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Summary 

1) Thermal equilibrium in quantum mechanics: problems 

2) Hamiltonian as a Random Matrix: Quantum Chaos 

3) Bohigas-Giannoni-Schmit’s conjecture 

4) The Eigenstate Thermalization Hypothesis (too much?) 

5) An overlooked result: Von Neumann’s  ‘Quantum Ergodic Theorem’  

6) Thermal equilibrium in a classical integrable system: Toda 

7) A final remark: do we really care about integrability?  

8) The BGV’s conjecture  

9) Conclusion   



THIS PRESENTATION IN ONE SLIDE 

Theorem:  
ONLY VON NEUMANN REALLY 

UNDERSTOOD QUANTUM MECHANICS 

‘Proof of the Ergodic Theorem and the  
H-Theorem in Quantum Mechanics’  

arXiv:1003.2133 (2010) 

Translated from  
‘Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik’. 

 Zeitschrift für Physik 57 (1929). 

‘Long-Time behaviour of Macroscopic Quantum Systems’  
S. Goldstein, Joel L. Lebowitz. R. Tumulka, N. Zanghì, arXiv:1003.2129 

 (2010) 

Proof: Trivial 



QUANTUM MICROCANONICAL ENSEMBLE 

Quantum Mechanics 

Energy of the system: 

| i 2 H
Hamiltonian: a self-adjoint operator 
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Microcanonical Density Matrix ⇢̂E =
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Microcanonical Expectation hÔiE = Tr[ ⇢̂EÔ ]
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QUANTUM MICROCANONICAL ENSEMBLE 

QUESTION:  
CAN THE MICROCANONICAL 

AVERAGE BE REPLACED WITH THE 
TIME AVERAGE?  



QUANTUM THERMAL EQUILIBRIUM   

| Ii = initial state | Ii 2 H dim(H) = D

hÔ(t)i = h I | eiĤt/~ Ô e�iĤt/~ | Ii
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hÔ(t)i =
X

↵,�

ei(E↵�E�)t/~ c⇤↵c� O↵�



QUANTUM THERMAL EQUILIBRIUM   
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1) At which time T  ?   
(decoherence)  
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QUANTUM THERMAL EQUILIBRIUM   

For which time T  it is reasonably true?  

1
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1) At which time T  ?   
(decoherence)  
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Many degrees of freedom Exponentially small level spacing 

�E↵� ⇠ exp(�N)

Decoherence in times exceeding 
age of the universe! 



QUANTUM THERMAL EQUILIBRIUM:  
Hypothesis on the matrix elements    

hÔ(t)i =
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Diagonal elements are ‘almost identical’ 
and equal to equilibrium expectation 

Off-diagonal elements are 
almost negligible 

Decoherence needed for 
just a few levels, much 

shorter times 
hÔiE

X

↵2Sp(Ĥ)
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TWO  
PROPOSALS 

1) HAMILTONIAN = RANDOM MATRIX 

2) EIGENSTATE THERMALIZATION 
HYPOTHESIS 



RANDOM MATRIX THEORY 

Ĥ : H �! H dim(H) = D
ˆH↵� = D ⇥D symmetric matrix

Gaussian Orthogonal Ensemble (time-reversal, no magnetic field) 

Probability distribution 
of levels spacings 
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Nearest neighbour energy 
spacings for the ‘Nuclear 

Data Ensemble’ 

Wigner-Dyson 



RANDOM MATRIX THEORY 

Nearest neighbour energy 
spacings for the ‘Nuclear 

Data Ensemble’ 

Question:  
What is really the point of random 
matrices concerning the ‘quantum 

ergodicity’ problem?  

Answer: 
 Their eigenvectors are ‘random vectors’ 

⌘nm = Random Gaussian variate, zero mean, unit variance

h↵|Ô|�i = Ô↵� ⇡ O �↵� +
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RANDOM MATRIX THEORY 

Question:  
What is really the point of random 
matrices concerning the ‘quantum 

ergodicity’ problem?  

Answer: 
 Their eigenvectors are ‘random vectors’ 

Ĥ|↵i = "↵|↵i

⌘nm = Random Gaussian variate, zero mean, unit variance

h↵|Ô|�i = Ô↵� ⇡ O �↵� +
p
D ⌘↵�

Basically what we needed to have …  T�1

Z T

0
dt hÔ(t)i ⇡ hÔiE

PROBLEM: 
In the random matrix ensemble there is no dependence 
on specific energy (temperature) … a good assumption 
in the infinite temperature limit (very high energies) 

SOLUTION: Eigenstate Thermalization Hypothesis  



SMALL DETOUR: RMT and QUANTUM CHAOS 

Integrable Chaotic billiard 

CLASSICAL 

QUANTUM 
(level spacing) 

s = 0 1 2 3 4

GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e
−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .
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Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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Wigner-Dyson 

‘Characterization of Chaotic Quantum Spectra 
and Universality of Level Fluctuations Law’, 

O. Bohigas, M. Giannoni, C. Schmit, 
 Phys. Rev. Lett. 52 (1984)  

Oriol Bohigas 
(Dec 1937- Oct 2013) 

Fact:  
Quantum particle in an infinite potential well shaped 
as a Sinai billiard has level spacing statistics, at high 
energies, which follows Wigner-Dyson distribution.  

Conjecture (BGS):  
Quantum systems whose classical counterpart is 

chaotic are characterized by Random Matrix Theory 
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One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then
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semble) with the same mean spacing: P(s) = ce−cs ,
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coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
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Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.
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known, in fact there are counterexamples, but
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erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-
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different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e
−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .
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Wigner-Dyson 

Logical framework 
(attention: the sequence of 
arrows cannot be reversed) 

1) Classical Chaotic System 

2) Promote them to quantum systems 

3) High energy (semiclassical) limit: 
Wigner-Dyson statistics 

4) Random Matrix Theory 

5) Quantum Ergodicity 



SMALL DETOUR: RMT and QUANTUM CHAOS 

Chaotic billiard 

Logical framework 
(attention: the sequence of 
arrows cannot be reversed) 

1) Classical Chaotic System 

2) Promote them to quantum systems 

3) High energy (semiclassical) limit: 
Wigner-Dyson statistics 

4) Random Matrix Theory 

5) Quantum Ergodicity 

Dominant Way of Thinking 

Quantum Ergodicity 

Classical Chaotic System 

That is way Von Neumann ‘quantum ergodic 
theorem’ was  overlooked: no distinction 

between chaotic and integral systems 



CHAOTIC EIGENSTATES  

Random structureless vectors in any basis Ĥ|↵i = "↵|↵i

hn|↵i =  n(↵)  ⇤
n(↵) m(�) =

1

D �↵��mn

Chaoticity in classical mechanics:  
small shifts in initial conditions produce trajectories totally uncorrelated 

Chaoticity in quantum mechanics:  
small shifts in energy produce eigenvectors totally uncorrelated 

 Measure of eigenvector chaoticity: information entropy  

Choose randomly 
two eigenvalues  

"↵ 6= "�

S = �
X

�

| �(↵)|2 log | �(↵)|2

SGOE = log(0.48 D) +O(1/D)



 ENTROPY DOES NOT INCREASE IN 
QUANTUM SYSTEMS: FALSE  

Classical Hamiltonian mechanics: microcanonical probability distribution is 
conserved  due to Liouviulle theorem. So does entropy.  

S = �
Z

dNqdNp ⇢(q, p) log[⇢(q, p)]

⇢(q, p) = ⇢(H(q, p)) =) ⇢̇ = {H, ⇢} = 0
Ṡ = 0

But if you chose a marginalized probability you are not limited by Liouville theorem 

⇢A(qA,pA) = TrqB ,pB [⇢(q, p)] Ṡ(⇢A) > 0

THE SAME IS TRUE FOR QUANTUM SYSTEMS 

⇢̂A = TrB [⇢̂E ] Sent = �Tr[⇢̂A log(⇢̂A)]



 ENTROPY DOES NOT INCREASE IN 
QUANTUM SYSTEMS: FALSE  

THE SAME IS TRUE FOR QUANTUM SYSTEMS 

⇢̂A = TrB [⇢̂E ] Sent = �Tr[⇢̂A log(⇢̂A)]

Von Neumann (entanglement) entropy 

2

spin in the bulk, from the applied longitudinal field and
its interactions with its neighbors, is 2h or 4J ± 2h. To
keep the end sites similar in this respect to the bulk, we
reduce the strength of the longitudinal field on the end
spins by J . This is to avoid having some slow low-energy
modes near the ends that introduced small additional
finite-size e↵ects when we applied the same magnitude of
longitudinal field also to the end spins.

This Hamiltonian has one symmetry, namely inverting
the chain about its center. We always work with even
L, so the center of the chain is on the bond between
sites L/2 and (L/2) + 1. This symmetry allows us to
separate the system’s state space into sectors that are
even and odd under this parity symmetry, and diagonal-
ize within each sector separately. Any mixed parity state
can be obtained from a linear combination of even and
odd parity states. The statistics of energy level spacings
within each parity sector of this nonintegrable Hamilto-
nian should follow Gaussian orthogonal ensemble (GOE)
statistics [19]. There are 32896 energy levels in the even
sector for L = 16, the largest system we have diagonal-
ized. Their level spacing statistics is in excellent agree-
ment with the “r test” introduced in Ref. [20] and the
Wigner-like surmise described in Ref. [21], as expected,
indicating that this is indeed a robustly nonintegrable
model with no extra symmetries (see Supplement).

First, we consider the time evolution of the bipar-
tite entanglement across the central bond between the
two halves of the chain. We quantify the entangle-
ment entropy in bits using the von Neumann entropy
S(t) = �tr [⇢A(t) log2 ⇢A(t)] = �tr [⇢B(t) log2 ⇢B(t)] of
the probability operators (as known as reduced density
matrices) at time t of either the left half (A) or the right
half (B) of the chain. As initial states, we consider ran-
dom product states (with thus zero initial entanglement),
| (0)i = |s1i|s2i...|sLi, where each spin at site i initially
points in a random direction on its Bloch sphere,

|s
i

i = cos

✓
✓
i

2

◆
| "

i

i+ ei�i sin

✓
✓
i

2

◆
| #

i

i , (2)

where ✓
i

2 [0,⇡) and �
i

2 [0, 2⇡). Such an initial state
is in general neither even nor odd, and thus explores the
entire Hilbert space of the pure states as it evolves with
unitary Hamiltonian dynamics. This ensemble of initial
states maximizes the thermodynamic entropy and thus
corresponds to infinite temperature. For each time t,
we generate 200 random initial product states, let them
evolve to time t, compute S(t) for each initial state, and
then average. By doing so, the standard error at each
time is uncorrelated. The results are shown in Fig. 1.
Ballistic linear growth of S(t) at early time is clearly seen,
and the growth rate before the saturation is independent
of L. [Note, there is an even earlier time regime at t ⌧ 1
where the entanglement initially grows as ⇠ t2| log t|; this
regime is just the initial development of some entangle-
ment between the two spins immediately adjacent to the
central bond.]

In the long time limit, the time evolved state, on aver-

FIG. 1: (color online) (a) Spreading of entanglement entropy
S(t) for chains of length L. Initially the entanglement grows
linearly with time for all cases, with the same speed v ⇠=
0.70. Then the entanglement saturates at long time. This
saturation begins earlier for smaller L, as expected. The linear
fit function is f(t) = 0.70t. Standard error is less than 0.04
for all points and thus the error bars are only visible at early
times. (b) Same data scaled by the infinite-time entropy for
each L. Note that we use logarithmic scales both here and in
Fig. 2.

age, should behave like a random pure state (a random
linear combination of product states) [22]. In Ref. [23],
it is shown that the average of the entanglement entropy
of random pure states is

SR = log2 m� m

2n ln 2
�O

✓
1

mn

◆
. (3)

where m and n are the dimension of the Hilbert space in
each subsystem, with m  n. Since m = n = 2L/2 in our
case, SR ' L

2 in the large L limit. This limiting value
indicates that the entanglement spreads over the entire
subsystem of length L/2. Therefore, before saturation
begins, we can interpret S(t) (in bits) as a measure of
the distance over which entanglement has spread, and
its growth rate thus as the speed of the ballistic entan-
glement spreading. It is clear from figure 1(a) that at
long time (t > 20 ⇠ 100 depending on the system size)

Half spins have 
been traced out 



EIGENSTATE THERMALIZATION HYPOTHESIS (ETH)  

For which time T  it is reasonably true?  
1

T

Z T

0
dt hÔ(t)i = hÔiE

hÔ(t)i =
X

↵2Sp(Ĥ)

|c↵|2 O↵↵ +
X

↵ 6=�

ei(E↵�E�)t/~ c⇤↵c� O↵�

Make them EQUAL Make them SMALL 

Ansatz for observables matrix elements in the basis of Hamiltonian eigenstates 

O↵� = O(E) �↵� + e�S(E)/2 fO(E,!) ⌘↵�

E = (E↵ + E�)/2

! = E� � E↵

S(E) = entropy

⌘↵� = 0 ⌘2↵� = 1



EIGENSTATE THERMALIZATION HYPOTHESIS (ETH)  

For which time T  it is reasonably true?  
1

T

Z T

0
dt hÔ(t)i = hÔiE

O↵� = O(E) �↵� + e�S(E)/2 fO(E,!) ⌘↵�

ETH: good ansatz for the matrix elements, inspired (more or less) by 
what learned in the framework of Random Matrix Theory, let me say 
‘Quantum ergodicity driven by quantum chaos’.  

IS THIS REALLY THE WHOLE STORY? 

AREN’T WE ASKING A TOO MUCH STRONG PROPERTY? 

ISN’T PERHAPS THERMALIZATION A MORE GENERAL PROPERTY?  



VON NEUMANN QUANTUM ERGODIC THEOREM 
IE = [E � �E, E + �E]Consider an Energy Shell 

Hilbert space of all eigenvectors such that  H =

Ĥ|↵i = "↵|↵i with "↵ 2 IE

dim(H) = D

So far so good: now consider a family of  
‘Macroscopic Observables which can be measured simultaneously’ 

H =
M

⌫

H⌫ P⌫ = projector

Any wavefunction with unit norm defines a probability of macrostates 

 2 H || ||2 = 1 ||P⌫ ||2 = h |P⌫ | i

1) 

2) 

X

⌫

d⌫ = Dd⌫ = dim(H⌫)



VON NEUMANN QUANTUM ERGODIC THEOREM 

So far so good: now consider a family of  
‘Macroscopic Observables which can be measured simultaneously’ 

Any wavefunction with unit norm defines a probability of macrostates 

 2 H || ||2 = 1 ||P⌫ ||2 = h |P⌫ | i

3) Microcanonical density matrix defines a 
probability of macrostates 

⇢E =
1

D
X

↵|"↵2IE

|↵ih↵| Tr[⇢EP⌫ ] =
d⌫
D

2) 

H =
M

⌫

H⌫ P⌫ = projector

X

⌫

d⌫ = Dd⌫ = dim(H⌫)

||P⌫ t||2 ⇡ d⌫
D

Does the time-evolution of a generic 
macroscopic observable leads to 
microcanonical equilibrium?  

(QE) 



VON NEUMANN QUANTUM ERGODIC THEOREM 

3) Microcanonical density matrix defines a 
probability of macrostates 

⇢E =
1

D
X

↵|"↵2IE

|↵ih↵| Tr[⇢EP⌫ ] =
d⌫
D

||P⌫ t||2 ⇡ d⌫
D

Does the time-evolution of a generic 
macroscopic observable leads to 
microcanonical equilibrium?  

THEOREM (see Goldstein, Lebowitz, Tumulka, Zanghì, arXiv:1003.2129) 
 
Under certain general conditions on the choice of the  
Hamiltonian      and the orthogonal decomposition of the Hilbert space  
one has that for every wavefunction                                               
the property (QE) holds for most of the time.             

H H =
M

⌫

H⌫

 0 2 H with || || = 1

(QE) 

QUITE REMARKABLY (VON NEUMANN’S GUILT): 
NOTHING IS SAID OR CLAIMED ABOUT THE 

INTEGRABILITY/CHAOTICITY OF THE SYSTEM 
 



AN ‘INTERNATIONAL’ COLLABORATION 
DECIDED TO CARRY ON AN INVESTIGATION 

 

Baldovin

Gradenigo

Vulpiani

DO WE REALLY NEAD 
CHAOS TO HAVE 

THERMAL EQUILIBRIUM? 
 



THERMAL EQUILIBRIUM IN AN INTEGRABLE SYSTEM 
 

TODA Lattice 

H(q, p) =
NX

i=1

p2i
2

+
NX

i=1

V (qi+1 � qi) V (x) = e

�x � 1 + x

- Classical integrable system with Hamiltonian dynamics 

Ik(q, p) : R2N ! R with k = 1, . . . , N such that {Ik, Il} = �kl

THE SYSTEM IS INTEGRABLE 
The Liouville-Arnol’d theorem guarantees the existence of Action-Angle 
canonical variables such that the Hamilton equations are trivial: 

Ii(q, p)

�i(q, p)

İi(q, p) = 0

�̇i(q, p) = !i

�i(t) = �i(0) + !it

Coherence between angles is preserved at all times (in perfect analogy to quantum) 
All Lyapunov exponents are zero: NO CHAOS! … but … 



THE ANTI-FPU EXPERIMENT 
 

Fermi-Pasta-Ulam Anti Fermi-Pasta-Ulam 

- Non-integrable system 

- Weakly non-linear regime 
(low energies) 

- Non-equilibrium initial 
condition on the variables 
which ‘almost diagonalize’ 
the Hamiltonian 

- Integrable system 

- Highly non-linear regime 
(high energies) 

- Non-equilibrium initial 
condition on the wrong 
variables, those which do not 
diagonalize the Hamiltonian 

FOURIER MODES 

Q(k) =

r
2

N + 1

NX

i=1

qi sin

✓
ik⇡

N + 1

◆

P(k) = . . .

INITAL CONDITION 

k = 1 : !2
kQ2(k) = P2(k) = cN

k 6= 1 : !2
kQ2(k) = P2(k) = 0



THE ANTI-FPU EXPERIMENT 
 

Anti Fermi-Pasta-Ulam 

- Integrable system 

- Non-equilibrium initial 
condition on the wrong 
variables, those which do not 
diagonalize the Hamiltonian 

FOURIER MODES 

Q(k) =

r
2

N + 1

NX

i=1

qi sin

✓
ik⇡

N + 1

◆

P(k) = . . .

INITAL CONDITION 

k = 1 : !2
kQ2(k) = P2(k) = cN

k 6= 1 : !2
kQ2(k) = P2(k) = 0

H(Q,P) =
1

2

NX

k=1

P2(k) + !2
kQ2(k)+

+
1X

n=3

1

n!

X

k1,...,kn

!k1 · · ·!kn Q(k1) · · · Q(kn) �k1,�(k2+···+kp)

Higly Non-Linear in Fourier modes 



THE ANTI-FPU EXPERIMENT: RESULTS 
 

FOURIER MODES 

Q(k) =

r
2

N + 1

NX

i=1

qi sin

✓
ik⇡

N + 1

◆

P(k) = . . .

INITAL CONDITION 

k = 1 : !2
kQ2(k) = P2(k) = cN

k 6= 1 : !2
kQ2(k) = P2(k) = 0
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THE ANTI-FPU EXPERIMENT: EQUILIBRIUM 
 

FOURIER MODES 

Q(k) =

r
2

N + 1

NX

i=1

qi sin

✓
ik⇡

N + 1

◆

P(k) = . . .

EQUILIBRIUM INITAL 
CONDITION 

8 k : !2
kQ2(k) = P2(k) = 1
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Ck(t)

Oh! It looks like …  

p(Ek) ⇠ exp(��Ek)



THE ANTI-FPU EXPERIMENT: EQUILIBRIUM 
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Oh! It looks like …  

p(Ek) ⇠ exp(��Ek)

Our integrable system: 

- Relax to equipartition 
- Decorrelates 
- Has a Boltzmann distribution 

OF COURSE … YOU HAVE 
TO LOOK AT THE WRONG 
CANONICAL VARIABLES 



BGV Conjecture (Baldovin-Gradenigo-Vulpiani) 

Whether or not a classical Hamiltonian system has reached 
thermal equilibrium cannot be said in general,  

BUT it is a statement relative to the choice of canonical variables  

Footnote:  The Hamiltonian dynamics (symplectic structure of the 
manifold) is general with respect to the choice of coordinates (it does 
not depend on them). This means that, even for an integrable system, 
there are infinitely many choices of canonical variables for which the 

Hamiltonian is non-diagonal. 
 For such coordinates equilibrium can be expected.  

Von Neumann (quantum): ‘equilibrium’ make sense with respect to a 
given choice of observables, irrespectively to integrability 

TODA (classica integrable): ‘equilibrium’ make sense with respect to a 
given choice of variables, irrespectively to integrability 



BGV Conjecture (Baldovin-Gradenigo-Vulpiani) 

Whether or not a classical Hamiltonian system has reached 
thermal equilibrium cannot be said in general,  

BUT it is a statement relative to the choice of canonical variables  

Maybe we are wrong …  
but at least we agree with him!  

 

Von Neumann (quantum): ‘equilibrium’ make sense with respect to a 
given choice of observables, irrespectively to integrability 

TODA (classical integrable): ‘equilibrium’ make sense with respect to a 
given choice of variables, irrespectively to integrability 



THANKS FOR 
YOUR 

ATTENTION 

‘…any non-trivial idea is in a certain sense 
correct. The garbage of the past often becomes 

the treasure of the present (and vice-versa)’ 
 

Alexander Polyakov 

Footnote: ‘vice-versa’ = the trasure of the present becomes the garbage of the future 


