro
and this system is the one in which the the use of an appr
matedF@r# may lead to qualitative differences. We hav
solved Eq.~15! with Eq. ~25! for the same system ofN54
hard rods in a periodic external potential as before and l
for the relaxation from the asymmetric density distributio
For the system presented in Fig.~4!, with s51.6 andbVo

52., there is a qualitative difference with the results of us
the exactF@r#. With the WDA free energy the time evolu
tion of r(x,t) goes to a stable very asymmetric profile, wi
an order parameterj50.99216, indicating that the particle
remain mainly in the potential wells where they are initia
located. The freezing of the initial asymmetry is only po
sible because the WDA equilibrium free energy for this s
tem has two different minima, with positive and negati
values ofj, instead of the single minimum withj50 given
by the exactF@r#. The approximate inclusion of the hard
core correlations in the WDA is not good enough to avera
over the two types of configurations which appear as se
rated equilibrium states and, for the same reason, the D
equation cannot include the dynamic path between the
types of configurations.

For lower values of the external potential~or higher tem-
perature! we find that the final order parameter predicted
the WDA decreases, as in a phase transition. Indeed,
splitting of the equilibrium state is nothing but a spurio
phase transition predicted by an approximateF@r#. Below a
critical value ofbVo'0.7 the WDA recovers a single sym
metric equilibrium state withj50. The relaxation time di-
verges as we approach the phase transition and it is prese
in Fig. 6 together with the results of the exactF@r#. This
divergence is obviously a spurious result of the approxim
tion used forF@r#. The only reasonable interpretation is th
whenever an approximate free energy density functional
different local minima, in which the DDF equation may g
trapped, the exact dynamics of the system would requ
rather long times to relax the density along the functio
path related to the ‘‘order parameter’’ of the spurious pha
transition. The DDF with the WDA is good enough to ide
tify the slow density path, along the parameterj, and it is
good enough to describe the relaxation dynamics along o
functional directions, but it cannot be used to describe
relaxation ofj.

We have checked that on improving the WDA, by i
cluding the density dependence of the weight function,
spurious phase transition is shifted towards larger value
bVo . Again a better approximation for the equilibrium fre
energy functional also gives a better account of the mole
lar correlations in the DDF equation, since it is able to fi
relaxation paths which ‘‘were not seen’’ by simpler DF a
proximations. However, whenbVo goes beyond a new
threshold value~i.e., when the exact relaxation time becom
too large for the approximateF@r#) the spurious phase tran
sition reappears.

We have also tested the predictions of the DDF with
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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even simpler approximation for the equilibrium density fun
tional. This is the Ramakrishnan–Youssouf~RY!
functional,25,7 sometimes referred as the HNC density fun
tional approximation, which considers a functional Tay
expansion of the free energy about a global mean densityrb .
Truncating the series at the second order~higher order coef-
ficients are in general not known! one gets:

DFRY@r#52
1

2E dr

3E dr 8@r~r !2rb#cb~r2r 8!@r~r 8!2rb#,

~26!

wherecb(r2r 8) is the direct correlation function of a un
form fluid with densityrb . The merit of the RY functional is
that it is perhaps the simplest recipe and is easy to implem
numerically. However it requires that the system have a w
defined mean density,rb , and it may become unreliabl
when the density varies rapidly over a length scale of
order of molecular size. Notice that in our case using the
approximation is equivalent to saying that during its evo
tion the system has the same two point correlations tha
would have at constant densityrb .

In our one-dimensional hard-rod system we may use
exact direct correlation function of the bulk hard-rods s
tem, and the DDF equation is again similar to Eq.~21! but
with the second term bracket given by

dDFRY@r#

dr~x!
5S r~x1s,t !2r~x2s,t !

12hb

1rb

h~x1s/2,t !2h~x2s/2,t !

12hb
2 D . ~27!

The application to examples A and B is uncertain b
cause they do not have a clearly defined mean density. In
third example we have used Eqs.~15! and ~27! with the
obvious choicerb5N/L50.5 to get the relaxation of the
density distribution in the periodic external potential. T
results, in Fig. 6, show a surprisingly fast relaxation towa
the symmetric density profile. This density functional a
proximation never has spurious minima, so that the dynam
is never trapped in asymmetric distributions, but the rel
ation is even faster than in the ideal gas case, in clear c
tradiction with the Langevin simulation. This shows an e
ample opposite to the WDA result, the effect of th
approximation for the free energy may be to underestim
the packing effects. In this case there is no risk that
system gets trapped out of the true equilibrium, but the
proximation fails to describe the long relaxation times i
posed by these packing constraints.

V. CONCLUSIONS

We have presented a dynamic density functional
proach for the relaxation of a classical system in terms o
equilibrium free energy density functionalF@r#. The ap-
proach is valid only when the velocity correlations~not in-
cluded in F@r#) are irrelevant, which excludes hydrody
Downloaded 09 Mar 2007 to 141.108.2.9. Redistribution subject to AIP
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namic modes and temperature gradients but may incl
problems like the Brownian motion of colloidal particles an
the molecular rearrangements of highly packed syste
when the collision time is much shorter than the relaxat
time. In the derivation of the approach we start with t
stochastic equations for the Langevin dynamics of Brown
particles and get a deterministic DDF equation for the ti
dependence of the density distribution,r(r ,t), which has to
be interpreted as the ensemble average over the realiza
of the random noise in the Langevin dynamics. The equi
rium DF formalism is used to go from a formal BBGKY
hierarchy, for the coupled dynamics of the n-particle dis
bution functions, to a closed DDF equation forr(r ,t). The
assumption leading to this result is that the correlation str
ture in the system out of equilibrium is replaced by that
the equilibrium system with the same density distributio
Moreover, we do not need to calculate the correlation str
ture explicitly because its effects on the dynamics are gi
directly in terms of the functional derivative ofF@r#.

The main advantage of the approach, for practical p
poses, is being able to use the good approximations de
oped for the free energy functional of hard-core molecules
include the packing constraints in the dynamics of de
systems. We have presented several examples of
dimensional hard rods to compare the DDF with the aver
of Langevin simulations. The results, with the exactF@r#,
are always in qualitatively good agreement, even in th
cases in which the dynamics becomes extremely slow, w
the relaxation requires very unlikely correlations between
particles. The main source of discrepancy is probably du
the fact that the free energy density functional developed
equilibrium always refers to the grand-canonical ensem
so that the DDF includes the relaxation through change
the number of particles, while the Langevin dynamics kee
N fixed. With the use of approximate density functionals,
the same type as developed for realistic models in three
mensions, we get an approximate description of the re
ation dynamics of a quality comparable to that for the eq
librium properties arising from the sameF@r#. In some
cases, when the role of the correlations is not too import
and the relaxation times are not too long, the approxim
F@r# is fairly accurate for the dynamic properties. In th
third case, in which strong effects of the hard core pack
lead to very long relaxation times, the difference between
results of the exact and the approximateF@r# are qualitative
both for the equilibrium and for the dynamic properties. T
presence of different local minima in the equilibrium fre
energy density functional produces, in the approximate D
equation, the permanent freezing of system in any of th
states, in contrast with the results of the exact free ene
functional.

In an interesting series of papers Kawasaki6 derived a
dynamic equation, in terms of a density functional ham
tonianH@r#, by a method different from ours, but his resu
ing Fokker–Planck equation for the probability distributio
of the density:
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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]P@r~r !,t#

]t
52E dr

d

dr~r !
“•r~r !“FT

d

dr~r !

1
dH@r#

dr~r ! GP@r~r !,t# ~28!

is equivalent to our Eq.~15!, apart from the presence of
term due to the stochastic noise. Ifr in Kawasaki Eq.~28! is
interpreted as a density operator,r̂(r ,t), his approach is
equivalent to Dean’s Eq.~10!; leading to a stochastic equa
tion for this density operator. The main qualitative differen
of this approach with our deterministic Eq.~15! is that, when
the approximate density functional for the equilibrium fr
energy has different local minima, the random noise in
DDF equation would always give a chance for chang
from one minimum to another. The long time average of
density would always be a superposition of the density in
different local minima and the long relaxation times wou
appear as the result of high barriers between the lo
minima. All these features may appear to be physically c
rect and to represent a qualitative improvement over the
terministic DDF developed here. However, the use of
equilibrium free energy density functional requires alway
density defined as a thermal ensemble average, while
~10! refers to the instantaneous density operator. The Ha
tonianH in Eq. ~28! should also be a functional of the de
sity operator,r̂(r ,t), and it is a completely different math
ematical object that the excess free energyDF@r#, as a
functional of the equilibrium densityro(r ). Thus, Eqs.~10!

and ~28! are correct, for the density operatorr̂(r ,t) but im-
possible to translate in terms of the equilibrium free ene
density functional. On the other hand, if these equations
interpreted as equations for the ensemble averaged den
r(r ,t), the random noise term would lead to a double cou
ing of thermal fluctuations in the equation forr(r ,t). In
particular, it would lead to a wrong equilibrium distributio
as can be verified in the simple case of non interacting p
ticles for which the FPE in Eq.~28! converges to a probabil
ity distribution:

Peq@r~r !#;exp~2F@r#/kBT!

5expF2E drr~r !~@ ln r~r !21#1bVext~r !!G ,
~29!

where the first term in the exponential is clearly due to
overcounting of thermal fluctuations.

Moreover, we have shown that if we use the exact fu
tional F@r# the DDF equation does not require random no
to give the correct results: the system always flows towa
the true and unique equilibrium state. The DDF relaxat
time may become very long when the system has to
through highly correlated states, but this effect correspo
to systems in which the true relaxation time~in the Langevin
description! is also very long. When we use an approxima
F@r# these long relaxation times may become infinite, w
the system trapped at a local minima ofF@r#. An attempt to
avoid this effect would require the intensity of random no
not to be proportional to the temperature, but to the er
Downloaded 09 Mar 2007 to 141.108.2.9. Redistribution subject to AIP
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made by the approximation toF@r#, an error which is obvi-
ously unknown until we make a better approximation. O
erwise, the relaxation time given by the stochastic DDF
these cases would just be a direct result of the uncontro
level of noise kept in the functional equation.

Within our deterministic DDF, the existence of froze
states in the local minima of the approximateF@r# should be
interpreted as the signature of very long relaxation times,
the only way to calculate how long these times are is
improve the approximation for the equilibrium free energ
Nevertheless, knowing the existence and the approxim
structure of these states, as given by workable approxi
tions for F@r#, is already an interesting use of the DD
together with its use to study the relaxation process in th
cases in which there are no problems with different lo
minima.

Finally, as a plan for future work, we can consider
systematic way to improve the use of the equilibriumF@r#
to estimate the correlation structure in the following term
We tag particle number 1 and follow its positionr1(t) sepa-
rately, while all the other particles (i 52, . . . ,N) are in-
cluded in a density description, withr@r1(t),r ,t# as the
noise-averaged conditional probability of finding a particle
positionr , and timet, if the tagged particle is at positionr1 .
Now, we may consider that theN21 particles are moving in
an effective external potential,Vext(r )1V(r2r1), which
also contains the interaction with the tagged particle. T
equivalent to the DDF Eq.~15! may be applied to the con
ditional densityr(r1 ,r ,t), which is now coupled to the sto
chastic equation forr1(t). The advantage is that the correl
tion structure becomes partially described at the level of
effective one-particle density in an effective external pote
tial, which is in principle much easier to describe with a
proximate free energy density functionals. This type of d
scription would be similar to the ‘‘reaction path’’ descriptio
of chemical reactions, in which one, or a few, variables
used to describe the relevant functional directions for
changes in the molecular conformations. However, the
mal and the practical use of density functional approxim
tions along this line is still an open problem.
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