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The dynamics of cooling inelastic gases and the evolution of their velocity fields is addressed by studying a
series of simplified models. We first discuss a model of inelastic hard particles, which shows an uncorrelated
transient phase (homogeneous cooling state or Haff regime) followed by the emergence of structures in the
velocity and density field. Motivated by the linear stability analysis of the Haff regime, which predicts the
appearance of density clusters only after the formation of structures in the velocity field, we focus our atten-
tion on the velocities of the gas particles. We study the so-called inelastic Maxwell model (IMM), first in a
version with infinite connectivity which is the analog of mean-field spin systems. Secondly, we embed the
model onto a lattice (in one dimension and two dimension), in order to observe spatial correlations. The
mean-field IMM has the advantage that it lends itself to analytical treatment: in one dimension we find an
exact asymptotic scaling solution for the probability density function (p.d.f.) of velocities. On the other
hand, the lattice version displays typical spatial features of an inelastic gas, e.g., the transient Haff regime
followed by the coarsening of structures in the velocity field (shocks in one dimension, vortices and shocks
in two dimension), the so-called ‘‘return to the Gaussian’’ phenomenon of the velocity p.d.f. observed in
MD simulations, etc. We show that the growth of structures in the lattice model is similar to that of domains
in a diffusive field, but presents a short-scale disorder (‘‘internal noise’’) which is induced by the randomizing
effect of collisions. In the lattice model, we can also establish the presence or absence of a mesoscopic scale
which is required for a hydrodynamics description of the field evolution.
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1. INTRODUCTION

Deriving the laws which govern the macroscopic behaviour of many-particle systems
far from thermal equilibrium is one of the main tasks of statistical physics and is
currently a subject of active study. Whereas equilibrium phenomena are rather well
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understood, a general framework for studying nonequilibrium phenomena is still not
available. The main obstacle to such a comprehension is the difficulty of combining
the statistical and dynamical descriptions. Hence, the study of specific models is man-
datory since it seems reasonable that the general picture will appear only by comparing
the behaviour of different systems driven out of equilibrium by varying an external
field, such as pressure or temperature. According to the particular conditions under
which an experiment is conducted, the system may or may not reach a steady state.
Fluids undergoing phase separation, or the ordering of magnetic materials, are ex-
amples of familiar and well-studied nonequilibrium processes (Bray, 1994).

More recently, there has been a surge of interest toward a different nonequilibrium
system, represented by a granular gas, i.e., an assembly of macroscopic particles,
which can be described as many-body systems with strongly repulsive and energy
nonconserving interactions. This system shows rather peculiar and intriguing features
both with respect to its static and dynamical properties. A dilute granular system,
subject to tapping, shaking or some other kind of external driving, which supplies
the energy dissipated by the inelastic collisions, may have a behaviour resembling
that of a standard fluid, but with interesting peculiarity. On the other hand, in the
absence of external forces it gradually loses its kinetic energy and comes to rest. In addi-
tion, it may become spontaneously inhomogeneous and form patterns. Such a behav-
iour, typical of the free cooling process, displays interesting analogies and
connections with other areas of nonequilibrium statistical mechanics such as ordering
kinetics (Bray, 1994), decaying turbulence (Frisch and Bec, 2001), etc. A gas of inelastic
hard spheres (IHS), due to its relative simplicity, represents a standard reference model
for fluidized granular materials (Goldhirsch and Zanetti, 1993; Pöschel and Luding,
2000). Many of its properties are well understood. In particular, a great deal of atten-
tion was devoted to the study of the cooling process that occurs when an assembly of
grains, initially in motion, evolves in the absence of any external energy feed.

Dilute granular flows can be described by including the presence of inelastic inter-
actions in the formalism of the Boltzmann equation, which governs the evolution of
the one-particle distribution function taking into account only binary collisions.
However, since the solutions of the Boltzmann equation, which is a nonlinear inte-
gro-differential equation, are not known for an arbitrary choice of the inter-particle
potential and of the boundary conditions, one has to resort either to approximations,
numerical solutions or alternatively to simplified models. In some of these simplified
models, it is possible to obtain closed solutions or at least a significant reduction of
the numerical effort.

The first example of such an attitude is represented by the attention dedicated to the
so-called Maxwell molecules. By an appropriate choice of the intermolecular potential
the collision rate becomes a simple function of the energy and the resulting Boltzmann
equation greatly simplifies. Several important studies have dealt with the treatment of
the Boltzmann equation for Maxwell molecules (see review (Ernst, 1981)), i.e., of energy
conserving systems. Among these, perhaps the most influential has been the work
of Bobylev (1975) and independently of Krook and Wu (1976, 1977), who found
exact similarity solutions for the model. After a period of relative calm, the advent
of granular systems has revived the interest toward Maxwell models (Ben-Naim and
Krapivsky, 2000). In the case of inelastic systems, in order to justify the major simplicity
of the Boltzmann equation, one cannot invoke a particular form of the inter-particle
potential, but has to assume its form as a definition. Nevertheless, the model displays
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a behaviour which parallels that of more realistic systems, but also shows statistical
features of great interest.

Inelastic Maxwell models are studied in the present article both in the absence of spa-
tial coordinates (homogeneous inelastic Maxwell model) and embedded onto a lattice,
in order to recover the information on the evolution of spatial structures, which is one
of the most outstanding features of experiments and theory in granular gases. Our aim
is to show that these models have properties that are interesting in a context that is
more general than granular physics. In particular, the results on the homogeneous
model are of importance for the general theory of Boltzmann equations, while the
lattice version is a rich and simple model which displays ordering kinetics features
with nontrivial peculiarities. However our starting point is the granular gas prototype,
i.e., the gas of inelastic hard particles, and most of our results are compared with its
properties, which are known from theory and numerical simulations.

2. THE MODEL OF INELASTIC HARD PARTICLES

Granular gases are defined, in the present article, as assemblies of inelastic hard objects,
i.e., particles that interact by means of instantaneous binary collisions. The inelasticity
is accounted through the so-called normal restitution coefficient, � 2 ½0, 1�, which
measures the fraction of normal relative velocity (i.e., the component parallel to the
line joining the centres of the colliding particles) which is conserved after the collision.
When � < 1 the gas is inelastic, energy is non-conserved and, most noticeably, the velo-
cities of the particles after the collision result more parallel than before the collision.
This is the mechanism that induces ordering at the microscopic level.

Let us consider a system of volume V containing N particles in d dimensions, which
perform rectilinear trajectories between collision events. When a pair collides a fraction
of the total kinetic energy is dissipated, but the total momentum is conserved. The
post-collisional velocities (v�1, v

�
2) are determined by the transformation:

v�1 ¼ v1 �
1

2
ð1þ �Þðv12 � r̂rÞr̂r, ð1Þ

where v12 ¼ v1 � v2, r̂r is a unit vector along the line of centres of the colliding spheres
at contact and � is the coefficient of restitution.

If an isolated granular gas is initially prepared in a state in which the density is
uniform and the velocities have a Maxwellian distribution, it will rapidly dissipate its
internal energy under the effect of the mutual inelastic collisions. The system evolving
from a homogeneously random state loses memory of its initial condition after a time
of the order of one collision per particle and rapidly enters the so-called homogeneous
cooling state (HCS). In this regime, in the low density limit, the temporal evolution of
the one-particle distribution function is described by the Boltzmann inelastic
equation (see for example van Noije and Ernst, 1998a). Under the molecular chaos
hypothesis we have

@t þ v � rð Þf ðr, v, tÞ ¼ Ið f , f Þ, ð2Þ
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where Ið f , f Þ is the inelastic Boltzmann collision operator. In the case of IHS one
obtains an explicit representation of the collision integral (van Noije and Ernst, 1998b):

Ið f , f Þ ¼ �d�1

Z
dv2

Z 0

dr̂rðv12 � r̂rÞ
1

�2
f ðv��1 , tÞf ðv��2 , tÞ � f ðv, tÞf ðv2, tÞ

� �
: ð3Þ

The prime on the r̂r integration enforces the condition v12 � r̂r > 0, where v��i represent
the precollisional velocities, which are functions of v and v2 and can be computed by
inversion of Eq. (1).

In the HCS, the system displays uniform density and kinetic temperature and a
vanishing coarse-grained velocity field. The kinetic definition of HCS is given by the
homogeneity ansatz plus the scaling ansatz for the one-particle distribution function:

f ðr, v, tÞ ¼
n

vd0ðtÞ
pðcÞ, ð4Þ

where c ¼ v=v0ðtÞ and v0ðtÞ is the thermal velocity defined by TðtÞ ¼ mv20ðtÞ=d with T(t)
the granular temperature; here we have assumed that

R
dcp ¼ 1.

In order to obtain the evolution equation for the granular temperature

TðtÞ ¼
1

d

m

n

Z
dv v2f ðv, tÞ ¼

1

2
mv20ðtÞ, ð5Þ

where m is the particle mass and n ¼ N=V , we multiply both sides of Eq. (2) by mv21 and
integrate over coordinate and velocity space. This yields

dTðtÞ

dt
¼ �

2

d
n�2�

d�1v0TðtÞ ¼ �2�!TðtÞ, ð6Þ

where, following (van Noije and Ernst, 1998b), the nondimensional quantity �2 is
defined as:

�2 ¼ �
1

v30

1

n2

Z
dv1v

2
1Ið f , f Þ: ð7Þ

The Enskog collision frequency, !, for inelastic hard spheres is

! ¼
�dffiffiffiffiffiffi
2�

p n�d�1v0, ð8Þ

and the nondimensional spontaneous cooling rate, �, is

� ¼

ffiffiffiffiffiffi
2�

p

d�d
�2, ð9Þ

where �d ¼ 2�d=2=�ðd=2Þ is the surface area of a d-dimensional unit sphere.
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To proceed further analytically, one assumes the distribution function to be a
Maxwellian:

fMðv, tÞ ¼
n

ð2�TÞ
d=2

exp �
v2

2T

� �
: ð10Þ

In this case, by solving the integrals, we obtain:

� ¼
ð1� �2Þ

2d
, ð11Þ

so that the temperature equation reads:

dTðtÞ

dt
¼ �

ð1� �2Þ

d
!TðtÞ: ð12Þ

By introducing the nondimensional time variable �, representing the average number
of collisions experienced per particle in a time t, and defined through d� ¼ !½TðtÞ� dt,
we obtain

Tð�Þ ¼ Tð0Þ exp ð�2��Þ, ð13Þ

and

� ¼
1

�
ln 1þ �

t

t0

� �
, ð14Þ

with t0 ¼ !½Tð0Þ�. Substituting such an expression in (13), we obtain

TðtÞ ¼
Tð0Þ

ð1þ �t=t0Þ
2
, ð15Þ

which constitutes the celebrated Haff cooling law. Notice that the cooling law depends
on the dimensionality only through t0, which represents the free time at the initial
temperature T(0). The result has been obtained by neglecting velocity correlations
and assuming spatial homogeneity.

Corrections to the constants appearing in Eq. (15) stem from a more careful consid-
eration of the HCS. When the volume fraction is nonnegligible, the Enskog–Boltzmann
equation should be employed instead of the Boltzmann equation. This is identical to the
Boltzmann equation but for a multiplicative constant in the collision integral that takes
into account static density correlations due to the fact that the gas is not perfectly
dilute. Very recently it has been shown (Pöschel et al., 2002) that there are also small
velocity correlations which must be considered and which modify the molecular
chaos hypothesis. With these correlations, the law T � t�2 is still valid but corrections
to the constant �0=t0 appear.

The Haff law can be also derived in the framework of granular hydrodynamics
(van Noije et al., 1997; Brey et al., 1998). In the HCS, hydrodynamics can be considered
valid as a consequence of homogeneity of the density and velocity field and of the slow
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temperature decay. The evolution of the (spatially uniform) temperature field is exactly
the same as in Eq. (15).

The velocity distribution functions do not display a Maxwellian shape during the
homogeneous cooling regime. The high-velocity tail is overpopulated, whereas the
bulk of the distribution is represented by a product of a Maxwellian and a series of
Sonine polynomials. Esipov and Pöschel (1997) found that the tail of the velocity
distribution function decays as expð�v=v0Þ. We shall see that a slow decay of the
velocity distribution is characteristic of systems undergoing inelastic collisions.

It turns out that even in the absence of external fields the HCS is unstable. In fact,
when the number of collisions per particle is sufficiently large, one observes a new
regime, where the system remains homogeneous in density, but the velocity field devel-
ops strong correlations. This is the result of the parallelization of the velocities of the
particles induced by inelasticity. A quantitative description of such a phenomenon
can be obtained by considering the linear stability of the hydrodynamic modes of the
HCS (Brey et al., 1996). Such an analysis shows that a sinusoidal perturbation of the
flow field, whose wavelength is long enough, decays slower than the energy mode of
the reference homogeneous state. Although this does not mean that the velocity field
grows in time, it is an indication that if the velocity field is rescaled by the square
root of its variance, then the growth of macroscopic structures (such as vortices) can
be observed. Goldhirsch and Zanetti (1993) suggested it as the physical mechanism
leading to the formation of high density clusters surrounded by rarefied regions.
It was shown that the formation of density clusters appears as a consequence of, and
therefore later than, the growth of structures in the velocity field. Therefore there is
an intermediate regime between the end of the HCS and the appearance of density clus-
ters. During this regime the velocity field develops spatial structures (and this is put in
evidence by a decay of the global kinetic energy which is slower than the Haff t�2

decay), while the density remains homogeneous. This consideration allows to study
the evolution of velocity spatial structures keeping homogeneous the density field,
a procedure which we follow in Section 4, where a lattice model with uniform
density is investigated.

3. MAXWELL MODELS

The technical difficulties associated with the Boltzmann equation have led to the intro-
duction of a new class of models, the so-called Maxwell models, which lend themselves
to a great deal of analytical work (Ernst, 1981). Recently there has been a renewal
of interest in these models as a consequence of the introduction of their inelastic
variant (Ben-Naim and Krapivsky, 2000) and the discovery of an exact asymptotic
scaling solution in 1D (Baldassarri et al., 2002).

There are two equivalent ways of introducing the elastic Maxwell models. The first
consists in modifying the collision integral in Eq. (3) (with �¼ 1) into a new one:

IMð f , f Þ ¼ �d�1SðtÞ

Z
dv2

Z 0

dr̂r f ðv��1 , tÞf ðv��2 , tÞ � f ðv, tÞf ðv2, tÞ
� �

, ð16Þ

where SðtÞ ¼ hðv12 � r̂rÞi is an ensemble average and is proportional to
ffiffiffiffiffiffiffiffiffi
TðtÞ

p
(Bobylev,

1975). The prefactor S(t) can be absorbed by a time re-parametrization t ! �.
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For elastic systems, this is justified by a suitable choice of inter-particle potentials: the
so-called Maxwell molecules have a scattering cross-section which is independent from
the modulus of the relative velocities, and further approximations on the angular
dependence lead to Eq. (16),

Alternatively one can refer directly to an underlying microscopic model which gives
rise to the same kinetic equation for the distribution function. Let us consider N
particles without positional degrees of freedom and characterized only by their
d-dimensional velocities. The dynamics of the system consists of a sequence of
events, where pairs of velocities ðvi, vjÞ are randomly selected and updated according
to Eq. (1), with �¼ 1. Since there is no true movement of the grains, the centre to
centre direction �̂� is randomly chosen with a uniform distribution in the d-dimensional
sphere (the ‘‘kinematic constraint’’ can be equivalently disregarded, as it would just
randomly avoid half of the collisions to happen). A unit time corresponds to N colli-
sions. This model, for two-dimensional velocities, has been put forward by Ulam
(1980). He showed how the velocity distribution asymptotically converges to the
Maxwell–Boltzmann distribution, independently from the starting distribution. It leads
to the same equation as (16) apart from the prefactor S(t), which can be eventually
included by slightly modifying the algorithm described above. The master equation
for this stochastic model (including the ‘‘kinematic constraint’’) can be easily written
down:

@

@�
f ðv, �Þ ¼

Z
dv2

Z 0

d�̂� f ðv��1 , �Þf ðv��2 , �Þ � f ðv, �Þf ðv2, �Þ
� 	

ð17Þ

Note that the main physical property that distinguishes the nonlinear Eq. (17) among
the family of nonlinear Boltzmann equations (2) is the fact that the collision rate
is independent of the energy of the colliding particles. This introduces a dramatic
simplification.

It is natural to extend the Maxwell model to the inelastic case, based on the simplest
rule (1) with �<1 which ensures momentum conservation during inelastic collisions,
by writing

I IMð f , f Þ ¼ �d�1

Z
dv2

Z 0

dr̂r
1

�
f ðv��1 , tÞf ðv��2 , tÞ � f ðv, tÞ f ðv2, tÞ

� �
: ð18Þ

The recent surge of interest in this model has been triggered by the discovery of an exact
solution (Baldassarri et al., 2001, 2002a,b) for the d¼ 1 case with particles having all
equal masses. In addition, many properties concerning mixtures with different
masses, m1 and m2, and or different coefficients of restitution have been obtained ana-
lytically. Extensions to d>1 cases (Ernst, 2002; Ben-Naim and Krapivsky, 2002) have
also been analyzed in detail. Let us begin with the simplest case, namely the one-com-
ponent Maxwell gas with scalar velocities, originally discussed by Ben-Naim and
Krapivsky (2000):

@f ðv, �Þ

@�
þ f ðv, �Þ ¼

1

1� �

Z
du f ðu, �Þf

v� �u

1� �
, �

� �
, ð19Þ

with � ¼ ð1� �Þ=2.
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In order to solve the nonlinear integro-differential Eq. (19) and to be able to treat
more complicated models, it is convenient to adopt the Fourier transform method
proposed by Bobylev (1975). One employs the characteristic function:

P̂Pðk, �Þ ¼

Z 1

�1

dv eikvf ðv, �Þ, ð20Þ

so that Eq. (19) can be rewritten as

@�P̂Pðk, �Þ ¼ �P̂Pðk, �Þ þ P̂Pð�k, �ÞP̂Pðð1� �Þk, �Þ: ð21Þ

Consider the expansion

P̂Pðk, �Þ ¼
X1
n¼0

ðikÞn

n!
�nð�Þ: ð22Þ

Substituting this expansion into Eq. (21), one obtains an iterative solution, moment
by moment. The energy decreases exponentially, since the second moment varies as
v20ð�Þ ¼

R
v2f ðv, �Þ dv ¼ v20ð0Þ exp½2�ð� � 1Þ��. Such a power series solution displays an

anomaly in the moments, because the rate at which the higher-order moments
vanish is lower than that of lower moments. This property seemed to rule out the poss-
ibility of a scaling solution, of the form f ðv, �Þ ¼ v�1

0 fs½v=v0ð�Þ�. However, one can seek
the solution under the form of a nonanalytic expansion for small values of k under
the form

P̂Pðkv0Þ ¼ 1� k2v20 þ Aðkv0Þ
�
þ higher-order terms,

and obtain the following transcendental equation for the indicial exponent �:

� ¼
�� þ ð1� �Þ� � 1

�ð1� �Þ
,

which has a solution for �¼ 3, independent from �. The presence of such a singularity
in the small-k expansion implies a slow asymptotic decay of the distribution function
f ðv, �Þ / v���1 for large values of the argument.

In Baldassarri et al. (2002a), the complete form of such a distribution was discovered,
which reads

P̂Pðkv0Þ ¼ ð1þ jkjv0Þ expð�jkjv0Þ, ð23Þ

and shows the presence of diverging moments of order n� 4 and of the predicted
nonanalyticity jkjk2 near the origin. Going back to the original velocity representation,
one finds:

f ðv, �Þ ¼
2

�v0ð�Þ 1þ v=v0ð�Þ½ �
2

� �2 , ð24Þ
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which is indeed a solution of the nonlinear Boltzmann Eq. (19). It is remarkable that the
form of such a solution is independent of the coefficient of restitution, � (Baldassarri
et al., 2001, 2002a,b), which only determines the rate at which the energy is dissipated.

3.1. Higher Dimensions

For higher dimensions, the problem of a scaling solution has been recently addressed
in (Ernst and Briton, 2002; Nie et al., 2002). The numerical indication shown in
Fig. 1 of large algebraic tails for models with d>1 has been recently confirmed by
several analytical studies (Ben-Naim and Krapivsky, 2002; Ernst and Brito, 2002).
These works compute self-consistently the exponents for arbitrary dimension consider-
ing the first singular term in the x ! 0 behaviour for the Fourier-transformed scaling
function P̂PðxÞ, with x ¼ kv0. First consider the isotropic solution

P̂PðxÞ ¼  ðx2Þ:

If the corresponding scaling solution has algebraic tails for large y of the form

f ðyÞ / y�2a�d ,
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d=2

FIGURE 1 Asymptotic velocity distributions Pðv, �Þ vs. v=v0ð�Þ for different values of restitution coefficient
(� � r) from the simulation of the inelastic Maxwell model in one dimensions (left) and two dimensions
(right). In one dimensions the asymptotic distribution is independent of � and collapses to Eq. (24). In one
dimensions, the chosen initial distribution (exponential) is drawn (same result with uniform and Gaussian
initial distribution). In two dimensions the distributions still present power-law tails, but the power depends
upon �: for �! 1 the p.d.f. tends to a Maxwell distribution. Data refer to more than N ¼ 106 particles.
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then its Fourier transform for small values of the argument is

 ðzÞ ’ 1þ
1

2
zþ

X
m<a

�2m

ð2mÞ!
zm þ Aza þOðzaÞ: ð25Þ

Inserting the form (25) in the Fourier-transformed equation for the isotropic scaling
solution and equating the coefficients of equal powers of z an equation for a can be
obtained. We refer to (Ben-Naim and Krapivsky, 2002; Ernst and Brito, 2002) for
the detailed derivation of the final transcendental equation:

1� � a�
d

2

� �
¼

Z 1

0

D� �a�d=2 þ 	a�d=2
� 	

, ð26Þ

where

D� ¼
��1=2ð1� �Þðd�2Þ=2

B 1=2, ðd � 1Þ=2ð Þ
d�, ð27aÞ

� ¼ 1� ½3þ �ð2� �Þ�
�

4
, ð27bÞ

	 ¼ ð1þ �Þ
�

4
, ð27cÞ

and � ¼ ð1� �2Þ=d, while Bðx, yÞ is the beta function which guarantees the proper
normalization

R 1

0 D� ¼ 1. Equation (26) (which can be solved numerically) gives the
exponent a for a generic dimension d>1 and restitution coefficient �. In the elastic
limit �! 1 the exponent a ! 1, indicating that one recovers the Gaussian
Boltzmann distribution tail. Results of our numerical simulations for the two-
dimensional case are shown in the right frame of Fig. 1. For �¼ 1 we recover the
asymptotic Maxwell distribution predicted by Ulam, whereas for �¼ 0 our data suggest
the formation of algebraic tails.

3.2. The Inelastic Maxwell Mixture

Interesting features also emerge when the inelastic Maxwell model is extended to treat
grains having different physical properties, such as unequal masses, different coeffi-
cients of restitution, different radii, etc. The binary Maxwell mixture with scalar velo-
cities was considered in (Marini Bettolo Marconi and Puglisi, 2002a,b). The system
consists of N1 particles of species 1 and N2 particles of species 2 endowed with scalar
velocities v�i , with � ¼ 1, 2 and i ¼ 1,N�. The two species may have different masses,
m1 and m2 and/or different restitution coefficients �11, �22, �12 ¼ �21. The
collision rule is modified in the following way:

v0�i ¼ v�i � ð1þ ��
Þ
m


m� þm

ðv�i � v
j Þ, ð28aÞ

v0
j ¼ v
j þ ð1þ ��
Þ
m�

m� þm

ðv�i � v
j Þ: ð28bÞ
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In order to construct the solution, one considers the Fourier transform of the velocity
distribution functions for the two components:

@tP̂P1ðk, tÞ ¼�P̂P1ðk, tÞ þ pP̂P1ð�11k, tÞP̂P1ðð1� �11Þk, tÞ

þ ð1� pÞP̂P1ð ~��12k, tÞP̂P2ðð1� ~��12Þk, tÞ, ð29aÞ

@tP̂P2ðk, tÞ ¼ �P̂P2ðk, tÞ þ ð1� pÞP̂P2ð�22k, tÞP̂P2ðð1� �22Þk, tÞ

þ pP̂P2ð ~��21k, tÞP̂P1ðð1� ~��21Þk, tÞ, ð29bÞ

where p ¼ N1=ðN1 þN2Þ, � ¼ m1=m2, and

��
 ¼
1� ��


2
, ð30aÞ

~��12 ¼ 1�
2

1þ �
ð1� �12Þ


 �
, ð30bÞ

~��21 ¼ 1�
2

1þ ��1
ð1� �12Þ


 �
: ð30cÞ

By expanding the characteristic functions P̂P� in powers of k one finds expressions for
the higher moments of the velocity distributions in terms of lower moments. In particu-
lar, one observes that the average kinetic energies of the two components are different,
but asymptotically decrease at the same rate, i.e., there is no energy equipartition.
In other words, their ratio reaches asymptotically a constant value, T1=T2 6¼ 1 (see
Fig. 2). Such a feature agrees with the result obtained in the framework of the
Boltzmann–Enskog transport equation by Garzò and Dufty (1999) for the IHS.
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The scaling solution for the inelastic mixture, can be obtained by extending the
method proposed by Ernst and Brito (2002) of the previous section, which gives a
transcendental equation for the indicial exponent, �, characterizing the singularity.
One finds that the velocity distributions associated with the two components in general
differ in shape and possess power law tails (see Fig. 3). Remarkably, the exponent
associated with these tails takes on values between 2 and 1, depending upon the
parameters of the system. In other words, it means that the inverse-power law tails
of the distribution are sensitive to the composition, to the mass ratio and to the
nature of the interactions in the mixture. The value of the exponent does not depend
on a simple way on the control parameters. The value �¼ 3 of the pure system repre-
sents only a special case. In fact, the larger the mass ratio the larger the deviation from
�¼ 3 (see Fig. 4).

4. MODELS WITH SPATIAL STRUCTURE

A large number of studies has been devoted to the dynamics of freely cooling granular
gases in various dimensions 1 � d � 3. In realistic models, such as the IHS model, as
mentioned above, inelastic collisions generate spatial correlations and determine the
formation of structures. The difficulties associated with the presence of strong spatial
gradients and nonlinearities, however, render extremely difficult a proper theoretical
understanding of the late stages of the cooling process. On one hand, due to the
neglect of velocity correlations, the Enskog–Boltzmann equation is not suitable for
investigating such a regime. On the other hand, inelastic Maxwell models, in view of
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the mean-field coupling by which each molecule may interact with all the remaining
molecules regardless of their relative position, are not able to reproduce any spatial
ordering. However, one can preserve the relative simplicity of the Maxwell models
and introduce a spatial structure by assigning N velocities to the N nodes of a regular
lattice. The initial velocities are chosen randomly from a Gaussian distribution. The
velocity of a particle changes only when it participates to a collision with one of its
lattice nearest neighbours, according to the rule in Eq. (1). The updating is performed
by a random selection of the colliding pairs and occurs only when the projection of the
relative velocity along the direction connecting the particles is negative. Other
variants of the model do not include such a kinematic constraint. Notice also that
the velocity of the ith particle is not the time derivative of its position and the particle
density is not a dynamical variable of the model and that the choice of colliding
particles does not depend on the modulus of the relative velocity. This is why we
consider this an ‘‘inelastic Maxwell model’’ embedded in a lattice. In this model the
only measure of time is �, i.e., the cumulated number of collisions per particle.
Recently the one-dimensional case of this model has been studied (Ostojic et al.,
2004), showing further remarkable connections with the one-dimensional gas of inelas-
tic particles.

4.1. The One-dimensional Lattice

First we consider the case of a linear lattice and of scalar velocities. In order to define
the model, let us assign N scalar velocities to the N nodes of a line and assume periodic
boundary conditions. The process consists of collisions between two neighbouring
nodes. Every colliding pair is chosen randomly with uniform probability, considering
only pairs with vi � vi�1 < 0, i.e., pairs that can physically collide (this is what we
call the ‘‘kinematic constraint’’). The collision rule is given, as usual, by Eq. (1). A
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FIGURE 4 Power of the singularity � of the solution of the coupled master equations for the mixture
model, as a function of the mass ratio � and the inelasticity parameter �11 ¼ �22 ¼ �12 ¼ � ¼ ð1� �Þ=2. Here
� is the restitution coefficient, and p ¼ 0:5.

NONEQUILIBRIUM BEHAVIOUR OF INELASTIC GASES 875



unit of time corresponds to N collisions: time is indicated with the symbol � in order to
recall that it is just a measure of the number of collisions in this process and cannot
directly be compared with time of simulations of realistic models. To show the simila-
rities between the dynamics of this lattice model and that of a simulation of N inelastic
hard rods moving on a line, we show the results of both systems.

The time-evolution of the kinetic energy per particle E ¼ ð1=NÞ
P

v2i is displayed in
Fig. 5. The lattice model (right frame) reproduces the Haff regime Eð�Þ � expð��0�Þ,
and successively displays a decay of the form ���1=2. The homogeneous Haff stage
is evident only in the case of quasi-elastic systems, whereas, in the more inelastic
cases one observes almost immediately the second regime. The expð��0�Þ decay of
the energy is expected during the initial stage of the evolution of the lattice system as
a consequence of the lack of correlation between colliding pairs. When the energy
decay departs from the Haff law, it is a signature of the emergence of correlations
between velocities. The hard rods system (left frame) presents again the Haff regime
(which, in the physical time, appears as E � t�2), and successively an energy decay of
the kind E � t�2=3. This second stage is again a consequence of velocity correlations.
It is not possible to make a strict comparison between the energy decay of the lattice
system with that of the hard rods system because the collision rate in the lattice
model is 1 even in the correlated phase, while in the hard rods model it changes with
time. Moreover, the simulation of the hard rods model is performed using a particular
‘‘regularization’’ that avoids inelastic collapse (Ben-Naim et al., 1999). A very small
cut-off velocity is chosen and, whenever the relative velocities of two colliding particles
are lower than this cut-off the collision happens with �¼ 1, i.e., elastically. If the value
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of the cut-off is changed but remains much lower than the square root of the minimum
energy E observed, the evolution of E(t) does not change at all, but the evolution of the
collision rate changes. Therefore the collision rate depends upon the ‘‘regularization’’
while the energy does not depend on it, and this makes a nontrivial mapping between
the time t, used in the hard rods simulations, and the time � used in the lattice model.
We will show that a good comparison can be obtained for other observables, using
the energy E itself as a clock. Another difference between the hard rods model and
the lattice one is the dependence on the restitution coefficient. The asymptotic decay
of the energy for the hard rods does not depend upon �, while depends upon it for
the velocities on the lattice.

The analysis of the probability density function (p.d.f.) of the velocities, Pðv, tÞ, pre-
sented in Fig. 6, is another indication that the lattice models have strong similarities
with the hard rods model, and also that in the second stage of the energy decay
there are strong correlations between velocities. In fact the homogeneous, uncorrelated,
version of the lattice model is the inelastic Maxwell model considered in the previous
section, for which a p.d.f. with power law tails is expected. On the contrary, the velocity
p.d.f. of the lattice model (which is obtained by simply applying the inelastic Maxwell
model on a two-neighbour topology) is identical to the velocity p.d.f. with two peaks
observed in the Haff regime of the hard rods system. This p.d.f. is compatible with
the solution of the Boltzmann equation for inelastic hard rods, which is a sum of
two delta functions (Benedetto et al., 1997).
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The observation of global quantities such as the energy or the velocity p.d.f. indicates
that the lattice model possesses an initial uncorrelated regime followed by a second cor-
related regime. It is therefore interesting to characterize the spatial structures of the
velocity field, starting with the analysis of the velocity profile. The comparison of the
velocity profiles of the lattice model with those observed in the hard rods system
must be carefully carried out whereas in the lattice model the particles cannot move.
As a consequence of this fact we find that a better comparison between the two
models is obtained when the profile vi of the hard rods system is plotted versus the par-
ticle index i instead of its position xi. Shocks are typical defects in the correlated regime
of the hard rods model as they appear as descending jumps of the velocity profile fol-
lowed by slow ascending slopes. Particles to the left and right of a shock continue to
collide, entering the shock, while particles in the slow slopes do not collide and flow
toward other shocks. In correspondence of shocks there are high density clusters of par-
ticles. Eventually the dynamics leads to only one cluster. Such a scenario is evident in
the top frame of Fig. 7. The good agreement between hard rods and the inelastic
Maxwell model on the lattice can be appreciated in the two bottom panels of the
same figure. Using as abscissa i instead of xi, the shocks observed in the simulations
of hard rods appear reversed and smoothed, making the v-profile very similar to the
one observed in the lattice model. In Ostojic et al., this comparison has been carried
on systematically. The authors have observed that the hard rods system, from the
point of view of the velocity profile, is equivalent to a lattice model with a peculiar
choice of the sequence of colliding pairs (the order is given by relative velocities and
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for the one-dimensional lattice model (bottom, vði, �Þ). In the middle frame we display the profile of the hard
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positions), and also that the dynamics on the lattice depends weakly upon the choice of
the order of colliding particles. This observations lead to the consideration that the hard
rods model and the inelastic lattice Maxwell model are in a sort of common class of
universality together with the gas of sticky particles, whose velocity profile is governed
by the Burgers equation (this has been also conjectured in (Ben-Naim et al., 1999).

A better characterization of the structures that appear in the velocity field after the
Haff regime can be achieved by considering the velocity structure function, shown in
Fig. 8. In the lattice model we obtain a good collapse of structure factors calculated
at different times � if we plot S(k) against k�1=2 � 1=Eð�Þ. This indicates that the corre-
lation length grows diffusively, i.e., L � �1=2 with L the typical size of structures in the
velocity field. The S(k) presents two main features: a large-scale Gaussian-like behav-
iour (expected for a diffusive dynamics), and a k�2 behaviour at high values of k
(short-scales) which is a signature of topological defects. The structure function for
the hard rods system, calculated for the velocity field vi as a function of i, is identical
to that coming from the lattice model. In this case the collapse is obtained using
kt2=3 � 1=EðtÞ as abscissa, revealing that a general ‘‘clock’’ for the growth of correla-
tions, valid in both models, is the energy E. Finally, we stress the relevance of the kine-
matic constraint. If one removes it, the resulting dynamics becomes equivalent to a
diffusive process for the velocity field, whereas the defects disappear.

4.2. The Two-dimensional Lattice

Here we present some aspects of the two-dimensional lattice model, with particular
emphasis to its spatial structure, determined by a new kind of topological defects,
namely vortices, not present in one dimension. The off-lattice counterpart of the
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model is the gas of inelastic hard disks. In two dimensions the particles are character-
ized by a 2-component vector velocity vi and are placed on a triangular lattice with posi-
tions ri. The velocities are updated in a random sequence and the kinematic constraint
requires ðvi � vjÞ � ðri � rjÞ < 0.

We first inspect the decay of the energy (Fig. 9), which shows again the presence of
two distinct regimes. The first exponential decay, representing the Haff regime, is the
result of the fact that during the initial evolution of the system the velocities remain
independent. Only when the statistical independence between velocities is reduced
and spatial correlations develop, the energy evolution becomes slower and follows a
��1 decay. The power law decay in the correlated regime is compatible with that
observed in the 1d model, and a general formula for any dimensionality E � ��d=2,
in agreement with the conjecture of a diffusive behaviour, can be extrapolated.

The rescaled velocity p.d.f.’s (see Fig. 10) are non-Gaussian in the homogeneous
(uncorrelated) regime: in such a regime the Boltzmann equation for hard disks predicts
exponential tails (Esipov and Pöschel, 1997) for the velocity p.d.f. and this prediction
seems adequate also for the lattice model. In the second stage of the energy decay,
when the Haff law ceases to hold, the velocity distribution appears more similar to a
Gaussian. Such a ‘‘return-to-the-Gaussian’’ phenomenon has been already observed
in inelastic hard disks simulations (Huthmann et al., 2000; Nakanishi, 2002; Nie
et al., 2002; Das and Puri, 2003). In this stage, however, the velocity field is far from
being homogeneous (as we show in the following), so that the Gaussian behaviour of
the global velocity p.d.f. could simply be the signature of the presence of many indepen-
dent domains.

In correspondence of the crossover from the Haff energy decay to the 1=� decay, one
can observe a dramatic change in the properties of the velocity field. The inelasticity has
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the effect of inducing an alignment of the velocities of neighbouring spins. At the same
time the conservation of momentum prevents a global alignment of all the vectors of
the velocities. The best alignment that can be obtained with the constraint of momen-
tum conservation is the formation of vortices and in fact they can be easily observed in
this regime, see Fig. 11. The presence of the ‘‘kinematic constraint’’ also induces shock-
like structures. The characterization of spatial structures is achieved by means of the
equal-time structure functions

St, lðk, �Þ ¼
X
k̂k

v t, lðk, �Þv t, lð�k, �Þ, ð31Þ

where the superscripts t, l indicate the transverse and longitudinal components of the
field with respect to the wave vector k and the sum

P
k̂k
is over a circular shell of

radius k. The collapse shown in Fig. 12, obtained by plotting several structure functions
measured at different instants against the rescaled wavevector k�1=2 indicates the pres-
ence of dynamical scaling. The small-wavevector portion of the structure functions,
associated with the growing size of the vortices Lð�Þ � �1=2, has a Gaussian shape ana-
logous to the one observed in the domain growth problem. The large-wavevector struc-
ture, which is more evident for larger values of �, reflects the internal noise, that is the
short-range disorder induced by the collisions. The less elastic system does not present
such a plateau, but a decay k�4 at small scales which is analogous to the Porod
law (Porod, 1951) is expected from the presence of defects in a phase ordering process.
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4.2.1. Shocks

Shocks in the velocity field are revealed by the distribution of longitudinal and trans-
versal velocity differences, defined as

UlðRÞ ¼ ðviþR � viÞ �
R

R
, ð32aÞ

UtðRÞ ¼ ðviþR � viÞ 	
R

R
, ð32bÞ

and whose analysis is shown in Fig. 13. The main graph contains the case R¼ 1, i.e., the
distributions of velocity gradients. Both the longitudinal and transversal components
are distributed with non-Gaussian tails, but the longitudinal component presents also
a strong asymmetry. This reveals that there are strong velocity differences in the direc-
tion of growing longitudinal velocity which are not counterbalanced by similar differ-
ences in the opposite direction. Such an asymmetry recalls the ‘‘shocks’’of the 1d lattice
model (the bottom panels of Fig. 7). On the contrary, when R 
 1, the distribution of
velocity differences is a Gaussian.

To summarize, vortices determine the algebraic decay of the velocity structure func-
tions, whereas shocks are responsible for the non-Gaussian shape of the probability
densities of longitudinal and transverse velocity increments. Instead, the plateau in
the tail of the structure functions is related to the internal noise mechanism, i.e., to
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the presence of short-range spatial fluctuations induced by the random collisions. A
small coefficient of restitution determines a rapid locking of the velocities of neighbour-
ing ‘‘spins’’ to a common value, whereas for �! 1, short-range small-amplitude
disorder persists within the domains, determining an appreciable deviation from the
scaling of St, l for large wavevectors.

4.2.2. Autocorrelations

To complete the analysis of the dynamics of the system we have considered the behav-
iour of the two-time self-correlation of the velocity components:

Cð�1, �2Þ ¼
1

N

X
i

við�1Þvið�2Þ: ð33Þ

There is a short-time transient during which the self-correlation is time translational
invariant (TTI), i.e., it depends only on �1 � �2. Later, Cð�1, �2Þ depends just on the
ratio x ¼ �1=�2, which is a feature of ‘‘aging’’ systems. The presence of such two regimes
is similar to what occurs during the coarsening process of a quenched magnetic system.
After a time �w from the quench, the self-correlation of the local magnetization
að�w, �w þ �Þ for � � �w shows a TTI decay toward a constant value m2

eqðTquenchÞ that
is the square of the equilibrium magnetization. This means that the local magnetization
is evolving in an ergodic-like fashion. Successively the self-correlation decays with the
aging scaling law indicated above. In our model the behaviour of the self-correlation
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is even more subtle, as the cooling process imposes a (slowly) decreasing ‘‘equilibrium’’
temperature Tquench ! 0. This progressively erodes the TTI regime and better resembles
a finite rate quench. The same dependence on the TTI manifests itself in the angular
autocorrelation, shown in Fig. 14:

Að�, �wÞ ¼
1

N

X
i

cos½�ið�w þ �Þ � �ið�wÞ�: ð34Þ

The nonmonotonic behavior of Aðt, twÞ suggests that the initial direction of the velocity
induces a change in the velocities of the surrounding particles, which in turn generates,
through a sequence of correlated collisions, a kind of retarded field oriented as the
initial velocity. As tw increases the maximum is less and less pronounced.

4.2.3. Hydrodynamic Scale

An open issue in the study of granular gases is the possibility of giving a hydrodynamics
description of their dynamics. The usual kinetic theory procedures (for example the
Chapman–Enskog expansion) require that there is a mesoscopic scale which separate
the fast modes, which decay rapidly in space and time, and the slow modes which
can be described by hydrodynamics equations. The existence of slow modes is usually
guaranteed by conservation laws, but the absence of energy conservation poses doubts
about the validity of scale separation for the temperature field. In the lattice model that
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we have introduced, it is possible to give an answer to such a question by defining the
average local granular temperature T� as

T� ¼ v� hv i�
�� ��2D E

�
, ð35Þ

where h� � �i� means an average over a region of linear size �.
If we call L(t) a characteristic correlation length of the system, since when � 
 LðtÞ

the local average, vh i� , tends to the global (zero) momentum, then lim�!1 T� ¼ E.
For � < LðtÞ, instead, T� < E. The behaviour of T� in the uncorrelated (Haff)
regime and in the correlated (asymptotic) regime for two different values of � is illu-
strated in Fig. 15. For quasi-elastic systems T� exhibits a plateau for 1 � � � LðtÞ
that identifies the strength of the internal noise (see also the plateau in the structure
factor, Fig. 12) and indicates the mesoscopic scale necessary for a hydrodynamics
description. The local temperature ceases to be well defined for smaller �, leading to
a scale-dependent granular temperature (Goldhirsch, 1999).

5. CONCLUSION AND PERSPECTIVES

To conclude, we have studied the kinetics of granular gases using different models and
following a path of increasing complexity. The mean-field inelastic Maxwell model
(or Ulam model) has an exact asymptotic solution for scalar velocities and, in general,
displays power law velocity tails; however it cannot account for spatial correlations and
therefore is a very poor approximation of an inelastic gas. The successive step is to
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embed the same model onto a spatial lattice. In one dimension with scalar velocities,
this lattice model is in a very good agreement with the kinetics of an inelastic hard
rod gas. The last step of this modeling procedure is to study the lattice model in two
dimensions, with vectorial velocity field. In this model, the expected asymptotic
decay of the energy is reproduced and the dynamics of the growth of correlations in
the velocity field is investigated by measuring the structure factors. The analysis of
the structure factors and the study of other statistical properties (e.g., the distribution
of the velocity gradients) indicate that the evolution of the model is consistent with that
of a diffusive model with corrections due to the kinematic constraint.

This lattice model has proved to be an efficient and useful tool in the study of the
cooling process in granular gases in one and two dimensions. It allows to bridge
between continuum description based on the application of the Boltzmann equation
and the field theoretical formulations of phase separation processes. In particular, lat-
tice models render to manifest the role of defects during the cooling process. In one
dimension such defects are shocks, in two dimensions they are shocks and vortices.
It remains to be investigated which defects determine the tails of the structure functions
in higher dimensions. If the leading contribution is represented by vortices, one should
expect to observe SðkÞ / k�d�1 for large values of k. Moreover, a preliminary study of
an inelastic lattice mixture has revealed that the model is able to capture the phenom-
enon of strong deviation from equipartition.
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