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We present a new time-dependent density functional approach to study the relaxational dynamics of
an assembly of interacting particles subject to thermal noise. Starting from the Langevin stochastic
equations of motion for the velocities of the particles we are able by means of an approximated
closure to derive a self-consistent deterministic equation for the temporal evolution of the average
particle density. The closure is equivalent to assuming that the equal-time two-point correlation
function out of equilibrium has the same properties as its equilibrium version. The changes in time
of the density depend on the functional derivatives of the grand canonical free energy functional
F[p] of the system. In particular the static solutions of the equation for the density correspond to
the exact equilibrium profiles provided one is able to determine the exact foRfpedf In order to

assess the validity of our approach we performed a comparison between the Langevin dynamics and
the dynamic density functional method for a one-dimensional hard-rod system in three relevant
cases and found remarkable agreement, with some interesting exceptions, which are discussed and
explained. In addition, we consider the case where one is forced to use an approximate form of
F[p]. Finally we compare the present method with the stochastic equation for the density proposed
by other author§Kawasaki, Kirkpatrick etd.and discuss the role of the thermal fluctuations.

© 1999 American Institute of Physids$0021-960809)51508-0

I. INTRODUCTION theory from the microscopic equations of motidn&so that
the density functional approximations developed for systems

In recent years the off-equilibrium properties of ex- gt equilibrium might be extended to the dynamics of these
tended systems have represented a very active field of reystems. However, none of these proposals is fully satisfac-
search. In fact, while the present understanding of systems igry as we shall demonstrate, while the derivation that we
thermodynamic equilibrium is rather satisfactory and isconsider makes direct contact with the equilibrium DF for-
based on well established theoretical methods, the comprenylation and is therefore consistent with thermodynamic re-
hension of their dynamical aspects is far from complete, inguirements.
spite  of massive experimental and theoretical  The theoretical foundations of the density functional
investigations:? methods are based on the concept that the intrinsic Helm-

In the present article we shall focus attention on the denpg|tz free energy of a fluid that exhibits a spatially varying
sity functional method, which represents a powerful andaquilibrium densityp(r), is a unique functionaf[p] and is
widely used tool to investigate the static properties of manyindependent of the applied external fields for a given inter-
particles systenisand consider the possibility of extending molecular potential. An exact knowledge®fp] allows ob-
this approach to off-equilibrium situations. Some authorsaining in a self-consistent fashion the profilgr) and all the
have already employed similar approaches on a purely phep.point correlations via functional differentiation. When
nomenological basis by analogy with the popular Ginzburg—esjing with nonequilibrium situations, caused by some
Landau time dependent equation and the Cahn—Hilliardpanges of the external constraints, such as the temperature,
equation, but these methods are not applicable to the highly\e nressure, or electric field, it would be extremely useful to
structured density profiles that one observes at the onset @f,ye similar methods at our disposal. Mode coupling
crystallization. _ _ _ theorie$ provide a kinetic approach to the dynamic of super-

The density functiona(DF) formalism, with advanced jed fluids and structural glass transitions, but fail to pre-
models for the nonlocal functional dependence of the Helmyict the crystallization process. In other cases the phase or-
holtz free energy on the density distribution, has provided Yering dynamics of liquids has been based on schematic
good framework to study the solid—liquid transition and y,qe| Hamiltonians of the Ginzburg—Landau type, which
other highly structured systems. There have been previoygegiect the microscopic structure or on heuristic approxima-
attempts to derive a dynamic density functior®DF)  ions for the free energlf
In principle the density is not the only relevant variable
dElectronic mail: umberto.marini.bettolo@romal.infn.it in a dynamical description. The velocity distribution and cor-
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relation are crucial in the understanding of hydrodynamicthe inertial term and the hydrodynamic interaction their mo-
modes, while they do not appear in the equilibrium DF fortion can be described by the following set of coupled sto-
classical fluids. However, one could argue following Cohenchastic equations:
and de Scheppgrthat when the density is large, the momen- dr (1)
tym and th'e energy flqw qukly through the system via col- N _FV{Z V(= 1)+ Vo) |+ m(t), 1)
lisions, while the density variable decays slowly. The hydro- dt ]
dynamic modes should become irrelevant for the dynamics o 2 .
of dense and strongly structured systems; the only relevaP#here the termp (t) =[ 7'(t), 7 (1), 7 (1)] represeljlts.the n-
variable should be the density distribution, as in the equilib-T/€NCe Of the thermal bath and has the properties:
rium case, and the use of the equilibritifp] is a promising (n%(1))=0 2
starting point to include the effects of the density correla-
tions. and
In the present study we restrict ourselves to systems with o , " ,
such “relaxational dynamics,” in which the velocity distri- (O )(1))=2D8; 6" (11", ©)
bution plays no relevant role. Instead of starting directly withwhere the average is over the Gaussian noise distribution and
the Newtonian dynamics of the particles, we force the irrel-a”g run overx,y,z. The constantf andD give the mobility
evance of the velocity distribution at microscopic level andand the diffusion coefficient of the particles, respectively.
begin from the stochastic Brownian equations of motion of arhe Einstein relation giveE/D = 8=1/T, and from here on
system ofN particles interacting via two-body forces. In the e takeI'=1 to fix the unit of time and hav®=T=g"".
equilibrium limit, as a very long time average of the dynamicThe evolution law drives the system towards the equilibrium
evolution, the Newtonian and the Brownian equations of mosjtuation which is described by the canonical Gibbs probabil-
tion should give the same results and be equal to those of thg; measure. Instead of considering all the trajectories gener-
equilibrium statistical ensemble. The relaxational dynamic%ted from Eq(l) we shall consider the evolution of the
of dense systems has also to be similar for the two types cfensity of particles.
microscopic dynamics: the rapid flow of momentum and en-  |n order to render the paper self-contained we rederive
ergy due to particle-particle collisions in the Newtonian dy-priefly the transformatiofiusing the rules of the Ito stochas-

namics, is giverimost efficiently by the bath in the Brown-  tic calculus. In order to do so, we recall thatfifs an arbi-
ian dynamics. Of course, there are caéesluding some of trary function ofx(t) given by the process:

the examples analyzed in this woror which the Newton-

ian and the Brownian dynamics have very different results. d_X_
In those cases our proposed DF approach to the dynamics dt
would still be useful for systems following the Brownian , " L
equation of motion, like colloidal particles in a bath, but it With (£(t)€(t"))=25(t—t") its evolution is given by the
would not be appropriate for systems in which the micro-following Ito prescription for the change of variablésee

scopic dynamics is Newtonian and the velocity distributionRef- 12:
becomes relevant. df(x,t) df(x,t) df(x,t)

a(x,t)+b(x,t)&(t) (4)

The article is organized as follows: in Sec. Il we derive at a(x,t) ax +b(x,t)T§(t)
the dynamic density functional theory starting from the sto-
chastic equations of motion of the particles and discuss the 1 d2f(x,t)
main features of the resulting DDF approach. In Sec. Ill we + E[b(x,t)]2 > - (5)
apply the method to few systems of hard molecules in one dx
dimension, for which the exact equilibrium free energy den-t s employing Eqs(5) and (1) we obtain
sity functional is known; the comparison between the DDF
and the averages over the Langevin simulations gives a clear df[ri(t)]
view of the validity of our proposal. In Sec. IV we explore dt -V 2 V(=) +Vex(r) | Vit (r)
the same systems but using now approximate forms for
F[p], of the same type as those developed for realistic sys- + V() + Vif (1) mi(t). (6)

tems in three dimensions; in this way we analyze the effect
of the approximations used fd¥[p], which would be un-
avoidable in the practical use of the DDF formalism. In Sec.
V we draw the conclusions, discuss previous approache®a
and present the future perspectives.

i\fter inserting the identityf (r;)= [ &(r;—r)f(r)dr and us-
ing the arbitrariness of, we obtain the equation for the
tial density operatop;(r,t)=&(r;—r):

Y 1y,
II. TRANSFORMATION FROM BROWNIAN at
TRAJECTORIES TO THE EQUATION FOR THE ~ ~
DENSITY VARIABLE +V[pi(r,t)(fdr'[p(r’,t)VV(r—r’)

One considers an assembly MfBrownian particles of
coordinates; interacting via an arbitrary pair potentis(r; +Vvext(r)]”+ 7i(+F)Vpi(r,b), )
—r;) and experiencing an external fie\g,(r;) . Neglecting
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where, after some manipulation, the instantaneous globahalized microscopic states for the bath. We may hope,

density operator[)(r,t)in:llNﬁ[ri(t)—r], can be shown Without demonstration, that this Brownian ensemble may

to obey the following multiplicative noise equation: also give an accurate description of dense systems with New-

tonian dynamics near the crystallization, for which the en-

semble should be interpreted as a collection of systems with

the same initial positions but differefthermalizedl veloci-

ties for the particles.

+/3(r,t)f dr'p(r',)VV(r—r’) When we p_roceed to tak_e the noi_se average over the
Brownian evolution Eq(8) the first effect is to cancel out the

_ noise contribution in the last term. The stochastic equation

+ ﬂ(r,t)\/P(fit)}- (8)  for time evolution ofp(r,t) becomes a deterministic equa-

tion for p(r,t),

ap(r,t)
at =V

TVp(r,0)+p(r,) VVeyr)

Equation(7) contains the same information as E#j) but in

a more useful form. Both are stochastic equations for the dp(r,t)

movement ofN Brownian particles, represented directly by T:VU TVp(r)+p(r,H)VVex(r)

their positions in Eq(1) and by theN delta-function spikes

of p(r,t) in Eq. (7). This latter form, as derived by Deén, +f dr'(p(r,H)p(r' )YVV(r—r")|, (10)
opens the connection with the density functional formalism

which was al.ready suggested by the same author in the fof, ot with previous authof$;” who maintain the sto-
lowing terms: the Helmholtz free energy functional,

chastic character of the dynamic DF evolution keeping a ran-

dom noise ternt?
F[P]:TJ dl’p(l‘){|09[p(l’)]-1}+f drp(r)Vex(r) Systems of noninteracting ideal particlagr—r’)=0,
provide an exact test of this point. In that case the free en-
+AF[p], ©) ergy density functionaF 4 p] reduces to the first two con-

contains the exact ideal gas entropy and the external poteffibutions in Eq.(9), sinceAF[p]=0, and Eq.(10) may be
tial contribution in the first two terms, while the third one written as a closed deterministic equation for the density dis-

includes the effects of interactions and correlations betweeHibUtiO”’
the particles and its exact form is known only for very few

systems. The first two terms in the bracket of Eg).corre- op(r.H =TV2p(r,t) + V[ p(r,t) VVey(r)]

spond precisely to the contributions of the ideal gas and the at =

external potential tpV 6F/5p, and within an implicit mean SF[p(r,0)]

field approximation it was observed that the third term in the =V-|p(r,t)V (11

bracket of Eq(8) can also be cast in terms of the functional op(r.0)

derivative of AF[p]. In a slightly different language the \hich s the exact Fokker—Planck equation for the diffusion
analysis by Kawasakf led to the same type of proposal: a anq drift of an ideal Brownian gas. In the proposals of Dean
dynamic density functional equation f@i(r,t) in terms of  and KawasakKithis equation would include a stochastic noise
the functional derivative oF[p] and a remaining stochastic term, leading to an overcounting of the fluctuations. In par-
contribution, from the noise term in E¢8). However, the ticular the Boltzmann equilibrium state predicted by Eif)
use of the equilibrium functionaF[p] only makes sense in the static limit would be spoiled by the presence of the
with an ensemble averaged density distribution. The deltarandom noise, which would be equivalent to an overestima-
function peaks irp(r,t) would give infinite contributions to tion of the temperature.
the first term in Eq(9), because they correspond to a single  In the case of interacting particles E(LO) is not a
microscopic state and not any statistical ensemble averagelosed relation, since in order to obtair{r,t) one needs
To make the connection between E8) and a density func- the equal-time  two-point  correlation p®(r,r’,t)
tional description one has to implement some kind of aver;(l‘,(r,t);)(r',t»_ The simplest mean field approximation
aging over the instantaneous distribution of particles. assumespA(r,r',t)~p(r,t)p(r’,t) and gives a closed
Within the microscopic Brownian dynamics the obvious equation forp(r,t), but it would give quite pathological re-
way to proceed is to average over the realizations of thgults for the molecular core repulsions. Following the same
random noisez(r,t). We denote by brackets,...), the  procedure used fqs(r,t) we may obtain an equation for the
results of this averaging and in particular we define theime evolution ofp®(r,r’,t) which in turn depends on the
noise-averaged density(r,t)z(ﬁ(r,t)). In the equilibrium  three-point correlation. In fact e€L0) is only the first mem-
limit, when the system has been allowed to relax for longber of an infinite hierarchy of relations known as Born—
enough time under the Brownian dynamics, this averag®ogolubov—Green—Kirkwood—Yvon (BBGKY) integro-
would correspond precisely to the Gibbsian equilibrium av-differential equations connecting n-point functiongne-1)-
erage. In the study of the dynamics, out of equilibrium, thepoint functionst* As in the equilibrium case one can get
densityp(r,t) has to be interpreted as an ensemble averageapproximated results breaking the chain at any level. The so
as in a collection of colloidal systems with the colloidal par- called Kirkwood superposition approximation, replaces the
ticles at the same initial conditions but with differgtiher-  three-point correlation by a product of two-point correlations

Downloaded 09 Mar 2007 to 141.108.2.9. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 110, No. 16, 22 April 1999 V. M. B. Marconi and P. Tarazona 8035

as the next step after the mean field approximation and maig the direct correlation function, related to the functional
already give reasonable results for hard core interactions. inverse of the equilibrium two point density-density correla-
Here we propose a different strategy, a density function p{?(r,r’). The functionalAF[ po] serves to generate the
tional approach in which the two-point correlation function sequence of inverse linear response or direct correlation
may be approximated with the help of equilibrium free en-functions® upon functional differentiation with respect o
ergy density functionals. The excess free energy densitjet us emphasize that Eq6l2) and (13) are exact for the
functional AF[p] in principle contains all the equilibrium instantaneous potentia(r). Comparing these two equations
correlation structures in the system and, although the exaeind assuming that the equal time correlatig®(r,r’,t),
functional form is known only for very few systems, there averaged over the Brownian noise, may be approximated by
are workable and very accurate approximations for most syshat of the equilibrium system with the same density distri-
tems of interest. We may use the information contained irbution, we get the last term in E¢LO) as:
AF[p], about the correlation structure at equilibrium, to ap-
proximate(p(r,t)p(r',t)) in a system out of equilibrium. In J dr’(p(r,H)p(r’ H)YVV(r—r')=p(r,t)V
this way we get a generic, closed, dynamic density functiona (14)
relation for p(r,t) equivalent to Eq(11) with a clear inter-
pretation of the approximations involved. In summary, we have used the fact that at any instant we
Let us consider an equilibrium state of the system charcan find a fictitious external potentia(r) which equilibrates
acterized by an arbitrary profilg,(r) (the subscript 0 indi- the system, i.e., constrains its grand potential to be minimal.
cates the equilibrium averagewhich we shall eventually This minimum is characterized by the imposed density
take equal to the profilp(r,t) at a given instant. Such an profile po(r)=p(r,t) and by equilibrium correlations
equilibrium state certainly exists and represents a m|n|mumvo )(r,r’) consistent with it. The present approximation re-
of the grand potential functional provided we add an approplaces the true off-equilibrium pair distribution function
priate equilibrating external potential. One can prove, in fact{ p(r,t)p(r’,t)) by the equilibriump{®)(r,r’), and then uses
that for fixed temperature, chemical potential, and pair interthe equilibrium density functionahF[p] to obtain the rel-
actions there always exists a unique external potenotis) evant information on this function.
which induces the givepg(r). In other words, upon adding The assumption that the two routes, E@2) and (13),
the external potential(r), we would pin the system to be at are equivalent implies that the fluctuation dissipation theo-
equilibrium in a configuration corresponding to the instantatem holds, while in general, out of equilibrium, it is
neous average densipy(r,t); the potentialu(r) is a func-  violated!” In fact the relation connecting{?(r,r’) to
tional of po(r) and changes with asp(r,t) varies® c(r,r") (the O.Z equationis an exact equilibrium property
From the general properties of the equilibrium function-and is based on the idea that the correlation function is the
als we have that the following two exact equilibrium rela- matrix inverse of the second derivative of the functioRal
tions must be satisfied byy(r) and u(r). First, the local with respect topo(r).
balance of momentum at any point implies the BBGKY re- With Egs.(9) and (14) we may recast Eq.10) into the
lation, main result of the dynamic density functional approach,
based on the use of the equilibrium functiofdlp]:

SAF[p(r,1)]
op(r,t)

1
—— Vpo(r) + BV [Vey(r) +u(r)] ap(r,t) SF[p(r,t)]
po(r) A ZR
P V| p(r,t)V Sp(r 1) } (15
= fdr’ @D ryVV(r—r’). (12 which has the form of a continuity equatiofip/Jt+V -j
po(r) —0 i : : :
0, with the current of particles given by:
Second, the thermodynamic equilibrium implies that the SF[p]
functional derivative of[p] at any point is equal to a uni- jirity=—p(r,t)V—/—-— 5 (r) (16

form chemical potentiaju. Taking the gradient gives the

equation, first obtained by Lovett al,>*° The main features of thls approach are the following:

1 (@ F[p]is afunctional solely of the density field and thus
mvpo(fHﬂV[Vext(fHU(f)] Eq. (15) is a closed non linear equation fpfr,t).
(b) The equation is deterministic, but the variallér,t)
has to be interpreted as the instantaneous density op-
:_VW[BAF[I’O]] erator averaged over the realizations of the random
noise 7;(t). The contribution from the ideal gas en-
_ 1)y pr / tropy generates the diffusion term in Ed.1) and re-
J drier.r)Veo(r'), (13 flects the presence of the thermal noise.
(c) The only assumptions leading to E{.5) are that the
systems follows a relaxative dynamics, which may be
SAF[pq] described by the Brownian motion pf the particles in a
c@(r,r")= -8 Po thermalized bath, and that the instantaneous two-
Spo(r)Spo(r”) particle correlations are approximated by those in an

where
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equilibrium system with the same density distribution, tion should always give convex thermodynamic potentials
as given by thgexact or approximatgddensity func- and it requires the description of the phase transitions in
tional F[ p]. terms of the N-particle correlations, rather than in terms of a
one-particle order parameter.

Before concluding this section we note an interesting .
feature of the dynamics: using the equation of evolution for In the .present_context,_the use of approximate fr<_ae_ en-
p(r,t) it is straightforward to show that for any system with ergy density funcﬂongls with more than one local minima
closed or periodic boundary conditions, the dynamics alway?_Oses a pr_oblem of interpretation. Whﬁn the determmls,t,lc
tends to decrease the free energy functional, i.e., jume evolution Eq(15) gets trappeq- at_ a "metastable sta’Fe

it can never reach the true equilibrium state. In previous
dF[p] 2 attempts to useF[p] for dynamics, both De&n and
- J drp(r,t)| V 5 <0. (17 Kawasaki have kept an extra random noise term in Edp),

as a remnant of the original random noise in the Langevin

In the long time limit, the evolution of the system leads to itsdynamics. This random noise, allows the system to jump
equilibrium density distribution, which corresponds to a uni-Over any “metastability barrier” in a finite time but it leaves
form value of u= 6F/8p(r), i.e., the usual Euler-Lagrange the problem of identifying its origin and intensity. From our
equation in the equilibrium DF formalism. However, the tra- analysis it is clear that the use of the free energy density
jectories that lead to the minima & are not necessarily functional makes sense only for the densip(r,t)
along the directions corresponding to the maximum sIope.=<;3(r,t)>, averaged over the realizations gf(t) in the
The continuity equation, implies that the local conservationLangevin dynamics, and this averaging gives the determinis-
of particles is built in and imposes important constrains ortic Eq. (15). We proceed here to explore the results of the

the local changes qi(r,t). deterministic DDF formalism and come back to this point in
For any system with a finite number of particles there isthe conclusion section.
a unique canonical equilibrium density distributiqe(r), The practical use of Eq15) to study problems like the

which corresponds to the unique lo¢ahd global minimum  growth of a liquid drop from an oversaturated vapor seems to
of the exact free energy density functioriglp]. However,  pe limited. The classical Lifshitz—Slyozov—Wagner thédry
the use of approximations f&i p] may lead to the existence for the late stages of growth, beyond the critical droplet size,
of several local minima in which the dynamics of E¢B5) s given directly from Eq(15), even if we use the simplest
and (17) may get trapped; this deserves further commentjocal density approximation fof[p]. However, any avail-
Notice first that these local minima of the free energy densitygp|e approximations fof[ p], will be unable to describe the
functional, and the barriers between them, cannot be directlgarly stages of nucleation, as they do not include the effects
associated to the local minima, and to the barriers, of they long-range critical-like correlations. However, we now
potential energy in the Langevin description. Consider thgyaye density functional approximations with a good descrip-
dynamics of an ideal Brownian gas in an external potentiatjon of the short range correlation structure in highly packed
with two local minima, separated by a barriéy; the Lange-  gystems. The DF description of the freezing of a ligBifdor

vin representation requires the Gaussian naige) to allow e stydy of fluids confined to narrow pofésre the most
the particles to go over the barrier. The probability of such §emarkable achievements of the nonlocal density functionals
jump is proportional to exptV,,/T) and, for large barriers, it geyeloped in the last decades. We believe that the DDF for-
sets the scale of time for the equilibration of the system. The,,4ism may be used to study the dynamics of densely

same 'time scale appears in th.e exact Fokker'—PIanck rQprﬁélcked fluids taking full advantage of the description of the
sentation of Eq(11) through a different mechanism: the free ., ajation structure at short range, given by suitable ap-

energy landscape has a single minimum, at the equilibrium, o imations for the equilibriun[p]. The most interesting
density po(r) ~exf —Vex(r)/T], there are no free-energy (and difficul) problem would be the study of a closely

barriers, and the deterministic time evolution is set by thepacked system, which has not crystallized. The Langevin
particle current Eq(16) .a.long_ the func_tional path to equi!ib— description in Eq.(1) may give extremely slow dynamics
fium. When the equilibration requires moving partICIes‘since either the random noise has to take the system over

across a large potential barrier, the relaxation time is im]ar i - :
; . ge energy barrier@ike in the ideal gas described abgye
posed by the density therg(r,t) —exp(~V,/T), which may r it has to produce rearrangements which are only possible

produce a very weak current even if the gradient of the loc hrough unlikely correlations of many particles. Within the

chemical potential is Ia_rge. - . . deterministic dynamic density functional approach in Eg.
The presence of different local minima in approximate

free energy density functionals is often found in the use of(ls) this situation may be seen in two possible ways:

the density functional formalism for equilibrium properties. (1) The free energy landscape becomes rough and displays
The usual interpretation is that the global minimum gives the  many local minima, whose number grows exponentially
true equilibrium state, while other local minima are associ-  with the size of the systeft,and within our description
ated with metastable states, and phase transitions are de- the system would remain indefinitely trapped in any of
scribed as the crossover of different minifiahis is a(gen- these minima, unless it is annealed at a higher tempera-
eralized mean-field level of description, in which the phase  ture. The idea is that when a uniform liquid is forced to
transition is described in terms of an order parameter related have a density larger than the one corresponding to a
to the one-particle distribution functions. The exact descrip-  liquid at coexistence with the solid, the system starts
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developing inhomogeneous patterns, which are associ- 4.0
ated with local minima of the free energy?® One con-
jecture relates the origin of the glassy behavior in liquids
to the existence of these minima, as an extension of the
well founded theory of mean-field spin glas$és.

(2) Alternatively, the free energy landscapép] may be 2.5
smooth, with a single minimum, because the correlations .~
required to relax the system are described well enough X 2.0
by the free energy functional. In this case, the system <
will never get really frozen, until it reaches the true equi- 1.5
librium state, but the dynamics may become so slow that
it may appear to be frozen in any practical computation.
The slow dynamics of Eq15) may be a result of having
very low density along current pattagain, as in the
ideal gas aboveor of requiring very unlikely(but not 0.0
impossiblg correlations of many particles. This case —10
would correspond to the conjecture that the glassy be-
havior in liquids is due to a divergence in the viscosity,

and in the relaxation times, rather than to the existenc&lG. 1. Density profiles for a system &f=8 hard rods of unit length in
of a metastable freezing free expansion, at different times. The full lines are the results of the DDF

equation and the dots are the average over 2000 Langevin simulations. The
Within the dynamical density functional approach hay- results have been shifted in the vertical direction to allow a clear view.

ing one or the other way would be a result of using a worse

or a better approximation fdf[ p]. The configurations with

a very large escape time, when described by a good densifere are other equivalent ways to calculBtélike taking

functional, may appear like permanent stable states when thge \yeighting graining only towards the right, or towards the

dynamics is described with a poorer approximationHpp]. ety which yield the same value df for any density distri-

In the next section, we present explicit results for a simplg, tion. Using Eq(15) we obtain the following equation for
model in one dimension which displays these features angq time evolution of the density:

illustrates how the structure of the nearly frozen states may

be given by simple DF approximations, while the actual cal-  dp(x,t) #*p(x,t) 4
culation of the escape time may require a density functional a X2 X
giving good account of the many-particle correlations.

0.5

( p(x+ o,t)
PO\ T KT ol2D)

dVex
p(X!t) %

p(X—o,t) ” d

S — + R
Ill. APPLICATIONS TO 1D PROBLEMS EMPLOYING 1= n(x=0ol2t) X
THE EXACT FUNCTIONAL (21

Since neither the correctness nor the feasibility of thevhere we have chosen the energy units suchThat.
approach presented have been tested so far, we shall begin The first term in Eq(21) represents the diffusion equa-
comparing the two levels of description: the Brownian dy-tion for ideal gas case, the second term is the correction due
namics and DF dynamics and in order not to introduce unto the hard-rod interaction. It is worthwhile to point out that
necessary sources of discrepancies we consider a one dimeHX) p(x+ a)/[1— n(X+ o/2)] is just the two-point equilib-
sional hard-rod system, whose exact equilibrium DF isfium correlation functionp{®(x,x’) evaluated at contact,
knowr?®2” and which includes strong correlation effects duei.€., whenx’ =x+ o, so that this term takes into account the
to the infinite repulsion between the particles. collisions of the rod ak with the remaining particles on the

Long ago, Perci#8 was able to determine the exact form right hand side. Similarly the other term describes the inter-
of the free energy density functional for an assembly of hardictions with the left sector.
rods of lengtho. The excess functional due to the interac- ~ When the density profile varies very smoothigom-

tions reads pared with the hard-rod lengtthe second term may be writ-
. o o ten in terms of the local chemical potential and the com-
AF[P(X)]=f dxe[ n(x)]p(x+‘7 )+ p(x— al2) , pressibility and one obtains a diffusion equation with a
— 2 renormalized constant.
18
(18 A. Free expansion from a dense state
where .
Our first check has been to compare the results of Lange-
é(n)=—Tlog 1-n(x)], (19 vin simulations in Eq(1) with the results obtained by means
and the local packing fraction is defined as of the DDF Eqgs(15) and(21), using the exack[ p], for the
free expansion oN hard rods in absence of external poten-
X+ al2 . . . .
ﬂ(X)zf dx’ p(x"). (20) tial. In Fig. 1 we present the density profiles for a system of
X—al2 N=8 hard rods of unit lengthg=1. The temperature is
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no collisions and the results should be those of the ideal gas,
but the second term in the DDF in ER1), obtained with
the exactF[p], still gives a contribution, unless(x,t) p(x
+0,t)=0 for anyx. The reason is that in the exdefp] Eq.
(18), as for any density functional used in the DDF, the den-
sity distribution has to be interpreted in the grand-canonical
ensemble. It corresponds to a system in contact with a par-
ticle reservoir, in which the chemical potential is set to give
the average value df; however, the configurations contrib-
uting to the density distribution may have any number of
particles. In the system wittN)=1, there would be contri-
butions from the density distributions withN=2, 3,...
(compensated with the contribution witti=0), and these
contributions include the effects of the collisions.
In general, the fluctuation in the number of particles
opens a relaxation path which is not present in the Langevin
t simulations, carried with fixetll. This extra relaxation path
produces the faster damping of the oscillations in the density
FIG. 2. Mean squared displacements for systemidfard rods of unit  profiles and the larger diffusion rate of the DDF. The effect
length, in free expansion from highly dense initigl state. The full lines arejg important only in the intermediate stage of the expansion
the results of' the. DDF.equatlon and the open circles are the average ov%r - .
2000 Langevin simulations, for the respective valuedNef1, 8, and 20. ecause fot<1 the compreSS|b|I|ty of the system is too low
The dotted line is the result for any number of ideal, noninteracting, part0 have important fluctuations M and fort>1 the system is
ticles. so diluted that the total effect of collisions is negligible.

B. Collapse to a dense equilibrium state

fixed to T=1 and in the initial configuration, at=0, the In Fig. 3 we display the density profiles for a system of
rods are set at fixed positions separated by a distance 1.86ur hard rods falling to the bottom of a parabolic potential
between their centers. In the first stages of the time evolutiomell, BV.(x)=ax?, with a=10. Att=0 the rods are lo-
each rod develops a Gaussian density distribution, and theated atx= +3 andx= =6, well separated from each other.
superposition of all the rods gives a total density distributionDuring the first stages of the time evolution each rod follows
with strong oscillations, typical of tightly packed hard mol- a steady drift due to the external force and, at the same time,
ecules. With increasing time the packet expands, the oscillathey develop Gaussian peaks of increasing width, due to the
tions become weaker and then disappear. For very largerandom diffusion. The collisions between the two rods at
(not shown in the figurethe packet becomes very wide, with each side of the potential well become important for
p(x,t)<<1 everywhere, so that the collision term in Eg1) ~0.05; later the two packets collide and relax to the equi-
is nearly irrelevant. In that limit the system evolves like anlibrium density distribution, which is reached far=0.1,
ideal gas with a gaussian distribution of width proportionalwithin our numerical precision. The results of the DDF and
to \/2t. the average over 2000 Langevin simulations are in good
The dots in Fig. 1 are the average over 2000 Langeviragreement, although small discrepancies may be observed
simulations for the same system. The qualitative trend i$oth in the early drifting peaks and in the fialuilibrium)
similar to the DDF results, but the damping of the oscilla-profiles. The origin of these discrepancies is again the differ-
tions is clearly slower in the simulation. In Fig. 2 we presentence between the Langevin simulation with fixddand the
the time evolution of(x(t)?—x(0)?) for packets withN grand-canonical DDF. The final equilibrium density distribu-
=1, 8, and 20, to give a measure of the rate of expansiortion with the Langevin simulation corresponds to the canoni-
The dotted line is the exact result for the ideal gagt)?>  cal ensemble and for systems with small number of particles
—x(0)%)=2t, which is independent oN. For hard rods it is known to be different from the grand-canonical
there is a clear enhancement of the effective expansion ratdistribution?® In our case, the difference depends on the
because the rods at the two ends of the packet have a stromglue of the parametea, in the external potential: foa
bias towards moving away from the the packet. The result &1 the rods are very tightly packed, the compressibility is
this effect increases with because it acts until the whole very low and the fluctuations in the numbéare very small;
packet has expanded. Fo¢ 1 and any value oN the slope for a< the final equilibrium profile is very broad, without
of (x(t)?—x(0)?)=2t goes to the ideal value, but the en- oscillations, and the effect of the collision is too weak to
hanced expansion at smalproduces a shift of the values produce observable differences; but for intermediate values
with respect to the ideal gas. The comparison between tha~1 the difference between the canonical and the grand-
DDF and the average over 2000 Langevin simulations againanonical ensemble may be quite important and it is reflected
shows the same overall trend and also the same dependerinethe different time evolution predicted by the DDF and by
with N, but the DDF always gives a slightly larger expansionthe Langevin simulations. The use of a canonkggh] in the
rate. The case wittlN=1 offers a clear explanation for this DDF in Eq. (15 would, in all probability, give a better
discrepancy: with a single rod in the system there should bagreement between the two methods, but unfortunately we
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are not aware of any explicit canonical density functional for 10
interacting particles. Nevertheless, the use of the equilibrium
F[p] to include the role of the molecular correlations is al-

ways an approximation, so that even without considering the
difference in the thermodynamic ensemble, it was not obvi-

ous that the agreement between the DDF and the Langevin
simulation would be as good as observed in the precedingZ>* 6
figures. X

g

C. Relaxation through highly correlated states

The third check of the theory, being considered, is the
relaxation in a system which requires strongly correlated mo-
tions of all the particles. We place the hard rods in a periodic
external potentialVg,(X) = —V,cos(2mx), with minima at
any integer values of. The hard-rods length is taken as
=1.6, so that two rods cannot be at the bottom of nearest- .
neighbor wells. We take periodic boundary conditions with X
total IengthL:8 and seN=4 rods, which at the initial t'me FIG. 4. Density profiles of four hard rods of length=1.6 in a periodic
are at the bottom of every second well\&f,(x). The equi-  external potential with eight minima separated by the unit length. In the
librium density distribution, which may be obtained directly initial state the rods are in alternate minima, located at the odd integer

by the minimization of the exact free energy density func-values ofx, and the system relaxes towards the equilibrium state in which
Il the potential wells are equally populated. The full lines are the results of

tional, has _the full symmetry of the external potential, _SO thafhe DDF equation and the circles are the average over 2000 Langevin simu-
the relaxation process has to st averagehalf a particle  |ations. The results have been shifted in the vertical direction.

from the initially occupied wells to those wells which are
initially empty. However, the jump of a rod over the barrier,
to the next potential well, is not compatible with keeping the , i i
next rod at the bottom of its potential well. The system has td"‘mples and it becomes much slower for increasing values of

pay the extra energy of keeping the two consecutive rodéﬁ}vo ora. In ﬁgreemen;wnh our generf'lg}lbp.redmtlon qu;), i
away from the minima or it has to relay on a correlated!N® System flows to the unique equilibrium state, density

motion of theN rods, to shift from one subset of minima to peaks grow at the positions of the potential wells which were
the other one initially empty until the exact equilibrium density profile is

In Fig. (4) we present the time evolution of the density obtained. The comparison of the result clearly shows that the
profiles with 8V, =2 showing different times, for both the DDF equation, with the exact Percus free energy, approaches
DDF Egs. (15) ;nd (21) and the average of the Langevin the equilibrium state faster than the average of the Langevin

simulations over 2000 realizations of the noise. In both case%'mmat'on: Th|s difference is related agan to the use of d'_f'
the relaxation is slow(compared with the previous ex- erent statistical ensembles: the canonical Langevin equation

keeps constartl while the grand-canonicdi[ p] allows for
fluctuations in the number of particles, keeping only the av-
erage. The changes M in the DDF open a new relaxation
207 o path and gives a faster relaxation, even is the final equilib-
o 3 rium density profiles in the canonical and the grand-
canonical ensembles are very similar.

To get a quantitative description of the relaxation times
we define an order parameter which gives, at any time, the
relative difference between the occupation of the odd and the
even potential wells¢= (Nygg— Neven/N. The initial condi-
tion setsé=1 and the final equilibrium state corresponds to
&=0. Both in the case of the DDF and of the Langevin
dynamics we observe a pure exponential deédy)=-exp
(—t/7) so that whole process may be described by the relax-
ation time 7. The importance of the particle correlations in
the slowing of the relaxation dynamics is shown in Hig).
through the dependence of the relaxation time with on the
size of the hard coresy(o), keeping the same external po-
FIG. 3. Density profiles of four hard rods of unit length, collapsing to the tential. Both the Langevin dynamics and the DDF show a
equilibrium state, in a parabolic potential. The full lines are the results of thefast decrease of, by nearly two orders of magnitude, when

DDF equation and the circles are the average over 2000 Langevin simul : _ :
tions. The results have been shifted in the vertical direction and they corr(—?[jne rod size decreases fr 1.6 too=1, which makes the

spond, from top to bottom from=0.01 tot=0.09, at 0.02 intervals. The OCCUPaNCy of neighbor potential wells eas_ier- _
equilibrium state is very close to the later time results. The increase of the external potential amplitude, for
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100.0 The conclusion is that the DDF formalism, with the ex-
60.0— act equilibrium free energy density functional, is able to re-
@ s produce qualitatively the low relaxational dynamics of a sys-
30.0 tem produced by the packing constraints of molecular hard
cores. In our example the final equilibrium state, with equal
. occupancy of all the potential wells, represents a superposi-
—~ 10.0- tion of highly correlated states, in which all the particles are
3 . in alternate wells, either in the odd or the even positions. The
807 relaxation from the asymmetric initial state requires strong
3.0 e * correlations, with all the particles moving together or in cas-
. cade, and the unlikeliness of these correlations gives the long
8 . relaxation time. This process may be regarded gseay
1.0@ . , ' simplified simile of the relaxation from a very dense, non-
toe e crystalline initial state: the approach to equilibrium may re-
0.6 | ' | . 1 | quire the correlated rearrangement of many molecules, the

1.0 1.1 1.2 1.3 14 15 16 unlikeliness of these correlations produces relaxation times
which are so long that the system may appear as frozen in an
ill crystallized state.

FIG. 5. Relaxation timer for the system in Fig. 4 as a function of the rod

length o, for fixed amplitude of the external potentigV,=2, calculated

from the results of the DDF equatiof@ots and the average over 2000 |V. RESULTS WITH APPROXIMATE DENSITY
Langevin simulationgcircles, the dispersion of the data reflects the results FEUNCTIONALS
of 7= —t/log[&(t)] at different times.

(o}

The one-dimensional hard-rod system provides an inter-

esting test to the DDF, because we may use the exact equi-
fixed o= 1.6, produces similar results, as presented in Fig. 6iPrium density functional. Unfortunately, given the Hamil-
The relaxation time grows faster than exponentially withtonian describing a set oN interacting particles in a
BV,, and the results of the DDF follow from below the d-dimensional space, the exact free energy functlo'nal is in
general trend of the Langevin dynamics, over several ordeg€neral unknown, since the exactness would be equivalent to
of magnitude forr. For comparison we present in the samecalculating the _exact partition function of the model in any
figure the relaxation times for the ideal gas in the same exéXternal potential. Consequently one must rely on suitable
ternal potential. approximation schemes and, in the case of repulsive hard-
core interactions, there exist several approximate methods
which yield accurate resulfsThe requirements imposed are
first, one must recover the thermodynamic properties of the
homogeneous fluid; second, one must reproduce the structure
of highly inhomogeneous systems; finally, the approximation
must satisfy a number of exact relations.

Among the most successful density functionals approxi-
mations for the free energy of hard spheres we have those
known under the generic name of weighted density approxi-
mations(WDA). The main assumption is that for each par-
ticle, at some point, there is a contribution to the excess

free enggy;ﬁ[;(r)], which is a local function of a weighted

densityp(r), obtained by averaging the true density profile
p(r) over a small region centered @&t

T(BV.)

F(r>=f drw(]r—r'],p(r)p(t"). 22

The excess free energy per partict¥,p), is obtained
from the bulk equation of state and the weight function is set
to get a goodapproximate description of the bulk correla-
FIG. 6. Relaxation timer for the system in Fig. 4 as a function of the {jon structure. Different recipes have been used and in gen-

external potential amplitud@V,, for fixed rod lengtho=1.6, from the . . .
results of the DDF equation with the exdtp] (dots and full ling and the eral they require a densny dependent Welght fun&Po?ﬁ'

average over 2000 Langevin simulatidterge circles and dashed lingor ~ HOwever, even the simplest version in whigr) is taken
comparison we include the ideal gas resgétsall circles and dotted line  to be density independent and equal to the normalized Mayer

In all the cases the lines are a guide to the eye. We also include the resultginction. f =1 — exd —pBV(r—r')], is enough to give a quali-

of the DDF equation with approximate p]: WDA (+) and RY (X). The . o i
vertical dash-dotted line is the approximated location of the divergence oFatlve description of the hard-sphere freeﬁﬂg.

the WDA relaxation times, for larger values @V, the results of this In this S_eCtion we eXpl_Ore the consequences of using the
approximation do not decay t=0. DDF formalism, Eq.(15) with approximate forms foF[ p],
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so that the molecular correlations are represented by an apystems, with a level of approximation comparable to the
proximation to the true equilibrium correlations. To carry outaccuracy of the results for the equilibrium properties.

this analysis we study the same systems described in the The system studied in the last subsection provided the
previous section but instead of taking the exact Percus demost severe test for the DDF, since it was the case in which
sity functional, Eq.(18), we use an approximate description the molecular correlations played the most important role,
of the hard rods similar to those developed for hard spheresand this system is the one in which the the use of an approxi-
In particular, the WDA for hard rods with the exact bulk matedF[p] may lead to qualitative differences. We have
equation of state and the zeroth-order constant weight fungolved Eq.(15) with Eq. (25) for the same system di=4

tion takes hard rods in a periodic external potential as before and look
" for the relaxation from the asymmetric density distribution.
AFWDA[p(X)]zf dxg[p(x)]p(X), (23)  For the system presented in Fig), with o=1.6 andgV,
- =2., there is a qualitative difference with the results of using
with the exacte(p) given by Eq.(19) and the exactF[p]. With the WDA free energy the time evolu-
tion of p(x,t) goes to a stable very asymmetric profile, with
;(X): J'w dx’ p(x Yw(|x—x'])= Zifxde’p(X’). an orQer pgramet@=0.992_16, indicating that the pa_rt?c_les
— 0 Jx—0o remain mainly in the potential wells where they are initially

(29 located. The freezing of the initial asymmetry is only pos-

The time evolution equation from the DDF in E(.5) sible because the WDA equilibrium free energy for this sys-
with this density functional approximation is similar to Eq. €M has two different minima, with positive and negative

(21) but with the bracket in the second term given by values of¢, instead of the single minimum with=0 given
by the exactF[p]. The approximate inclusion of the hard-
SAFwpalpl 1/ p(x+o,t) p(X+a,t) core correlations in the WDA is not good enough to average
Sp(X) ) 1—;(X+0',t) + 1_;()(,0 over the two types of configurations which appear as sepa-

rated equilibrium states and, for the same reason, the DDF
p(x—a,t) p(x—a,t) equation cannot include the dynamic path between the two
- - oix—ot - 1—oix 0| (25  types of configurations.
px=a.t) px.) For lower values of the external potentiat higher tem-
Notice that the weighted densify(x) averages the density Peratur¢ we find that the final order parameter predicted by
profile from x— o to X+ o, while the variablen(x), in the  the WDA decreases, as in a phase transition. Indeed, the
exact DF, takes the average only over half that distancesplitting of the equilibrium state is nothing but a spurious
There is also a different combination of the functions evalufhase transition predicted by an approximiéfe]. Below a
ated in Eqs(21) and(25), but it is easy to check that in the Ccritical value of V,~0.7 the WDA recovers a single sym-
low density limit, truncating at second order in the density,metric equilibrium state wittg=0. The relaxation time di-
both equations become identical. This reflects that the WDA/€rges as we approach the phase transition and it is presented
includes the exact leading term of the molecular correlation$" Fig. 6 together with the results of the exdgftp]. This
in a density expansion, while the higher-order terms are apdivergence is obviously a spurious result of the approxima-
proximated. For the equilibrium properties it is known thattion used forF[p]. The only reasonable interpretation is that
this type of zeroth-order WDA overestimates the effects owhenever an approximate free energy density functional has
the hard-core packing and it becomes more accurate whetdifferent local minima, in which the DDF equation may get
the weight function is allowed to depend on the weightedirapped, the exact dynamics of the system would require
density. rather long times to relax the density along the functional
The results obtained with this approximate free energypath related to the “order parameter” of the spurious phase
for the problems A and B in the previous section are qualitransition. The DDF with the WDA is good enough to iden-
tatively similar to those with the exad[p]. In the free tify the slow density path, along the parameggrand it is
expansion of a dense state the WDA keeps the oscillations igood enough to describe the relaxation dynamics along other
p(x,t) for a longer time than the results with E@1), re- functional directions, but it cannot be used to describe the
flecting the overestimation of the hard core packing, but theelaxation ofé.
mean square displacements are very similar to those in Fig. We have checked that on improving the WDA, by in-
(2). The equivalent trends are observed in the problem Be¢luding the density dependence of the weight function, the
although there is some difference between the exact and ttepurious phase transition is shifted towards larger values of
WDA equilibrium states, the dynamics is rather similar. We 8V, . Again a better approximation for the equilibrium free
have also checked, in some cases, that the use of a bettemergy functional also gives a better account of the molecu-
WDA approximation, with the density dependence of thelar correlations in the DDF equation, since it is able to find
weight function expanded up to second order, gives resulteelaxation paths which “were not seen” by simpler DF ap-
closer to those with the exa&[p]. In this way we have proximations. However, wheBV, goes beyond a new
checked that the practical use of the DDF formalism does nahreshold valudi.e., when the exact relaxation time becomes
depend on having the exact equilibriufip]. The use of too large for the approximat€[ p]) the spurious phase tran-
WDA or other density functional approximations opens asition reappears.
wide road for the study of the dynamical properties of many  We have also tested the predictions of the DDF with an
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even simpler approximation for the equilibrium density func-namic modes and temperature gradients but may include
tional. This is the Ramakrishnan—YoussoufRY)  problems like the Brownian motion of colloidal particles and

functional®®’ sometimes referred as the HNC density func-the molecular rearrangements of highly packed systems,
tional approximation, which considers a functional Taylorwhen the collision time is much shorter than the relaxation
expansion of the free energy about a global mean depsity time. In the derivation of the approach we start with the

Truncating the series at the second oriégher order coef-  gyqchastic equations for the Langevin dynamics of Brownian
ficients are in general not knowene gets: particles and get a deterministic DDF equation for the time

B dependence of the density distributigr(r,t), which has to
AFgylp]=— Ef dr be interpreted as the ensemble average over the realizations
of the random noise in the Langevin dynamics. The equilib-
X j dr'[p(r) = pplcy(r=r")[p(r') = pul, rium DF formalism is used to go from a formal BBGKY

hierarchy, for the coupled dynamics of the n-particle distri-
(26)  bution functions, to a closed DDF equation fefr,t). The
wherec,(r—r') is the direct correlation function of a uni- assumption leading to this result is that the correlation struc-

form fluid with densityp, . The merit of the RY functional is ture in the system out of equilibrium is replaced by that in
that it is perhaps the simplest recipe and is easy to implemeitfie equilibrium system with the same density distribution.
numerically. However it requires that the system have a wellMoreover, we do not need to calculate the correlation struc-
defined mean densityp,, and it may become unreliable ture explicitly because its effects on the dynamics are given
when the density varies rapidly over a length scale of thelirectly in terms of the functional derivative &1 p].
order of molecular size. Notice that in our case using the RY  The main advantage of the approach, for practical pur-
approximation is equivalent to saying that during its evolu-poses, is being able to use the good approximations devel-
tion the system has the same two point correlations that iped for the free energy functional of hard-core molecules to
would have at constant densiy, . include the packing constraints in the dynamics of dense
In our one—dlmeq5|onal hgrd—rod system we may use th§ystems. We have presented several examples of one-
erat e corelaion tuncio of e bulk Nt 065 45 1% )i o o o DOF i e averae
' of Langevin simulations. The results, with the ex&gip],

with the second term bracket given b . o !
g y are always in qualitatively good agreement, even in those

SAFrylp] [ p(X+0a,t)—p(X—0,t) cases in which the dynamics becomes extremely slow, when
Sp(X) - 1- 7 the relaxation requires very unlikely correlations between the
particles. The main source of discrepancy is probably due to

n(X+ol2t)— n(x—al2}t) the fact that the free energy density functional developed for

*Po : (27 equilibrium always refers to the grand-canonical ensemble,

2
1= so that the DDF includes the relaxation through changes in

The application to examples A and B is uncertain be-the number of particles, while the Langevin dynamics keeps
cause they do not have a clearly defined mean density. In thg fixed. With the use of approximate density functionals, of
th'“?' examplle we have used Eq4s5) and (27) ‘,N'th the the same type as developed for realistic models in three di-
obvpus (?hO!Cep.b=l\.l/L=0.5 t9 g.et the relaxation .Of the mensions, we get an approximate description of the relax-
density distribution in the periodic external potential. Theation dynamics of a quality comparable to that for the equi-
results, in Fig. 6, show a surprisingly fast relaxation towardsIibrium properties arising from the sami[p]. In some

the symmetric density profile. This density functional ap- hen the role of th lati . .
proximation never has spurious minima, so that the dynamicgases' when t € role o the correlations is not too |mp9rtant
and the relaxation times are not too long, the approximate

is never trapped in asymmetric distributions, but the relax® ) i ) g
ation is even faster than in the ideal gas case, in clear cof=LP] is fairly accurate for the dynamic properties. In the

tradiction with the Langevin simulation. This shows an ex-third case, in which strong effects of the hard core packing
ample opposite to the WDA result, the effect of thelead to very long relaxation times, the difference between the

approximation for the free energy may be to underestimatéesults of the exact and the approximi{e] are qualitative
the packing effects. In this case there is no risk that thévoth for the equilibrium and for the dynamic properties. The
system gets trapped out of the true equilibrium, but the appresence of different local minima in the equilibrium free
proximation fails to describe the long relaxation times im-energy density functional produces, in the approximate DDF

posed by these packing constraints. equation, the permanent freezing of system in any of these
states, in contrast with the results of the exact free energy
V. CONCLUSIONS functiona'_

We have presented a dynamic density functional ap- In an interesting series of papers KawaSalérived a
proach for the relaxation of a classical system in terms of it§lynamic equation, in terms of a density functional hamil-
equilibrium free energy density function&[p]. The ap- tonianH[p], by a method different from ours, but his result-
proach is valid only when the velocity correlatiofiet in-  ing Fokker—Planck equation for the probability distribution
cluded in F[p]) are irrelevant, which excludes hydrody- of the density:
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made by the approximation #[ p], an error which is obvi-
V'P(f)V[T 3p(1) ously unknown until we make a better approximation. Oth-
erwise, the relaxation time given by the stochastic DDF in
SH[ p] these cases would just be a direct result of the uncontrolled
" Sp(r). Plo(r).t] @8 |evel of noise kept in the functional equation.

Within our deterministic DDF, the existence of frozen
is equivalent to our Eq(15), apart from the presence of a gtates in the local minima of the approxim&gp] should be
term due to the stochastic noiseplin Kawasaki Eq(28) is  interpreted as the signature of very long relaxation times, but
interpreted as a density operater(r,t), his approach is the only way to calculate how long these times are is to
equivalent to Dean’s Eq10); leading to a stochastic equa- improve the approximation for the equilibrium free energy.
tion for this density operator. The main qualitative differenceNevertheless, knowing the existence and the approximate
of this approach with our deterministic EG.5) is that, when  structure of these states, as given by workable approxima-
the approximate density functional for the equilibrium freetions for F[p], is already an interesting use of the DDF,
energy has different local minima, the random noise in thaogether with its use to study the relaxation process in those
DDF equation would always give a chance for changingcases in which there are no problems with different local
from one minimum to another. The long time average of theminima.
density would always be a superposition of the density in the  Finally, as a plan for future work, we can consider a
different local minima and the long relaxation times would systematic way to improve the use of the equilibriép]
appear as the result of high barriers between the locab estimate the correlation structure in the following terms:
minima. All these features may appear to be physically corwe tag particle number 1 and follow its positiog(t) sepa-
rect and to represent a qualitative improvement over the deately, while all the other particlesi €2, ... N) are in-
terministic DDF developed here. However, the use of thecluded in a density description, witp[r(t),r,t] as the
equilibrium free energy density functional requires always anoise-averaged conditional probability of finding a particle at
density defined as a thermal ensemble average, while Egositionr, and timet, if the tagged particle is at position .

(10) refers to the instantaneous density operator. The HamilNow, we may consider that tié— 1 particles are moving in
tonianH in Eq. (28) should also be a functional of the den- an effective external potentiaV,(r)+V(r—r;), which

sity operator,p(r,t), and it is a completely different math- also contains the interaction with the tagged particle. The
ematical object that the excess free enefgj[p], as a equivalent to the DDF Eq15) may be applied to the con-
functional of the equilibrium densitg,(r). Thus, Eqs(10)  ditional densityp(r,,r,t), which is now coupled to the sto-
and (28) are correct, for the density operatofr,t) but im-  chastic equation for,(t). The advantage is that the correla-
possible to translate in terms of the equilibrium free energytion structure becomes partially described at the level of an
density functional. On the other hand, if these equations aréffective one-particle density in an effective external poten-
interpreted as equations for the ensemble averaged densifjgl, Which is in principle much easier to describe with ap-
p(r,t), the random noise term would lead to a double countProximate free energy density functionals. This type of de-
ing of thermal fluctuations in the equation fp(r,t). In  Scription would be similar to the “reaction path” description
particular, it would lead to a wrong equilibrium distribution, Of chemical reactions, in which one, or a few, variables are
as can be verified in the simple case of non interacting parused to describe the relevant functional directions for the

ticles for which the FPE in Eq28) converges to a probabil- changes in the molecular conformations. However, the for-
ity distribution: mal and the practical use of density functional approxima-

tions along this line is still an open problem.
Ped p(r)]~exp(—F[p]l/kgT)

PO __ [

ot Sp(r)
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