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We present the detailed analysis of the diffusive transport of spatially inhomogeneous fluid mix-
tures and the interplay between structural and dynamical properties varying on the atomic scale.
The present treatment is based on different areas of liquid state theory, namely, kinetic and density
functional theory and their implementation as an effective numerical method via the lattice Boltz-
mann approach. By combining the first two methods, it is possible to obtain a closed set of kinetic
equations for the singlet phase space distribution functions of each species. The interactions among
particles are considered within a self-consistent approximation and the resulting effective molecular
fields are analyzed. We focus on multispecies diffusion in systems with short-range hard-core re-
pulsion between particles of unequal sizes and weak attractive long-range interactions. As a result,
the attractive part of the potential does not contribute explicitly to viscosity but to diffusivity and
the thermodynamic properties. Finally, we obtain a practical scheme to solve the kinetic equations
by employing a discretization procedure derived from the lattice Boltzmann approach. Within this
framework, we present numerical data concerning the mutual diffusion properties both in the case
of a quiescent bulk fluid and shear flow inducing Taylor dispersion. © 2011 American Institute of
Physics. [doi:10.1063/1.3608416]

I. INTRODUCTION

Modern applications in science, medicine, and technol-
ogy require a better understanding of the molecular mech-
anisms controlling the flow of liquids near solid substrates
and at interfaces.1–4 It is well known that structural and trans-
port properties of highly confined fluids or near free sur-
faces differ from their bulk behavior due to the large surface
to volume ratio.5 Many phenomena occurring at molecular
scales, such as diffusion, mixing, shear thinning, and lane
formation, involve the interplay between microscopic struc-
tural and transport properties, which need the investigation
of the long-time flow behavior. This task is computationally
very demanding for approaches, such as molecular dynam-
ics, so that alternative methods are desirable. Some of these
alternative approaches are intermediate between macroscopic
thermodynamic and truly microscopic methods and have the
scope to incorporate molecular details, at the price of a limited
amount of numerical effort. Among these, the dynamic den-
sity functional theory (DDFT) and direct simulation Monte
Carlo (DSMC) are prominent numerical methods. DSMC is a
direct particle simulation method based on kinetic theory and
its basic idea is to follow the trajectories of a large number
of statistically representative particles and stochastical colli-
sions are modeled using scattering probabilities. It gives re-
sults which are accurate on scales shorter than the mean free
path.11, 12 The DDFT assumes that the evolution of the system
is determined by a “thermodynamic force,” which is the func-
tional derivative of the free-energy functional F with respect
the local density.6–10 In DDFT the state of the solute particles
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at time t is described by the average density n(r, t), while the
solvent is assimilated to a continuum whose interactions with
the solute are modeled via a stochastic heat-bath mechanism.
However, this approach is inappropriate to describe the hydro-
dynamic behavior of simple liquids and liquid mixtures since
within the DDFT picture the momentum transport can only
occur via diffusion, but not via convection.13–16

On the contrary, kinetic methods extending the Boltz-
mann equation to the dense fluid regime can in principle de-
scribe both the thermodynamic and the hydrodynamic behav-
ior of simple fluids. In spite of its great historical relevance in
statistical physics, the Boltzmann-Enskog approach has rarely
enjoyed the due attention in the area of inhomogeneous flu-
ids, apart from some notable exceptions.17, 18 The reason per-
haps being that, under spatially inhomogeneous conditions,
numerical solutions of the equation are impractical. However,
the situation has changed with the advent of modern lattice
techniques for solving the Boltzmann equation, collectively
named the lattice Boltzmann method (LBM).19–22 The simul-
taneous discretization of positional and translational degrees
of freedom enables the efficient solution of such an equa-
tion by brute force. On the other hand, the application of the
LBM to small systems is usually considered to be outside the
realm of applicability of kinetic methods, but routinely treated
within the DDFT approach, provided that the considered sys-
tems are not too far from local equilibrium conditions.

In a series of recent papers, we proposed a formulation
of the Boltzmann-Enskog theory which is thermodynamically
consistent, gives satisfactory values to the transport coeffi-
cients and lends itself to numerical solutions within the LBM
framework.23–25 The method proved to provide reliable re-
sults in simple geometrical setups and was later extended to
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multicomponent fluids and to their rich and fascinating phe-
nomenology. In the present paper, we investigate further is-
sues related to the multicomponent system with special atten-
tion to the diffusive behavior.

Following few significant studies published on the
subject,26–30 but differing from ours in the treatment of the
short-range correlations, we represent the evolution of the sys-
tem in terms of the singlet phase space distribution functions,
f α(r, v, t), referring to species α. The governing kinetic equa-
tions and the balance equations for the density and momentum
current of the individual species, obtained in previous work
employing the multicomponent extension of the method of
Dufty and co-workers,31 are briefly summarized in Sec. II to
render the paper self-contained. These balance equations in-
volve different kinds of forces which are the subject of the
analysis of Sec. III resulting in an identification of hydrostatic,
capillary, viscous, and drag forces in terms of microscopic
parameters. In Sec. IV, we specialize the theory to a binary
mixture and in Sec. IV A, we turn our attention to the evo-
lution of the local concentration and show how to derive mi-
croscopically the advection-diffusion equation under suitable
assumptions. In Sec. IV B, we perform a hydrodynamic anal-
ysis of the coupled set of balance equations in order to illus-
trate the response of a nearly homogeneous mixture to small
deviations from the local equilibrium state. Finally in Sec. V,
we solve numerically the transport equation utilizing the ex-
tension of the lattice Boltzmann (LBM) method proposed in
Ref. 25, where the positions are discretized on a lattice and the
velocities discretized over a small basis set. This strategy ren-
ders the computations efficient and numerically stable. The
method was validated against the diffusion of a small peri-
odic inhomogeneity for several values of the bulk parameters.
We have also numerically studied the coupling between mi-
croscopic diffusion and a non-uniform velocity field, a prob-
lem known as Taylor dispersion.32 A numerical comparison
between the analytical work and the numerical solution of
the model shows a satisfactory agreement with the theoretical
predictions. We conclude this section by discussing the role
of the attractive tails in determining the diffusion coefficient.
Finally, Sec.VI contains some concluding remarks.

II. MULTICOMPONENT TRANSPORT EQUATION

In the present paper, we shall employ a recent method
to describe the isothermal transport properties of a mixture.25

The idea is to simplify the transport problem by approximat-
ing the interaction term in such a way that non-local corre-
lations, giving rise to the microscopic structure of the fluid,
are taken into account. The approximation determines a non-
trivial dependence of the transport coefficients on the density
profiles. In a recent paper,25 we have derived the evolution
of the singlet phase-space distribution function, f α(r, v, t),
characterizing the state of species α, of mass mα , in a M-
component fluid mixture, by means of the following transport
equation:

∂

∂t
f α(r, v, t) + v · ∇ f α(r, v, t) + Fα(r)

mα
· ∂

∂v
f α(r, v, t)

= −ω[ f α(r, v, t) − ψα
⊥(r, v, t)] + �α(r, t)

kB T

·(v − u(r, t))ψα(r, v, t), (1)

where Fα is an external body force acting on species α, T is
the uniform temperature of the system, and kB is the Boltz-
mann constant. The central quantity of Eq. (1) is �α(r, t),
which bears the result of collisions between particles and
whose details will be given below. In addition, ψα is the local
Maxwellian equilibrium of specie α,

ψα(r, v, t) = nα(r, t)

[
mα

2πkB T

]3/2

exp

(
−mα(v − u(r, t))2

2kB T

)
,

(2)
and the distribution ψα

⊥ shares to the same average density and
velocity as the actual distribution f α ,

ψα
⊥(r, v, t) = ψα(r, v, t)

×
{

1 + mα(uα(r, t) − u(r, t)) · (v − u(r, t))

kB T

}
.

(3)

Equations (1) and (2) contain the fields nα, uα, u, the average
partial number density of the component α, its average veloc-
ity and the barycentric velocity of the mixture, respectively.
The first two quantities are defined by(

nα(r, t)

nα(r, t)uα(r, t)

)
=

∫
dv

(
1
v

)
f α(r, v, t). (4)

One also needs to specify the partial mass density, ρα(r, t)
= mαnα(r, t), the global number density, n(r, t)
= ∑

α nα(r, t), the global mass density

ρ(r, t) =
∑

α

ρα(r, t), (5)

and the barycentric average velocity at position r,

u(r, t) =
∑

α ρα(r, t)uα(r, t)∑
α ρα(r, t)

. (6)

Equation (1) is an approximate isothermal representation of
the revised Enskog theory (RET) kinetic equation33 where,
in order to obtain a workable scheme, the non-linear colli-
sion operator has been replaced by the two terms featuring
in the rhs of the equation. It is a simplified representation
of the multicomponent RET for hard sphere mixtures, which
contains two features that go beyond the standard Boltzmann
equation approach.34 The colliding particles are separated by
a distance equal to the sum of their radii and the collision fre-
quency is modified to take into account the excluded volume
effect through the introduction of the pair correlation func-
tion at contact in the collision integral. Such a pair correlation
function depends on the densities through a smoothing pro-
cedure. The first term in the lhs of Eq. (1) describes the fast
relaxation process towards local equilibrium and represents in
an approximate fashion the non-hydrodynamic part of the col-
lision operator. It contains ω, a collision frequency assumed
to be the same for all species.

The form of the first term in the rhs of Eq (1) is clearly
reminiscent of the Bhatnagar-Gross-Krook (BGK) relaxation
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term employed in the treatment of one-component systems.35

It contains an additional factor making the difference be-
tween ψα

⊥ and ψα . The factor multiplying the Maxwellian in
Eq. (3) serves to “orthogonalize” the term −ω[ f α − ψα

⊥] to
the term containing the effective fields, �α , as specified be-
low. Such a modification is necessary in order to produce the
correct balance equation for the partial momentum and to ob-
tain the correct form of the momentum equation for the indi-
vidual components (see Eq. (8)).

In the following, we consider the evolution of the partial
density and of partial momentum current. The first is obtained
by integrating Eq. (1) with respect to the velocity,

∂

∂t
ρα(r, t) + ∇ · (ρα(r, t)u(r, t))

+∇ · (ρα(r, t)(uα(r, t) − u(r, t)) = 0, (7)

where the last term in Eq. (7) is the so-called dissipative dif-
fusion current, measuring the drift of the α-component with
respect to the center of mass velocity.

Multiplication of Eq. (1) by mαv and integration with re-
spect to vα yields the balance equation for the momentum of
the species α,

∂

∂t

[
ρα(r, t)uα

j (r, t)
] + ∇i

(
ρα(r, t)uα

i (r, t)uα
j (r, t)

−ρα(r, t)(uα
i (r, t) − ui (r, t))(uα

j (r, t) − u j (r, t))
)

= −∇iπ
α
i j (r, t) + Fα

j (r)

mα
ρα(r, t) + �α

j (r, t)

mα
ρα(r, t), (8)

where

πα
i j (r, t) = mα

∫
dv(vi − ui )(v j − u j ) f α(r, v, t) (9)

represents the kinetic contribution of component α to the pres-
sure tensor. Here and in the following, the Einstein convention
on repeated indices is employed.

III. FORCE ANALYSIS

In Ref. 25, we derived an explicit expression for the ef-
fective fields, �α(r, t), for a model with repulsive hard sphere
potentials of different diameters, σαα and masses mα , plus
long-range attractive interactions with associated potential
term Uαβ . The central notion is that this quantity is a func-
tional of the density and velocity of each species. By treating
the repulsive contribution in the framework of the revised En-
skog theory,33 and the attractive term within the random phase
approximation (RPA),36 the effective field is represented as a
sum of forces of different nature

�α(r, t) = Fα,m f (r, t) + Fα,drag (r, t) + Fα,visc(r, t).
(10)

The first term represents the force acting on species α at po-
sition r due to the influence of all remaining particles in the
system and is the gradient of the so-called potential of mean
force. When the system is in thermodynamic equilibrium such
a force is related to the excess of the chemical potential37, 38

over its ideal gas value, μα
exc, of the α component by

the relation

Fα,m f (r, t) = −∇μα
exc(r, t). (11)

Explicitly, using the form of the RET collision term and an at-
tractive potential tail, we obtain the following representation:

Fα,m f (r, t) = −kB T
∑

β

σ 2
αβ

∫
d ŝŝgαβ(r, r + σαβ ŝ, t)

× nβ(r + σαβ ŝ, t) +
∑

β

Gαβ(r, t), (12)

where σαβ = (σαα + σββ)/2 and the integration in the first
term of the rhs is over the unit spherical surface, while the
last term represents the molecular fields associated with the
attractive forces

Gαβ(r, t) = −
∫

dr ′nβ(r′, t)gαβ(r, r′)∇rUαβ(r − r′).

(13)
The second and third terms of Eq. (10) carry a functional de-
pendence on the velocities, contributions that are neglected
in semi-macroscopic models of single or multicomponents.39

These terms are crucial for the correct characterization of dis-
sipation and diffusion in the condensed state and result in
density-dependent transport coefficients.

The second term in the rhs of Eq. (10) is the drag force
exerted by unlike species on the particle α in reason of their
different drift velocities

Fα,drag(r, t) = −
∑

β

γ αβ(r, t)(uα(r, t) − uβ(r, t)), (14)

where we have introduced an inhomogeneous friction tensor
via the equation

γ
αβ

i j (r, t) = 2σ 2
αβ

√
2μαβkB T

π

∫
d ŝsi s j gαβ(r, r + σαβ ŝ, t)

× nβ(r + σαβ ŝ, t). (15)

Finally, the last term in the rhs of Eq. (10) represents the vis-
cous force due to the presence of velocity gradients,

Fα,visc(r, t) =
∑

β

2σ 2
αβ

√
2μαβkB T

π

∫
d ŝŝgαβ(r, r + σαβ ŝ, t)

× nβ(r + σαβ ŝ, t)ŝ · (uβ(r + σαβ ŝ) − uβ(r)),

(16)

where gαβ(r, r + σαβ ŝ, t) is the pair correlation functions at
contact (|r − r′| = σαβ) and μαβ is the reduced mass μαβ

= mαmβ/mα + mβ for the colliding pair.
In the case of weak spatially periodic deviations from the

homogeneous reference state, it is possible to derive explicit
expressions for the effective forces discussed above. At first,
let us consider a slowly varying periodic variation of the den-
sities of the two species of the form

nα(r, t) = nα
0 (t) + δnα(t)eiq·r, (17)

where qσαβ � 1 and nα
0 are uniform densities. By substitut-

ing such a density profile into Eq. (12) and expanding the re-
sulting integrals up to second order in the parameter qσαβ , we
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find the expression

Fα,m f (r, t) � −iqeiq·r ∑
β

δnβ (t)

[
kB T

4π

3

(
σ 3

αβ gbulk
αβ

+1

2

∑
γ

nγ σ 3
αγ

∂gbulk
αγ

∂nβ

)
− wαβ

0 + 1

2
wαβ

2 q2

]
,

(18)

with wαβ
n = ∫

dr|r|nUαβ(r). The last term in the lhs of
Eq. (18) corresponds to the contribution to the local force
acting on the species α stemming from the attractive
interactions.38

Similarly, we estimate the viscous force by considering
uniform densities and a weak periodic velocity field u(r, t)
= u(t)eiq·r with uA = uB . We find

Fα,visc
⊥ (r, t) � −4π

15
q2u⊥(t)eiq·r ∑

β

σ 4
αβnβ

0 gαβ

√
2μABkB T

π

(19)
and

Fα,visc
|| (r, t) � −4π

5
q2u||(t)eiq·r ∑

β

σ 4
αβnβ

0 gαβ

√
2μABkB T

π
,

(20)
where we have considered the parallel and the perpendicular
part of the velocity with respect to the wave-vector q. As a
result we obtain

γ αβ = 8

3

√
2πμαβkB T gαβnβσ 2

αβ. (21)

IV. THE BINARY MIXTURE

In order to proceed with analytical work, it is more con-
venient to use variables as the local mass density and local
momentum variables together with concentration variables.
The new equations can be obtained by combining appropri-
ately Eqs. (7) and (8).

By specializing to a binary mixture, AB, the local con-
centration is defined as

c(r, t) = ρ A(r, t)

ρ(r, t)
. (22)

From the evolution equations (7) for the partial densities, the
mass continuity equation reads

∂tρ(r, t) + ∇ · (ρ(r, t)u(r, t)) = 0 (23)

and the conservation law for the local concentration

∂

∂t
c(r, t) + u(r, t) · ∇c(r, t)

+ 1

ρ
∇ · (ρ(r, t)c(r, t)(1 − c(r, t))w(r, t)) = 0, (24)

where we have introduced the velocity difference

w(r, t) ≡ uA(r, t) − uB(r, t). (25)

Using Eq. (8), the equation expressing the total momentum
balance reads

∂t u j (r, t) + ui (r, t)∇i u j (r, t) + 1

ρ
∇iπ

(K )
i j

− 1

ρ

(
n A(r, t)

[
F A

j (r) + F A,m f
j (r, t) + F A,visc

j (r, t)
]

+ nB(r, t)
[
F B

j (r) + F B,m f
j (r, t) + F B,visc

j (r, t)
]) = 0.

(26)

To proceed further, it is convenient to define the total local
chemical potential of each species A(B) through the equation

∇ jμ
A(B)(r, t) ≡ 1

n A(B)(r, t)
∇iπ

A(B)
i j (r, t)δi j − F A(B),m f

j (r, t),

(27)
where we used Eq. (11) for the non-ideal part and the relation
between the ideal gas pressure and the chemical potential of
an ideal gas. In the isothermal system, the gradient of the total
thermodynamic pressure is defined as

∇ j P(r, t) ≡ n A(r, t)∇ jμ
A(r, t) + nB(r, t)∇ jμ

B(r, t)
(28)

that can be seen as a special case of the Gibbs-Duhem equa-
tion.

In the following, we shall use the fact that the ki-
netic contribution to the gradient of the pressure tensor, π

(K )
i j

= π A
i j + π B

i j , can be written as

∇iπ
(K )
i j � δi j∇ j Pid − η(K )

(
1

3
∇i∇ j ui + ∇2

i u j

)
, (29)

with Pid = kB T (n A(r, t) + nB(r, t)) and η(K ) = kB T/ω

(n A(r, t) + nB(r, t)). As shown in Ref. 40, in the limit of
small gradients also the non-ideal contribution to the viscous
force in the momentum equation can be written as

∑
α

nα(r, t)Fα,visc(r, t) � −η(C)∇2u

−
(

1

3
η(C) + η

(C)
b

)
∇(∇ · u), (30)

where the non-ideal contribution to the shear viscosity is

η(C) = 4

15

∑
αβ

√
2πμαβkB T σ 4

αβ gαβnα
0 nβ

0 , (31)

while the bulk viscosity is

η
(C)
b = 5

3
η(C). (32)

Notice that, within our approximations the kinetic contribu-
tion to the bulk viscosity vanishes: η

(K )
b = 0.

In order to derive an expression for w, we compute the
difference between the velocities of the two components using
Eq. (8) and derive the following equation:
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∂

∂t
w j (r, t) +

[
uM

i (r, t)∇i w j (r, t) + wi (r, t)∇i u
M
j (r, t)

)

− 1

ρ A
∇i

(
ρ A(ρB)2

ρ2
wi (r, t)w j (r, t)

)
+ 1

ρB
∇i

(
ρB(ρ A)2

ρ2
wi (r, t)w j (r, t)

)]

= −
(

1

ρ A
∇iπ

A
i j − 1

ρB
∇iπ

B
i j

)
+

(
�A

j (r, t) + F A
j (r)

m A
− �B

j (r, t) + F B
j (r)

m B

)
, (33)

with the abbreviation uM ≡ (uA + uB)/2 . Before studying
such an equation we shall make some considerations.

A. Homogeneous diffusion

The phenomenon of multicomponent diffusion has ever
since attracted a vivid interest.41–48 We shall specialize the
discussion to the binary mixture and consider first a system
where diffusion is the dominant mechanism to restore equilib-
rium, assuming that the global velocity of the fluid is nearly
uniform.

In Eq. (8) the inertial term, ∇i [ραuα
i uα

j ], is small with
respect to the terms associated with the viscous component
of the kinetic and potential parts of the pressure tensor (see
Eq. (16)), (∇iπ

α
i j + nα Fα,visc

j ), and their ratio is given by

∇i
[
ραuα

i uα
j

]
(∇iπ

α
i j + nα Fα,visc

j

) � ρu2/L

ηu/L2
= ρuL

η
= R, (34)

where L is the typical spatial scale of the gradients, u is the
velocity of the flow and η is the shear viscosity, and R is
the Reynolds number. In Eq. (33), the viscous term is also
negligible with respect to the chemical potential term

η∇2u

n∇μ
� ηu/L2

ρc2
s L

= 1

R
u2

c2
s

= Ma2

R , (35)

where cs is the sound velocity and Ma = u/cs is the Mach
number. Thus, in the regime of low velocities the ratio (35)
is small and the viscous force in Eq. (33) can be safely ne-
glected. Using Eq. (14), we rewrite Eq. (33) as

∂

∂t
wi (r, t) + ∇iμD(r, t) +

(
1

m A
γ AB

i j (r, t) + 1

m B
γ B A

i j (r, t)

)

× w j (r, t) =
(

F A
i (r)

m A
− F B

i (r)

m B

)
, (36)

where the appropriate thermodynamic field, μD , conjugated
to the concentration variable, c = ρ A/ρ, is the difference in
the chemical potentials per unit mass of the two components36

defined as

∇ jμD(r, t) ≡ 1

m A
∇ jμ

A(r, t) − 1

m B
∇ jμ

B(r, t). (37)

In the homogeneous case, the friction tensor is isotropic and
diagonal and can be written as

γ ≡ 1

m A
γ AB

ii (r, t) + 1

m B
γ B A

ii (r, t)

= 8

3
ρ

√
2πμABkB T

m Am B
gbulk

AB σ 2
AB . (38)

It can also be assumed that in Eq. (36) the variation in time of
w is slow, so that

w(r, t) = − 1

γ

{
∇μD(r, t) −

(
FA(r)

m A
− FB(r)

m B

)}
. (39)

Using the Gibbs-Duhem equation, Eq. (28), the chemical po-
tential difference can be expressed as

∇μD = ρ

nm Am B

(
∇(μA − μB) + (m B − m A)

1

ρ
∇ P

)
(40)

by substituting into Eq. (36), we find that in stationary
conditions,

w(r, t) = − D AB

kB T

{
∇(μA − μB) + (m B − m A)

1

ρ
∇ P

− n

ρ
m Am B

(
FA(r)

m A
− FB(r)

m B

)}
, (41)

where we have introduced the mutual diffusion coefficient
D AB (see Ref. 43) through the linear relation between the
velocity and the difference between the chemical poten-
tial gradients, the factor (kB T )−1 having been introduced
in the definition for dimensionality reasons. By comparing
Eqs. (39) and (41), we find

D AB = kB T

γ

ρ

n

1

m Am B
, (42)

which in the case of equal masses takes the simpler form
D AB = kB T /γ (1/m). Equation (43) relates a response quan-
tity, the friction coefficient γ to a fluctuation quantity, D AB ,
the mutual diffusion coefficient, according to the Einstein
relation.

Relation (41) expresses the fact that the diffusion velocity
is opposed to the gradient of the concentration field (propor-
tional to the first term within the parenthesis) and that heavier
molecules tend to move towards regions of higher pressure.
The last term in Eq. (41) corresponds to the so-called forced
diffusion. We have neglected the Soret effect, that is, the cou-
pling with the temperature gradient, being consistent with our
isothermal treatment. The appropriate extension of the present
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theory to thermal systems was proposed in Ref. 40. Using
Eq. (38), for γ , the mutual diffusion coefficient can be written
explicitly as

D AB = 3

8n

(kB T )1/2

(2πμAB)1/2(σAB)2gbulk
AB

, (43)

an expression identical to that derived from the Enskog
analysis.41 Moreover, assuming that the mass density varia-
tions are negligible and using the relation between the chemi-
cal potential difference μD and the Gibbs free-energy per unit
mass G(P, T, n, c),49

∂G

∂c
|P,T .n = μD,

we can write the advection-diffusion equation for the mass
concentration in the suggestive form

∂

∂t
c(r, t) + u · ∇c(r, t)

= 1

γ
∇

[
(c(r, t)(1 − c(r, t))∇ δG[c]

δc(r, t)

]
, (44)

which bears a close resemblance with the typical DDFT equa-
tion, with the Gibbs potential per unit mass G replacing the
Helmholtz free-energy per unit volume. In the case of a binary
ideal gas mixture (gbulk

αβ = 1) with equal masses, we recover
the standard advection-diffusion equation with a constant dif-
fusion coefficient

∂

∂t
c(r, t) + u · ∇c(r, t) = D AB∇2c(r, t). (45)

Notice that the present diffusion coefficient D AB corresponds
to the Enskog and not to the Stokes-Einstein expression, since
the underlying dynamics is purely Markovian.36, 40

Before concluding this section, we recall that, within the
random phase approximation, the presence of attractive tails
in the pair potentials does not produce any change on the co-
efficients of viscosity and thermal conductivity with respect
to their values in the hard-sphere system. This result is an ar-
tifact of the RPA method and is worse than the corresponding
result obtained via the Enskog method.41 However, the value
of the diffusion coefficient does depend on the potential tails
as pointed out in Ref. 50. In fact, the diffusion current is pro-
portional to the gradient of the chemical potential difference
μD of Eq. (37).

In Fig. 1, we display the behavior of the mutual diffusion
coefficient for a mixture of equisized hard-spheres as a func-
tion of the bulk concentration for three different values of the
bulk packing fraction. The relative strength of the attractive
tails was fixed empirically according to the geometric mean
Lorentz-Berthelot mixing rule51

w AB = √
w AAw B B (46)

and set w AA = 5kB T and w B B = w AA/2.
We observe that the presence of attractive interactions

tends to reduce the value of D AB . The largest deviation from
the unperturbed value occurs at concentration c = 1/2 and de-
creases at fixed packing fraction as the diameter increases.

0 0.2 0.4 0.6 0.8 1
c

0.5

0.6

0.7

0.8

0.9

1

D
/D

0

packing fraction=0.6 σ=4
packing fraction=0.3 σ=2
packing fraction=0.6 σ=2

FIG. 1. Ratio between the mutual diffusion coefficient with attractive tails
and the coefficient of a system without attractive tails as a function of concen-
tration. The mixture consists of equisized spheres with attractive potentials
whose strength is chosen according to the Lorentz-Berthelot mixing rule (46).
The hard sphere radii are σAA = σB B = 2 in one case and σAA = σB B = 4
and the packing fraction ξ3 = π/6(n Aσ 3

AA + nBσ 3
B B ) is kept fixed at values

0.6 and 0.3, while varying concentration. The effect of the potential tails is
the largest for equal concentrations.

B. Hydrodynamic analysis

We now turn our attention to the case where interspecies
diffusion is coupled to acoustic and shear modes. The fol-
lowing treatment will be based on linearized equations and
has the purpose of connecting the macroscopic hydrodynamic
properties, such as the dispersion relations of the propagating
modes and their damping, to the microscopic parameters of
the underlying model. After linearizing Eqs. (23), (24), (26)
and (33) around the state (ρ0, c0, u = 0, w = 0), we find the
following set of equations:

∂tδρ(r, t) + ρ0∇ · u(r, t) = 0, (47)

∂t u(r, t) + 1

ρ0
∇ P(r, t)

− 1

ρ0

(
η∇2u(r, t) +

(
1

3
η + ηb

)
∇(∇ · u(r, t))

)
= 0,

(48)

∂

∂t
w(r, t) + ∇μD(r, t) + γ w(r, t) = 0, (49)

∂tδc(r, t) + c0(1 − c0)∇ · w(r, t) = 0. (50)

We now insert the trial solutions, with δρ, δc0, u0, w0 con-
stants

δρ(r, t) = δρ0eζ t+iq·r, (51)

u(r, t) = u0eζ t+iq·r, (52)

δc(r, t) = δc0eζ t+iq·r, (53)

w(r, t) = w0eζ t+iq·r, (54)
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and separate the components of the velocities u and w into
their longitudinal and transverse parts (∇ × u = 0 and ∇ ·
u = 0, respectively, and similarly for w.) Choosing q along
the z axis, we rewrite

ζ δρ0 + iqρ0uz
0 = 0, (55)

ζuz
0 + iq

1

ρ0

(
∂ P

∂ρ

)
c

δρ0 + iq
1

ρ0

(
∂ P

∂c

)
ρ

δc0

+ q2 1

ρ0

(
4

3
η + ηb

)
uz

0 = 0, (56)

ζux(y)
0 + q2 η

ρ0
ux(y)

0 = 0, (57)

ζw z
0 + iq

(
∂μD

∂ρ

)
c

δρ0+iq

(
∂μD

∂c

)
ρ

δc0+γ w z
0 = 0, (58)

ζw x(y)
0 + γ w x(y)

0 = 0, (59)

ζ δc0 + iqc0(1 − c0)w z
0 = 0, (60)

where the upper indexes indicate Cartesian components of
the vectors. We define the kinematic longitudinal viscosity νl

= (4η/3 + ηb)/ρ0 and the kinematic shear viscosity ν

= η/ρ0. Since the model is isothermal there is no coupling
to the heat modes and the transverse velocities are completely
decoupled from the remaining variables. As a consequence,
the two shear modes describing standard diffusion of trans-
verse momentum can be represented as

ux(y)(r, t) = ux(y)
0 e−νq2t+iq·r. (61)

Similarly, the transverse component of the field w decays ex-
ponentially fast due to the presence of internal friction

w x(y)(r, t) = w x(y)
0 e−γ t+iq·r. (62)

The remaining four longitudinal modes are mutually coupled
and one has to consider the roots of the determinant∣∣∣∣∣∣∣∣∣∣

ζ iqρ0 0 0
iq
ρ0

(
∂ P
∂ρ

)
c ζ + νlq2 0 iq

ρ0

(
∂ P
∂c

)
ρ

iq
(

∂μD

∂ρ

)
c 0 ζ + γ iq

(
∂μD

∂c

)
ρ

0 0 iqc0(1 − c0) ζ

∣∣∣∣∣∣∣∣∣∣
.

For the hydrodynamic analysis, it is sufficient to compute the
roots of the associated fourth order secular equation to order
q2, so to obtain the following roots:

ζacoustic = ±icsq − �q2, (63)

with a sound velocity given by

cs =
√(

∂ P

∂ρ

)
c

(64)

and where

� = −1

2

(
νl +

(
∂μD

∂ρ

)
c

(
∂ P

∂c

)
ρ

/ (
∂ P

∂ρ

)
c

)
. (65)

The last term in Eq. (65) represents the damping of sound
waves by interdiffusion of the two species. Finally, the species
diffusion is associated with the eigenvalue

ζdiffusive = −D0q2, (66)

with

D0 ≡ 1

γ
c0(1 − c0)

∂μD

∂c
, (67)

which should be compared with the rhs of Eq. (44).

V. NUMERICAL VALIDATION

In this section, we compare some of the theoretical pre-
dictions with the numerical results obtained by applying the
lattice Boltzmann numerical solution of the coupled kinetic
equations (1). The discretized form of the equation has been
presented in detail in Appendix B of Ref. 25 and will not be
repeated here for the sake of brevity.

A. Molecular diffusion

We first determine the diffusion coefficient of a hard-
sphere mixture at various packing fractions and compositions
and then consider the effective diffusion coefficient for a sys-
tem subject to a special type of shear flow. In the case of
small perturbations around the equilibrium state, it is possi-
ble to obtain an analytical estimate of the so-called Taylor
dispersion.32

Let us first consider the relaxation of an initial concen-
tration gradient in a system with m A = m B , u = 0 and whose
global density is uniform. In the initial state, the composition
varies along the z direction as a sinusoidal wave of small am-
plitude, �, and given by the two distribution functions

f A(r, v, t = 0) = (n0 + � sin(qzz))e−mv2/(2kB T ),

f B(r, v, t = 0) = (n0 − � sin(qzz))e−mv2/(2kB T ). (68)

The diffusion constant is computed by monitoring the decay
of a particular peak of n A, which according to the theory,
decreases exponentially with an inverse characteristic time
1/τ (qz) = D ABq2

z . The extracted value of D AB as a function
of the packing fraction for several values of the bulk compo-
sition and different diameter ratios is reported in Fig. 2.

We observe that the mutual diffusion coefficient, D AB ,
increases as the concentration of large spheres increases at
fixed value of the packing fraction, according to the theoret-
ical prediction Eq. (43). On the other hand, at fixed concen-
tration and high packing fractions, the diffusion constant de-
creases as a function of the packing fraction.

However, in the low density region we find the unex-
pected result that the diffusion constant increases with the
packing fraction. This regime correlates with the fact that the
decay of the perturbation (69) does not decay diffusively, but
displays an oscillatory damped behavior.

This phenomenon occurs when the wave-vector of the
initial fluctuation is larger than a critical value qc = √

γ /4D.
This apparent deviation from the standard diffusive behav-
ior is the result of probing the system at small scales where
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FIG. 2. Numerical test of the diffusion process in bulk conditions. The ver-
tical axis represents a measure of the mutual diffusion coefficient obtained
from LBM simulations (all data expressed in LBM timestep units). We mon-
itored the evolution towards equilibrium of a sinusoidal concentration fluctu-
ation (see Eq. (68)) of wave-vector qz and extracted the characteristic decay
time, 1/τ (qz) = D ABq2

z . The plots report the inverse decay time versus pack-
ing for various values of the composition and diameter ratio and for a fixed
value of qz = 40.

standard hydrodynamics does not apply. However, since the
phenomenon occurs only at finite wavelength below a cer-
tain threshold it is not in contradiction with the hydrodynamic
picture presented above. The diffusion equation obtained in
Sec. IV A holds in the hydrodynamic regime when, as a result
of many collisions, the fluid has reached local equilibrium. In
terms of wave-vector and frequency, one requires qλm f �1
and ωτ�1 , where λm f is the mean free path and τ is the
mean collision time. At densities typical of a liquid the mean
free path is of the order of magnitude of the molecular size,
while in a very diluted gas λm f becomes large so that the range
of validity of hydrodynamic formulas shrinks.

The following simple analysis shows the origin of the
non-monotonic decay. We first decouple the “acoustic” modes
in the hydrodynamic matrix, by neglecting the derivative of
the pressure with respect to concentration and consider the
simplified equation (by neglecting (∂ P/∂c)ρ � 0),

ζ 2 + γ ζ + �q2 = 0, (69)

with � = c0(1 − c0)(∂μD/∂c)ρ . The following decay
frequencies,

ζ± = −γ

2
±

√
γ 2

4
− �q2, (70)

display oscillatory-damped behavior for concentration fluc-
tuations of wave-vectors q > qc with qc =

√
γ 2/4�. At low

density we can obtain an analytic expression for such a
crossover, since � � kB T /m and

γ = 8

3

√
kB T√
2πm

1

λm f
, (71)

where the mean free path is λm f = 1/
√

2πg(σ )σ 2n. In terms
of the wavelength Lc = 2π/qc, the transition from the dif-
fusive to the oscillatory damped behavior occurs when the

Knudsen number, expressing the ratio of the two character-
istic lengths of the problem, is

K n = λm f

Lc
= 4

3

1

(2π )3/2
� 0.08. (72)

In other words, if the wavelength of the fluctuation is of the or-
der of the mean free path, collisions are not frequent enough
to restore local equilibrium, which is the mechanism deter-
mining molecular diffusion.

Such an oscillatory decay of diffusive modes should be
contrasted with the behavior associated with a simple BGK
collisional kernel, which does not have such oscillations.52–54

In fact, in the latter the friction constant, γ , is not determined
self-consistently but enters as a free parameter and is usually
assumed to be a density independent quantity.

B. Taylor dispersion in a periodically modulated flow

In this subsection, we discuss a problem where one ob-
serves the interplay of a macroscopic and microscopic mech-
anisms. This occurs, for instance, when an inhomogeneous
concentration field is subjected to a non-uniform macroscopic
velocity flow. As discovered by Taylor such a situation deter-
mines an enhancement of the molecular diffusion in the direc-
tion of the flow, known as Taylor dispersion.32

The theoretical calculation, sketchly reported hereafter
for the sake of completeness, is based on a multiscale per-
turbation analysis. We refer to the work of Ref. 55 for mathe-
matical details.

We consider a box of length Lx and cross section L y ×
Lz and a fluid velocity ux (y) periodically modulated along the
y direction

u(r) =
(

−U cos

(
2πy

L y
+ π

)
, 0, 0

)
. (73)

The boundary conditions are such that at the extremes of the
box ux = −U , and at the center of the box ux = U .

In the diffusive regime the concentration obeys the three
dimensional advection-diffusion equation (45) with u given
by Eq. (73). However, the description can be contracted, using
multiscale techniques, and instead of studying the evolution
of the full concentration field one can focus attention on the
sectionally averaged concentration, C(x, t) given by

C(x, t) = 1

L y

∫ L y

0
dyc(x, y, t) (74)

in the presence of a laterally averaged velocity

U0 = 1

L y

∫ L y

0
dyux (y). (75)

The theory55 shows that the salient information about the
diffusive process is given by the following simpler one-
dimensional advection-diffusion equation

∂

∂t
C(x, t) + U0

∂

∂x
C(x, t) = Deff

∂2

∂x2
C(x, t), (76)

where the new coefficient Deff is due to the renormal-
ization of the standard molecular diffusion induced by the
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FIG. 3. Time evolution of the density (left column) and current (right col-
umn) in Taylor dispersion. The initial concentration modulation is along the
x direction, whereas the external field varies along the y direction accord-
ing a cosine law. In the left column, we report the evolution of the density
of the large species every 5 LBM timesteps. In the right column, we report
the evolution of the associated current in the y direction. Data correspond to
σAA = 8, σB B = 4, c0 = 0.5, Pe = 1, average packing ξ3 = 0.211, and for
a simulation box of 80 × 40 × 40. The color scale refers to both the density
and current plots. Both reported data are normalized according to the initial
values of the respective fields.

macroscopic velocity field ux (y). Its value is given by the
formula

Deff = D AB

(
1 + U 2L2

y

8π2(D AB)2

)
= D AB

(
1 + Pe2

2π2

)
,

(77)
where the Peclet number, Pe = U L y/2D AB , is the ratio
between the rate of advection and the rate of molecular
diffusion.

So far goes the theory. The above scenario can be
checked with a numerical calculation similar to that of
Subsection V A appropriately modified in order to account for
the presence of the field u(r). We assumed an initial concen-
tration inhomogeneity along the x direction under the form of
two initial density fields,

n A(x) = n A
0 + � sin(kx x),

nB(x) = nB
0 − � sin(kx x),

and verified that the homogeneous state is recovered expo-
nentially with a characteristic time 1/τ (q) = D AB

eff q2, that de-

FIG. 4. Time evolution of the density (left) and current (right) in Taylor dis-
persion. The fluid parameters are the same as in Fig. 3, but for Peclet number
Pe = 5.

pends on the strength of the applied velocity field and its
wavelength as predicted by Eq. (77) . In Figs. 3 and 4, we dis-
play the different stages of the evolution of the concentration
field in the left columns and of the velocity field in the right
columns, obtained from our LBM code, for two different val-
ues of the strength of the imposed velocity field. One can see

0 1 2 3 4 5 6 7
Pe

0

10

20

30

40

50

2π
2 [D

ef
f/D

-1
]

σΑ=4    σΒ=8    X=50%

FIG. 5. Mutual diffusion coefficients in Taylor dispersion obtained for pack-
ing fraction of 0.211 (circles) and 0.332 (squares, respectively). Filled sym-
bols correspond to a box of length Lx = 80, while open symbols to a box of
length Lx = 40. The dashed line corresponds to Eq. (77).
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that the concentration gradient tends to decrease as the time
increases and so does the concentration current. In a matter of
∼30 LBM timesteps the concentration gradient is barely vis-
ible and the currents have faded away. During its evolution,
the density field initially distorts in a quasi-parabolic shape
and subsequently in a v-shaped form, being more pronounced
at high Peclet. The current displays non-trivial patterns alter-
nating in time and position as time proceeds.

The numerical results obtained from our simulation are
checked against theoretical predictions, derived under the as-
sumption that the concentration field is assimilable to a pas-
sive scalar. Figure 5 displays the relaxation time for a concen-
tration inhomogeneity for various values of the Peclet number
and for two values of the packing fraction. The effective diffu-
sion increases quadratically as a function of the Peclet number
as predicted by the theory.

VI. CONCLUSIONS

Using a microscopic approach based on the multicom-
ponent Boltzmann- Enskog equation and a self-consistent
treatment of the interactions, we have studied the diffusional
properties of a mixture of hard-spheres. In order to obtain a
working scheme, we have employed a series of hypothesis
and approximations. First, we have assumed that the com-
plex many body problem can be represented by means of a
modified Boltzmann-Enskog equation, the RET, where only
configurational two-particle correlations are accounted for.
Since the RET requires a reasonable effort only in the case
of hard-sphere interactions, the attractive potential tails have
been treated within the RPA, an approximation which fails
to accurately reproduce the transport coefficients. A second
important simplification adopted is the method of Santos and
co-workers,31 where the slowly varying, hydrodynamic fields,
and the fast non-hydrodynamic ones are decoupled at kinetic
level, and the latter are treated in a simplified way. Third, we
only considered isothermal situations for the sake of simplic-
ity. The extension to non-isothermal systems will be the sub-
ject of future work. Finally, we have discretized the result-
ing transport equations on a lattice and employed the lattice
Boltzmann method to obtain numerical solutions.

The present method represents a valid alternative to pop-
ular mesoscopic techniques, such as the pseudo-potential-
lattice-Boltzmann method or free-energy based models (see,
for instance, Ref. 19 and references therein), that retain the
functional form of the equilibrium free-energy, but sacrifice
the possibility of determining the transport from the micro-
scopic pair potentials through controlled approximations. In
contrast, our approach leads in a quite natural fashion to
the determination of thermodynamic forces compatible with
the free-energy methods, but in addition determines self-
consistently the non-equilibrium forces necessary to guaran-
tee the correct hydrodynamic behavior.

We have obtained a derivation of the advection-diffusion
equation for the concentration and the self-consistent determi-
nation of the diffusion coefficient, which in the homogeneous
case reduces to the Chapman-Enskog value. The study of the
long wavelength and low frequency properties of the model

has been performed and agrees with the results obtained by
standard hydrodynamic analysis36, 56 of mixtures.

A second merit of the present formulation is to lend it-
self to numerical solution via the lattice Boltzmann method.
Our computational approach takes into account the dynamics
of flowing liquids on space-time scales of hydrodynamic in-
terest. These scales are out of reach for molecular dynamics,
which in principle describes ab initio the system, since the
probabilistic nature of the singlet distribution function does
not require averaging the data as in particle-based methods.
In addition, the proposed method can cope very naturally with
the critical situations of low concentrations of one species.

By simple numerical experiments, we have verified that
the present version of the LBM allows to extract the value of
the diffusion coefficient from the decay of small periodic con-
centration fluctuations. Moreover, we considered cases where
the Taylor dispersion mechanism provides an enhancement
of diffusion, thus further showing that the present numeri-
cal scheme is capable of handling molecular mechanisms to-
gether with driving forces acting on much larger scales.

We plan future applications of the present approach to the
study of non-uniform substrates, multiphase flows, and trans-
port in narrow channels.
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