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1. - Introduction.

The hvdrodvnamic equations of motion can be studied in two different
approaches. Either one deals at any time with velocity, pressure and density
fields in the space domain covered by the fluid. or one deals with the trajectory
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lly designed as «Eulerian,

-hes Isua
approaches are 1 | :
P to Euler|[L45].

. ' rticle. The two
of each fluid particle D e a0 due

and «Lagrangian», although b _ .
| : =" : L -alent. Indeed. if we denote by
The points of view are I principle equiva _ ¢ denote by
g e motion of a fluid particle initially

u(x, t) the Eulerian velocity field. then th | |
located at x(0) is determined by the differential equation

dx

with the initial condition x(0). It the solution of (1.1) has a sensitive depend.-
ence on initial conditions, and initially nearby trajevtu‘rw:-: diverge exponen-
haos or Lagrangian turbulence.

tially fast, one speaks of Lagrangian ¢ | 1 |
formal relation between Kulerian and

However, in spite of the simple | | |
¢ is difficult to extract information on one description

Lagrangian approach, | | |
starting from the other. For instance. there are situations where the velocity
field is regular — i.e. absence of Eulerian chaos — but the corresponding

motion of fluid particles is chaotic [H66]. ‘ St
The motion of a fluid particle in a given velocity field u# (x. 1) 1s given by the

dynamical system (1.1), which is conservative for an incompressible fluid, that
is, by the continuity equation, for a solenoidal velocity field

(1.2) V-u=0.
In two dimensions. the constraint (1.2) is automatically satisfied assuming
oY oy
1.3 = ) Uy = '
( ) Uy a‘rz 2 a‘rl

where ¥ (x, t) is called stream function, and x = (7,. x,). Inserting (1.3) into
(1.1) the evolution equations become

Vi, e Oy

1.4 ik L |
i - ot e v

Formally (1.4) is a Hamiltonian system with the Hamiltonian given by the

stream function .
Equation (1.1) also describes the motion of test particles, for example

a powder embedded in the fluid, under the condition that the particles are
small enough not to perturb the velocity field, but also large enough not to
perform a Brownian motion. Particles of this type are the tracers used for flow
visualization in fluid mechanics experiments[T88]. This subject will be dis-
cussed in more details in sect. 5.

The understanding of Lagrangian dynamics is a central point for the
problem of ‘quantities passively driven by the flow, e.g. the temperature
under certain conditions, the theory of mixing and fast dynamo effects

[lﬁ, OLRSS88]. The evolution of a passive scalar field @ (x, {) is given by
3,0 + (u-V)0 = 1,V*e
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where yz, is the molecular field diffusion coefficient. If Yo = 0. 1t is easy to
realize that (1.5) is equivalent to (1.1). In fact. we can write

(1.6) O(x. t)=0,(T 'x).
where @,(x) =@ (x. t =0) and T is the formal evolution operator of (1.1).
(1.7) x(t) = T'x(0).

Taking into account the molecular diffusion z,. one has [C43] that (1.5) is the
Fokker-Planck equation of the Langeving equation

(1.8) d_x= (x, t)+n(t),
dr h

where n is a Gaussian process with zero mean and

M) m;(E')) = 2x40, 0 (8 — 1),

It is clear that the Eulerian approach (1.5) and the Lagrangian one.(1.8) are
completely equivalent.

The presence of Lagrangian chaos, even in the absence of Eulerian chaos.
indicates that some gross properties of mixing and diffusion are not strongly
related to the presence of the diffusive term y,V*©. Therefore. although the
two approaches are equivalent, in many cases the Lagrangian deseription
permits a better understanding of the physies[O89. 090].

The so-called kinematic dynamo is another problem where the role of |
Lagrangian chaos is important: see for instance[GF84, B86, BC87., FOSS.

FPV89]. With appropriate approximations the behaviour of a magnetic field
B(x, t) can be described by the following equations:

(6,B+ (u-V)B=(B-V)u+ 1,V’B,

(1.9)

\v-B=o.

where yg is the magnetic-diffusion coefficient of the fluid. In the limit 1g— 0, it

s possible to see that there is a connection between the kinematic dynamo

equation and the dynamical system (1.1). |
Consider the equation which masters the time evolution of the «distances

vector R = x'¥ — x" between two particles located at x* and x®. respective- ._
ly. In the limit |[R|—0 the evolution equation for R can be obtained DS

linearizing (1.1) around the trajectory x (1) = x'"' (). This leads to the equation
for the tangent vector z = lim g, (x'" — x*), | ;‘
i~ , 1 'L":'." o
W Rt - e A LS S )

- 4 o R
dz, Ou. L T A R R el

(1.10) L ey Z;- IRy A o i

dt i=19%%jlxm BN L\
. SRR e

The Lagrangian time derivative can be expressed in the form
so that (1.9) with x5 =0 is formally equal to (1.10). The

= -

[ 1.
b ot
pl LAl B - i
B g
=~ el - 2
‘-_ oy o W Ly
| L e B LN S e !
' o & e e = i d N L -
e B y * .?.". r - ] = n
L] - 5 _|.I 5 b ~ = *'
. T g - . - o . '. r i -
' ’ } il ™ i B o= b
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4 A. CRISANTI, M. FALCIONI,

magnetic field is governed by two properties of (1.1), i.e. the trajectories of the
fluid particles and the growth rate of the tangent vector - thlat s of the
separation of particle pairs. However, the role of the term xgV B is highly
nontrivial. This point is stressed in sect. 4. i

In this review we discuss the role of Lagrangian chaos in mixing, transport
and diffusion properties of fluids, using ideas 'an.d techniques borrowed by the
theory of chaotic dynamical systems. Our main interest stems from the physi-
cal applications, so that most of technical details on the methods used will be

left to sect. 6. The review is organized as follows. |
In sect. 2 we discuss some examples of Lagrangian chaos which show the

strong relation between mixing mechanisms and properties of the dynamical

system (1.1). | |
Rection 3 is devoted to the connection between Lagrangian chaos and
indicate, in particular, a possible

Eulerian properties of the velocity field. We ‘ |
dimensional fluids.

route for the onset of Lagrangian chaos in two-dir ‘ fat)
In sect. 4, we study the small-scale structure of passive scalars in incom-

pressible fluids. We show that the classical Batchelor law (which gives a L !

ve scalar in a suitable range of wave

scaling for the power spectrum of the passi
numbers k) is strictly related to the Lagrangian chaos and, hence, it is also

valid for fluids which are not turbulent in the Eulerian sense. We also discuss
the very irregular small-scale structure of magnetic field due to the intermit-
tency-of the dynamical system (1.1). Finally, using some results obtained in the

study of Lagrangian chaos, we comment on the temporal range of validity of

the classical limit of quantum mechanics.
In sect. 5 we discuss the diffusive properties of (1.1) and (1.8). In general
are very sensitive to the details of the structure of the velocity field and
to the combined effects of that structure and molecular diffusion.
- Section 6 reports, for the sake of self-consistency, some technical aspects
and methods of dynamical systems which are relevant for the comprehension of

Lagrangian chaos in fluids.

- 2. - Lagrangian chaos.

~ In this section we report some examples of Lagrangian chaos in regulu
~ velocity fields; moreover we discuss the problem of. the stretching of material
i lines and surfaces in terms of Lyapunov exponents. The presence of Lagrangian
~ chaos in regular velocity fields may appear as a paradox, but it has not to he
o8 ered too surprising. Since (1.1) is a nonlinear dynamical system, in

-

‘-.f'f- ::-.j_.. *mm expect that a chaotic behaviour arises for time-dependent
- velocity fields in two dimensions (2d), or even for stationary velocity fields in

. — As first case, we consider the follow-

oy i -Eh ., gy ey =
(21 u@x)=(dsinz+Ccosy, Bsinx+4cosz Csiny+ Bcosux).
R AR (S NG - BN Pasametors According to (2.1) the

ia 8 _i&

__ o ___1;,. . ﬁ;ﬁr‘:‘,’;{m %&r‘?: X

T
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dynamical system associated with the fluid particle motion is | '

(2.2) dy

dz
dt

=("siny+ B cos x.

Because of the incompressibility condition V - & = 0. the evolution X(0)—x(t),
given by the differential equations (2.2). defines a volume-preserving dynami-
cal system.

Arnold [A65] argued that (2.2) is a good candidate for chaotic motion. Let

us briefly repeat the argument. In a steady-state solution of the 3d Euler
equation one has

rV'H=U,
U x (Vx u)=Va.
2.3) 4 | ) .
P %
a=—+—,
P 2

"

where P is the pressure and p the density. As a consequence of the Bernoulli
theorem [ LL87], « (x) is constant along a streamline — that is a trajectory of
the system dx/d¢f = u(x). One can easily realize that a chaotic motion may
appear only if «(x) is constant (viz. Va(x)=0) in a region of the space.
Otherwise the trajectory would be confined on a 2d surface a(x) = constant,
where the motion must be regular for general arguments (Bendixson-Poincaré.
theorem [A72]). In order to have this constraint. one has to impose the
Beltrami properties

(2.4) Vxu=yxlulx), uXx) -Vikxl=0. |
The u (x) given by (2.1) 18 a simple case of velocity field with the Beﬂrami Ear e
properties (in this case y(x) = constant). It is possible to show (GF87] that 2.1) -
18 the unique stable solution of the Navier-Stokes equations SR

5 1
{j[u + (u . V)u - vv.'.u Svds __VP & .’ Nk 2kl 57
(2.5) 2 f
V=0, Sadit
for large v and with the forcing ~ e 5 , o

-'1-
TR

o W WS
1':*“2‘ —!

T

f=v(dsinz+Ccosy, Bsinx+ 4 cosz, €

If the Eulerian evolution of the velocity field is n
— 2 ’E::ﬂ :
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are not mandatory for chaos. For example,

equation, the Beltrami properties i in steady Rayleigh-Bénard convection,

Arter[A83] found a chaotic behaviol o ‘
where[ the ]Eularian ovolution is ruled by the Boussimesq model.

_ : . r Childress [('70] as a mode]
aeadd dependently introduced by vh et
B these flows are usually indicated as AB(

inematic dynamos, and now ‘ | iy 3
flfw: (for Arnolc{ Beltrami. Childress). Numerical experiments by Hénon [H66|
provided ﬁvidenc; that they are chaotic for special values f" the parameters A
E Md ('. An extensive numerical and analytical study of the ABC model can
be found in[DFGHMSS6]. | R |

Without entering in a detailed analysis, we show n hg. the Poincard
section at z = 0 of several trajectories. The
ones are well evident: a situation recalling the
Hamiltonian systems with two degrees of freedom.

ordered motions and the chaotic
features of nonintegrable

Fig. 1. — Intersections with the Poincaré section, plane z = 0, of eigth trajectories of the ABC
flow, eq. (2.2) with parameters 4 = 2.0, B =170, (" = 1.50.

For two-dimensional incompressible and stationary flows, the stream func
tion ¥ does not depend on the time, so the motion of fluid particles 1s given by
a time-independent Hamiltonian system with one degree of freedom, and it 15
impossible to have a chaotic motion. However, for explicit time-dependent
¥ the system (1.4) can exhibit chaotic motion. For example many authors
studied the 2d chaotic advection in Stokes flows [AB86, CCTT87] (2.e. in a fluid
between two eccentric cylinders which rotate with a given time-dependent
angular velocity) or in a simple model which provides an idealization of
a stirred tank [A84).

- We briefly discuss another example of chaotic advection | LS89 associated
- with a mode of free oscillation for a layer of water of depth D in a rectangular
~ basin. In the linear inviscid shallow-water approximation, and considering only
- two modes in the Fourier expansion of the velocity field, one can write
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particles is thus given by

d.r
e = (@ + b cos (2t)) sin x cos y,
4
2.17)
dy
g (@ — b cos (2t)) cos x sin ¥ .

Apart from the case b = 0, the velocity field (2.6) does not satisfy the incom-
pressibility condition, so that (2.7) is not a Hamiltonian system. For b = 0 the
dy namltal system (2.7) is integrable and can be easily reduced to the ABC flow
with ' =0 and 4 = B,

Also in the present case the Poincaré section. obtained by plotting the

coordinates x and y at each period (i.e. at times t = 0. 7. 2n. ...) allows us to
visualize the regular and the chaotic motion: see 1g. 2.

’ by . : "..‘
%' - v - WS LT — “.-*.'_j

|
b
l = I SN W TSN — L_J.___.L__,L __._.i._._._l.._ ;- L._l_l__’

0 1 2 3
X

Fig. 2. - Iterations of the Poincaré map x = x(n7'), with T = 7, of three trajectories of the flow
2.7), with parameters a = 1.35, b = 1.15.

We now give an example to emphasize one of the basic mechanisms for the
chaotic advection in 2d mcompressible flow [KRS83]. An exact solution of 2d
Euler equation which mimics large-scale vortex structure is given by

I 2n 2n
(2.8) Vo (2, ¥)=—1In (L'osh i} A COS __;r:_)
2n [ l
Here [ indicates the period of the vortex series in the z-direction, and a b ‘.

scribes the vort.mt,y distribution: a = 0 corresponds to a uniform di %
and o = 1 gives a series of point vortices. In realistic situations one has rlibﬂ'
concentrated vorticity distribution, so it is natural to assume o < 1. We di us: ?; i
the case « =1, although the qualitative results will be valid M h" ‘
A realistic perturbation to the steady solution {2.8} I8 an - wav
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propagating perpendicularly to the series, 1.¢.

(2.9) du = (0. ugy sin (2ky — 2wt)) -

In the approximation of shear layer thickness smaller than the wavelength
(kl < 1), and of small-wave amplitude (py = ug/c < 1, where ¢ = w/k is the
wave velocity) the Lagrangian equations (1.1) become

dx " sinh ¥
dt  coshy—cosx
(2.10) .
dy i’ sin & gl y_w_f{ s (._tula !)
dt cosh y — cos a et Q

In (2.10) one uses dimensionless coordinates and time, £ = ?rf/l‘j: and 4 is the
dimensionless time unit introduced for technical reasons. see [KRS83]. Note

that the system (2.10) has a periodic structure in the x-direction. For u, = ()
4 2. ... (8table

the fixed points are on the line y =0 at x =2nn, n =0, T L ool
points), and x= (2n+ 1)n, n=0, £1, +2, .. (unstable points). It is not
difficult to see that the trajectories are qualitatively similar to those of the
nonlinear pendulum, i.e. closed orbits (rotations) and open ones (librations)
separated by orbits of infinite period (separatrices) linking two unstable fixed
points; see fig. 3 for a schematic picture. It 1s well known that in one-
dimensional time-dependent Hamiltonian systems, the onset of chaos typically
takes place around the separatrices by unfolding and crossing of stable and
unstable manifolds. In some cases, a method, due to Melnikov [M63], see
subsect. 6'2, permits to prove that the motion is chaotic mn a small region
around a separatrix. For (2.10) Kuznetsova ef al.[KRS83] were able to com-
pute Melnikov's integral explicitly, and thus to prove the existence of Lagran-
gian chaos. Figure 4 illustrates, by means of a Poincaré section, the typical
behaviour of the system at small value of the perturbative parameter pu,:

e Fig. 3. — Orbits of system (2.10) for p, =0 and h = 1.
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Fig. 4. — lterations of the Poincaré map x = x (nn). for three trajectories of system (2.10) with

fo = 0.01, A =10, w = Q. The trajectories started from ro = 1.0 and y, = 1.5 (the chaotic one),
1.4 (the four components one), 1.2 (the inner one).

@) chaotic behaviour for trajectories with initial conditions close to a sep-
aratrix:

b) regular motion if the initial conditions are far from the separatrices.

The area of the chaotic layer (the region of chaotic behaviour around the
separatrix) increases with pg, and for large p,-values, it is practically impossi-
ble to distinguish between regular and chaotic regions.

In sect. 3 we shall show that such a scenario is not peculiar of a stream
function whose time dependence is explicitly known, but it is also valid when
the Kulerian equation passes from a steady solution to a time periodic solution,
via a Hopt biturcation.

We remark that for the case of time periodic velocity fields, i.e.
ux, t +7T)=u(x. t), where T is the period, the differential equation (1.1)
describing the Lagrangian motion can be studied in terms of diserete dynami-
cal systems. From standard theorems of the theory of differential equations, it
Is easy to see that one can determine the position x(t + 7') in terms of x(t).
Moreover, for periodic velocity field, the map x(t)— x(t + T') does not depend
on t. The above arguments allows us to write (1.1) in the form

(2.11) X(n+1)=F[x(n)],

where now the time is measured in units of the period T'. If the incompressibil-
ity condition holds, the map (2.11) is conservative, i.e.

OF;[x]
ox,

J

|det A[x]|=1, where A;[x]=

An explicit deduction of the form of F for a general 2d or 3d flow is usually
a very difficult task. However, in some simple cases, reasonable models,
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can be deduced from the physies of the
£ derivations in [CCTTS7] tor the Stokes
a basin using the shallow-water

10

containing the main physical features.
system. The reader can find this type ol det]
flow. and in [LS89] for the free oscillation m

approximation. EOMR ML RN el 2
PPH S & not interested in & specific problem, but just in some «gene ricy
L L maps allows us to determine

properties, the study of 3d or 2d l'llllﬁill‘li'::lt:‘f*t‘ i
B : . : o advection.
' he basic mechanisms of the chaotic _ : _ |
s of & erturbation ot the Hll‘nllt}'

A quite general case, obtained as a continuous p
map, is given by maps of the form

f.r(n + 1) =2x(n)+flyn). z(n)].
{yn+1)=yn) +glrn+ 1), z2(m)],

I._::(n + D)=z +h[lxn+ 1) yr+ 1)].

A straightforward calculation shows that rggardlv:-:::-: of the ‘hll"ll'l_ of t_lw th_rt*v
functions f, g and A, (2.12) 18 volume preserving. A 5!111}.110 -imf:trn 1al expression
which captures the main features of 3d maps of the form (2.12) can be obtained
by confining the three-dimensional dynamics on 3d torus and retaining only
the lowest terms of the Fourier expansion of f. g and &. This procedure leads to

x(n+1)=x(n)+ A4, sin z(n) + C, cos y(n),

yn+1)=y(n) + B, sinx(n+ 1)+ 4, cos z(n),
z(n) + C;siny(n+ 1)+ B; cos x{n + 1).

(2.13)
zin+1) =

Unfortunately. the knowledge of the properties of three-dimensional volume-
preserving maps is not so rich as for symplectic maps[S83. S84/, However, one
may try to use some ideas and methods developed for Hamiltonian systems

[LL83]. | ‘
For B, = (', = 0 the map (2.13) is trivially integrable and the motion of

a fluid particle is restricted to the plane

z = z(0) = const .

(2.14)

For B; and C, of order £ « 1 (2.13) is a nonsymplectic perturbation of a two-
dimensional integrable symplectic map. In this case, called mn|[FKPSS]
one-action three-dimensional Liouvillian map, a first-order perturbation theory
shows that the invariant plane (2.14) survives, with small changes. in
a KAM-like way. In other words, the invariant surface of the perturbed map

can be written in the form

z2=2(0) + ¢ Z a,, exp i (mx + ny)] + 0 (e%),

where z (0) satisfies the condition of nonresonance. For example it 4, = A4,
the first resonance is given by

mA sin 2(0) + nd cos z(0) =2ak, (m, n)#(+1, 0), (0, +1).

These results are in excellent agreement with numerical data.

A,

=

i

&
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Another case of interest 1S

given by A
are two conserved quantities:

1 =4, =B, =(C, =0, where there

(2.15) r=2x(0) =const and ¥y =y(0) = const .

By analogy. the case of A,, A, B, and C

three-dimensional Liouvillian map. A perturbative approach shows that almost
all invariant lines (2.15) break down for arbitrarily small ¢ and ar;* replaced by
invariant surfaces. At difference with the one-action case. they do intersect

each t'rt!ler at the resonant point. allowing particle trajectories to diffuse over

the entire space. '

We therefore have a scenario similar to that found in Hamiltonian systems.
Indeed, the behaviour of the one-action Liouvillian map. where the perturbed
mvariant curves divide the whole Space into disjoint regions, is similar to
two-dimensional Hamiltonian systems where the KAM tori separate the space
into disconnected parts. On the other hand. the two-action Liouvillian maps,
with trajectories diffusing over the whole space, 1s qualitatively similar to
three-dimensional Hamiltonian systems where the KAM tori are not sufficient
to divide thtj space into disjoint regions and Arnold diffusion | LL83] is believed
to occur. Diffusion in two-action Liouvillian maps 18, however, much faster
than Arnold diffusion. In the latter case, the diffusion coefficient is exponen-
tially small in &, i.e. O (exp|— c/e'?]), while in the former is O (%) with o ~ 2
[FRPSS|.

Let us now turn our attention to two-dimensional systems. A quite general
class of conservative systems is again given by maps of the form

» of order £ « 1 is called two-action

{-_} 16) ,[‘(H + l) e I(".) +fly (".)]‘

yn+1)=y(n)+glxn+ 1)].
A widely studied map of this family is the so-called standard map [C79]

(2.17) rn+ 1) =x(n) + K sin y(n),
7

yin+ 1) =ymn)+xn+1),

obtained by taking f(y) = K sin y and ¢(x) = x. The important parameter in
(2.17) i1s K which measures the strength of the nonlinearity in the system. For
small values of K the chaotic motion is limited to small regions and the mixing
due to Lagrangian motion is rather poor. In fig. 5 is shown the spreading of
a spot of particles at different times in such a situation. It is well evident the
weak mixing in the r-direction. On the contrary for K = K_=~ 1 the chaotic
region covers practically the whole phase space. In this case the mixing
becomes very efficient since the distance between initially close particles grows
exponentially in time, see fig. 6.

The map (2.17) has no direct relation with any physical situation. Its
importance relies on the fact that its behaviour is the typiecal behaviour of
Lagrangian motion in time periodic velocity fields. We stress that the strong
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Fig. 5. — Evolution of 2500 test particles, initially located in the square {._,fi. 2.4] x |___H__ 2.4].

17) with K = 0.5. shown at the times 0 (a)). 15 (H)).

under the action of the standard map. eq. (2.

100 (¢)). 1000 (d)).

a) | | | i}.”. o T
6 FZI J I I'T I_'_T_IF J 43 r | I 5 ]
ik .;,."f: = ) /4
4 ,"'JI —: '-——“ | 4 ;;Ir. ; _:|
/ P 'f‘! tf ;
/ <y ;:! 3
- ./ ]
- : 4N V. = PSR Eu"(i 7 (PPl o
0 2 1 6 0 2 4 6 0 2 1 6 0 2 1 6

Fig. 6. — The same as fig. 5, but with K = 3.4, at the times 0 (a)). 2 (b)). 4 (c)). 6 (d)).

mixing properties for K = 1 are only due to deterministic dynamics and the
presence of small random terms do not change significantly this scenario.
Figure 7 shows the spreading of a spot of points initially close when an
additional random term is added to (2.17), 1.e.

r(n+1)=x(n)+ K smyn)+emn,(n).

(2.18)
ym+1)=ymn)+xn+1)+&e,n,(n).
a) b) d)
6 PZT'—‘ 'I' Y B _l'ﬁ
y b Aol / ]
i 1; :.'-*'

0 L ap U EIE paret Y T TSR SRS et R e W

Fig. 7. — The same as fig. 6 with the addition of a noise: eq. (2.18) with K =3.4. &, = 0.01 and
£, = 0.02.
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where n.(n) are Gaussian discrete processes of zero mean and correlation

Cnim)n; (') > = 0,;0,, .

The comparison with fig. 6 enlights the weak role of randomness.

In some sense. a small random term in the evolution equations of test
particles plays, in the Lagrangian deseription, a role analogous to that of
molecular diffusion in the Eulerian approach. In sect. 5 we shall see that
molecular diffusivity can have nontrivial effects on the diffusion properties also
tor steady two-dimensional velocity fields where (1.1) is integrable.

2 2. Stretching of material lines and surfaces. — Many results obtained with
phenomenological arguments in the theory of turbulence, or with the help of
stochastic. models [DM90, DM91]. can be derived using ideas and methods
borrowed from the theory of dynamical systems. This approach enlights the
role of the Lagrangian chaos, and permits to extend the validity of these
results to melude situations without Eulerian turbulence.

The linearization of (1.1) around a solution x () leads to

(2.19) 54 Z ik il

l i

1 x(r)

[t we consider the vector 6x joining two close fluid particles, (2.19) describes
the evolution of a material line element 6x, if |dx| is small enough. Batchelor
| B52] argued, on the basis of nonrigorous but very reasonable arguments, that
tor large times and small |dx(0)]

(2.20) jox (t)| ~[dox(0)|exp[a,t] with o, > 0.

This result has been criticized by Cocke [('69, ('T1] who claimed that the
argument ot Batchelor, and hence the result (2.20). is not correct. Cocke's
reasoning is also quoted by Monin and Yaglom [MY75] in one of the main
textbook of fluid dynamics. The origin of this dispute is in an exchange of
limits. It ox(0) is small enough x, is nothing but the effective Lyapunov
exponent, whose most probable value is the first (maximum) Lyapunov expo-
nent ot (1.1). see subsect. 6'3. The Cocke's remark is based on his result that.
under general assumptions, for large times i a turbulent fluid

(2.21) |10x (t)| ~ t'/?

so that ¢t ' In|dx(t)|—0 as t— oo, and therefore (2.20) cannot be valid.
However (2.21) is derived for large times with fixed |dx(0)]. i.e. for
t > (1/oy)In(L/]0x(0)|), where L is a typical length. On the other hand. in
(2.20) one takes the limit |0x(0)|— 0 first and then {— o0, and hence there is
no contradiction between (2.20) and (2.21).

The problem of the growth of the area of a material surface element can be
treated in a similar way. A small material surface is individuated by two
nonparallel vectors 6x, ({) and d8x, (f) starting from the same point, and hence
by two lengths [, ,(t) =|0x, ,(t)| and the angle between the two vectors. If [.
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ST ‘ . area of the material surface s o
s (2.19) and the ar urface g given

by
5.7 (1) = | 8%, (1) x 0X; ()| ~ 8.7 (0)expayl].

(2.22)
enrnal feross) product. BY denoting with 4 ] :
where « x» denotes the external (cross) pr ] o iy - Ay 2 Ay > i,
nts of (1.1) we have that the most probah]e

Lyapunov expone
: see subsect. 63
that for 3d
exponenets :-:hnu‘hl be |
condition requires that A, + Ay + }'3_ — () so that 1in a ':-Iu-mtil- system
since 4, > 0. In this case. the typical growth of
that of a line element.

— () also for a generic I|m~|=-:li|m-|'1:~=iuna|
three-dimensional melﬁ

the characteristic
value of a, is 4; + 42,

A general theorem states
the characteristic Lyapunov

steady velocity fields at least one of
YA AP :\llll'i'll\'l‘l'. tl“" i]“-”ln

pressibility
one should have 4, =0,

: incides with

Feingold et al.[F KP88] found 4, |
time-periodic velocity field described by a conservative tl
On this basis they argued that this result should hold in general as a conse.
quence of the conservative nature of the Lagrangian motion in incompressible

fluids. S
It is not difficult to extend (2.20) and (2.22) to finile material lines and

surfaces. b2 , :
istribution of (1) and 0.9 (f) can also he

The problem of the probability d ' ) ar
analysed in terms of dynamical systems. Since by definition /(1) = |6x ()| and

8.7 (1) = | dx, (1) x 08X, (1)]. the statistics of the length of a material line element
and of the area of a material surface element are given by the statisties of the
response functions

20 (1) x 22 (1)

1z (0) x 22 (0)|

and R“'(@t) =

respectively, where 2z (t) obeys (2.19). The interested reader is referred to
subsect. 63 for technical details.

The probability distribution Z[l(f)] of [(1) 1s not universal and its details
strongly depend on the features of the dynamical system (1.1). Nevertheless for
large times, 2[l(t)] is close to a log-normal distribution (see subscct. 673)

. ]- 1(!) .-. 2 ;’I
(2.23) Pt = — 11 [—_:| e /9
| ) ..-—27!”! exp n 1(0) /iyl j ul

where

p=lim—(Inz2(1) — 4,7)*.

t—=a T

A similar result can be obtained for Z[0.% (t)].}
The above results, usually derived in the context of turbulence and/or

p_roba.ll)liliﬂtic models [ DM90, I?Mgl], are only related to the presence of Lagran-
gian lc aos and not to Eulerian turbulence. In fact, they can be obtained as
simple application of rather general methods of the theory of dynamical

systems.
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3. - Eulerian behaviour and Lagrangian chaos.

The relation between Lagrangian and Eulerian chaos is a very complicated
issue, also in extreme cases, e.g.. fully developed turbulence — see ref
(€62, L62]. In this section we shall discuss two different problems: the onset of
Lagrangian chaos in relation with the features of the velocity field. and the
effects of the presence of Eulerian chaos on the motion of fluid particles. In
principle, the evolution of the velocity field u is described by partial derivative
equations, such as the Navier-Stokes equations. However. a good approxi-
mation can be obtained by using a Galerkin approach. and reducing the
Eulerian problem to a system of F ordinary differential equations (see subsect.

65). The motion of a fluid particle is then described by the (d + F)-dimensional
dynamical system

1
(3.1a) (l?—-f(Q. t) with Q. feRF.
(
1x
(3.1h) (“ =u(x, Q ¢t) with x ueR®.
(1l

where d is the space dimensionality and @ = (Q,. ... Q) are the F variables.
usually normal modes. which describe the evolution of the velocity field w.

Note that the Eulerian equations (3.1a) do not depend on the Lagrangian part
(3.16) and can be solved independently.

In order to characterize the degree of chaos. we can introduce three
different Lyapunov exponents:

a) /g for the Eularian part (3.1a):

b) /4y for the Lagrangian part (3.1b)., where the evolution of the velocity
field 1s assumed to be known:

¢) 4y for the total system of the d + F equations.

These Lyapunov exponents are defined as

e ) . ll |Z(E)E'L'T|
e BT ot - |Z(OEE]

where the evolution of the three tangent vectors z are given by the linearized
stability equations for the Eulerian part, for the Lagrangian part and for the
total system, respectively:

dz{F " o |
. =1 . B E F
(3.3a) 1 a—Q—h R ol o g
=1 J1Q(n)
- (L) d :
(3.3b) s 3 el
di j=laxj x(t)

L IR s ¢ §
(336) = — Z a__ z}T) 1 2T = nF+d !
i=1 YYjlyw
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fore ¥ = (0, .- @ 1> - Td) and G = (fy. - Jr: 1. - 4y). The meanjp,,
where ¥y (Q] JF | ther evident: ng of

these Lyapunov exponents is ra

a) Ag is the mean € 4
the knowledge of the velocity field:
b) 4, estimates the rate at which the distance 0x (/) between twq .
: - : . . - 3 r o b T ;. r 2 - . I!
Parti{rles initially close mereases with time, W hf n the velocity field is given !
: ian ]"(-‘allz-ﬂt“”]: Sx(}') ~ exp J’;».[fk - , Le

- ' : » ‘$ 3
a particle pair 1 the same Euler
rowth of the distance between initially close partic]
: articl

ywn with infinite precision

_ -1 rate of the increasing of the S
X pone ntial rat g 1€ uncertainty ;»

¢) Ay is the rate of g .
pairs, when the velocity field is not kne

There is no general relation ht:l“'f‘f‘ﬂ A n-nt_l As . ””f' could expect tha -
locity field the particle motion has to be c¢haot:
. = ]H{lt][t.

the presence of a chaotic ve S _
HH“":‘V‘.’I'. thi’] II](LLluallt}r AI__ 2 )"E f'\'{‘)l] ]{ g{‘]]‘(‘r](* [II”‘H ]]{lt Il{}lrl I!-I H“n'“
tems like the Lorenz model (see subsect. 3'2).

On the other hand, from (3.3¢), one sees that

SYS
Ar = max (4g, ApL)-

(3.4)
atrix (AT)U' = 0(;/0y; for the Eyler.

This follows by noting that the stability m
ian plus Lagrangian system (3.3¢) can be written as

A{FJ 0
(3.5) A = ( U A{Ll) '

where 0 is the F x d zero matrix. and

0
Al = —‘-fi of size F X F,
o,

Ou
A = = of gize. d xd,
ox,
B e I x T
= aQ;’ of size B oy i

A direct computation shows that the matrix which gives tl . on i
T A which gives the evolution in the
(T)
MT[Q(0), x(0), t]=exp[|,dtA"[Q (1), x(1)]]

and has a block tridiagonal structure. The el
. 2 eigenvalues ar erefore
eigenvalues of the two diagonal blocks, ; o are thorsly o

M®[Q(0), t] =exp(f,dtA™[Q(1)]],

: and
| M®[Q(0), x(0), t]=exp[[rdtA™[Q (1), x(1)]].
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As a consequence the Spectrum of the Lyapunov exponents of the total system
IS Just the sum of the spectra of the Eulerian and Lagrangian part.

3 1. Onset of Lagrangian chaos in two-dimensional fluids, a general mechan-

tsm: the Hopf bifurcation. — We have discussed as in three dimensions Lagran-
gian chaos is present even in stationary velocity fields. In this case. it Seems
rather hopeless to search for a generic mechanism for the onset of an irregular
motion of fluid particles in terms of the Eulerian behaviour.

This is no more true in two dimensions for incompressible fluids where the
continuity equation V- u = 0 is automatically satisfied by writing the velocity

components as derivatives of a stream function lj/(l y). The Lagmngian
equations of motion become

g8 du QY dy &Ll
(3.6) = ' { :
f t Oy ! ? Ox

where we use the notation » = »
particle. The stream function is
system whose gene
s to connect thl.‘ [
fact, 1t is well kno
conserved.

1+ ¥ = &y for the space-coordinates of the fluid
formally the Hamiltonian of a one-dimensional
ralized coordinate and momentum are r and y. This allows
Aagrangian chaos with the behaviour of the veloeity field. In
wn that one-dimensional systems are integrable if energy is
A chaotic behaviour is therefore possible only for time-dependent
Hamiltonian when there are no integrals of motion. There exists a wide
literature on quasi-integrable systems. In particular, the effects of time-de-

pendent perturbations on autonomous one-dimensional Hamiltonian systems
are well understood.

For our purposes, we shall consider the
Reynolds numbers, in two dimensions and
A convenient way to study the |
models of these equations.
function Y in Fourier
F terms |[BF79, L87).

Navier-Stokes equations (2.5) at low
with periodic boundary conditions.
agrangian behaviour is by means of truncated
These are obtained by expanding the stream
series  and taking into, account only the first

'
(3.7) W= —i Z A'J,-“ijexp [tk x] + c.c.,

j=1
where c.c. indicates the complex conjugate term and @ = (€, .... Q) are the
F variables (normal modes) which describe the Eulerian field evolution. Insert-
Ing (3.7) into the Navies-Stokes equations and, by an appropriate time rescal-
Ing, we obtain the system of F ordinary differential equations

d@).
(3.5) = HO+ Y 4,00, +1,
' [, m

with j=1, ..., F and [; represents the effect of the external forcing on the
J mode. For an explicit form of the coefficients A jim S€e subsect. 65,
Franceschini and coworkers have studied this

truncated model with F = 5
and F = 7[BF79, L87]. Here we shall discuss the Lagrangian behaviour of

a fluid particle at varying Reynolds number, Re. defined in (3.8) through f. By
using the parameters introduced n [BF79] it turns out J; = Red, ;. Let us

r

.

b sall

o .
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consider the case of F =5 modes. For Re < Re, = 22.
lutions, say . SO that Ap < 0. At Re

stable stationary SO
become unstable, via

orbits appear, implying
the stable limit cycles:

Q) = Q + (Re — Re,)'/*0@ (1)

a Hopt bifurcation
e =0. For Re,

(3.9)
where 6@ () is periodic with period

(3.10) T (Re) =Ty + O (Re — Re;).

At Re = Re,, these limit cyel

4 i [
P

vty . tll AQO

s S V1, VIIESE Solut
(MM75]. and four stable }L“flt.n}ﬁ
< Re < Re, = 28.41..., PeTodie.

+ 0O (Re — H(-l) :
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there are fouy

one thus finds

es lose stability and there is a period-doyl);
10ubling

cascade toward Eulerian chaos.
function is asymptotically _
. ] { {1”} Ht Ht]“”ﬂ]‘y

the stream

he corresponding
n-Poincaré theorem [A7

For Re < Rey,

v (x, t)—= Y (X). and t
independent. The Bendixso
tion V - & = 0 imply that the solutions 0

regular: fixed points and periodic or unbounc

structure of the separatrices,

One can observe the presence o
{tEightS».

one-dimensional Hamiltonian g ¢;
2] and the :-nntinuit‘_‘ g Ime
f the Lagrangian equation (3'lhqua-
led orbits. In fig. 8 we 1'{-1};1;"[) o
i ¢ orbits of infinite period, at Re = Re __I“thf'
f hyperbolic fixed points and of two ll«‘:in l‘:”‘?'-
labelled by A, and the connected Ilmfi:tl[i}f
vELE

Bq For R R . E tll{_j I|._l o - ¥ -
&= t 1 | “\tl{dln flll]i 1]”]] I'"J.{.“ln Q

separatrices, labelled by
time dependent:

-~

(3.11) b 1) =0 (x) + /ey (x. 1)+ O

where J}(x) is given by Q and oY is
here the real tw

E) ;

permdw in X and in { with period 7. Th
o-dimensional space, adjacent to a H‘;t pa :
. cl NE Ar-

region of phase space,
to perturbations, even of very weak intensity. Indeed
= : i X4 1€ {‘

atrix is very sensitive
generically 1n one-dimensional Hamiltonian systems.

L) L

4 T_'_IlllTrII"

0 2.5 5.0 75 10.0

12.5

a periodic perturbation

Fig. 8. — Structur !
ure of the separatrices of eq. (3.6), with ¥ given by eqs. (3.7) and (3.8). in the

5-modes truncation case (see subsect. 6'5) with Re = Re, — 0.05
l o LFEY,
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gives origin to stochastic layers around the separatrices where the motion 1S
chaotic, as a consequence of unfolding and crossing of the stable and unstable
manifolds in domains centred at the hyperbolic fixed points (see. for in-
stance, [LL83]). A method due to Melnikov [M63] allows us to prove the
existence and to estimate the size of a stochastic layer for Hamiltonian svstems
close to integrability, if the unperturbed solution on the separatrix is known.
However, here for the truncated models of Navier-Stokes equations. we are not
able to use this method. since the structure of the Hamiltonian. i.e. of the
stream function . is rather complicated. One can only provide a numerical
evidence for the existence of the chaotic regions, by computing the maximum

Lyapunov exponent. We show in fig. 9 a picture of the chaotic and regular
motion for small ¢ by means of the Poincaré map

(S.12) X(nT)—>xnT + T).

The period T (e) is computed numerically. The size of the stochastic layers
rapidly increases with e. At ¢ ~ (0.7 they overlap and it is practically impossible

to distinguish between regular and chaotic zones. Four different behaviours are
observed at increasing e:

@) a chaotic motion bounded in the stochastic layers originated by the
separatrices of type A4:

b) an unbounded chaotic motion in the stochastic layers originated by
the separatrices of type B:
¢) an unbounded re

gular motion in the regions separated by stochastic
layers of type B:

d) a bounded regular motion in the regions inside stochastic

layers of
type B but far enough from the stochastic layers of type A.

0 .
iy
- o~ \ -
- ; . -
3 S o &1 e
L = eF o srath)
1"" . _ r’:.-i' ‘ .
__1_ - oy w _____1" . .
L § R ST L &\ b
> R L S 2
Xy | a) g Sants ool
b g / s
T /
" - _:'i. '_." l b) ;_ ‘
- . R &
_2_ B 8 :. z W™
- '-;i / e =i - - -
- B L : 3
i LT * E
- s 3 ':r‘?a'l 2 =,
- : o
-3} S
0 1 2 3 4 5 6
A X

Fig. 9. — Poincaré map for three trajectories of system (3.6) in the 5-modes model with
Re = Re; + 0.05. The initial conditions are selected ¢
Z3(0) = — 1.6), or far from the separatrices.
¢) (x,(0) = 4.267, x,(0) = — 3.009).

lose to a separatrix. case a) {z; (0) =82
cases b) (x,(0)=43. x,(0)= —20) and
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there is no simple relation betweern l d L
mportant points:

following, we shall discuss two
i) what are the effects on the Lagrangian chaos of the transition ¢,
Eulerian chaos, i.e. from Ay =0 to 4g > ():
i1) whether a chaotie velocity field (Ag > 0) should mply a stochastie
motion of fluid particles. :

The first point can be again :::tu:lm!
two-dimensional Navier-Stokes equations. For
modes. the limit cyeles hifurcate to new double
Then. there 18 a I)(‘I‘i(ld-{l{}lll.]]il]};.{' transition to f‘]l::l[l:-i and a Hll'fil'liujt* attractor in
the @ space appears at Re, =~ 28.73. where Ag l'n_u-mnv:-: positive. |

Note that unlike the transition to Lagrangian chaos. the transition to
Eulerian chaos is, however, strongly model dependent. For example, in the

F =7 model there is a transition to chaos via collapsing of periodic o

with the truncated models of
the previous model with F = 5
28.41.

|

period orbits at Re

bits [ L87]. | |
In order to investigate the relation between the Lagrangian behaviour and

that of the Eulerian field. one can study g and 4; as a function of Re near the
onset of Eulerian chaos in the two models. In fig. 10 one sees that 4, is not
affected by the sharp increasing of /e at Re_. The same quaditative behaviour
has been observed in the 7-mode model around the corresponding critical value
Re_ =~ 555.

These results provide a numerical evidence to the conjecture that the onset
of Eulerian chaos has no influence on the Lagrangian properties. This conjec-
ture should be valid in most situations, as it is natural to expect that in generie
cases there is a strong separation of the characteristic times for FKulerian and
Lagrangian behaviours.

The second point — the conjecture that a chaotic velocity field implies
a chaotic motion of particles - could also look very natural. Indeed. it appears
to hold in many systems, and in particular in the truncated models. Neverthe-
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Fig. 10. - The Lyapunov exponenets Ag(+) and 4, ( x) (egs. (3.2). (3.3)) as functions of Re.
around Re_. for the 5-mode model

/

less, one can find a class of systems where this is not true, i.e. the system (3.1)
may exhibit a chaotic behaviour with Ag > 0, while 4; = 0.

This is the case. for example, of one of the most famous chaotic systems. the
Lorenz model [L63]. Indeed. it exhibits the surprising feature of Eulerian chaos
without Lagrangian chaos. The Lorenz model is obtained with some rude simpli-
fications from the equations for the convection of the temperature in a slide of
fluid. say (x. y)-plane. with a gravitational field and a temperature oradient
directed along y. Here there are F = 3 degrees of freedom and. hence. three
variables @, @, and @, related to the stream function and to the displacement
of temperature ¢7' from the linear behaviour (in y) in the absence of conveetion:

(3.13) W = @, ::_m rsin y .
0T = \/2Q,cos x sin y — (/5 sin 2y .
The Eulerian equation for the normal modes reads
(@, =Pr(Q,-Q,).
(3.14) { @, =@, (Ra—Q,)—Q,,
(@3 =0Q,0Q, — (8/3)Q;.

where Ra is the Rayleigh number and Pr is the Prandt! number. The Lagran-
glan equations are

d
&= éﬂ = \/‘_.IQI (f) sin & cos y,
(3.15) s

' A oy
: Y O )

where Yy€[0, ] and t are rescaled dimensionless variables.

\/:—ZQI (1) cos @ sin y ,
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Y for i a and that the orbits are |
. that 4, = 0 for all Rd | , : ey Ire alwaye
lv on the initial conditions but not on Ra. Thig can b,

i ) ¥ L y } - r : 3
vichtforward f*nn.-udemtmnh[rl V88| by noting that the
time independent:

It is possible to show
closed and depend only
explained by some stralg
equation for the orbit 18

(—1—{ — q (.l'. !/)

dy

and that
sin x sin y = const

! inteoral of motion. For the sake of simplicity we limit the discussion ¢ an
s an : ors e |

;nitia] m%]ditinn (n/2 + ¢, /2 +q2) close to the Lagrangian fixed poip

(n/2, m/2). One thus has

- L S \/j(t)l (1) 49> -
dt

(3.16)

% = '\/EQI (£)q, -
_ df

1n pular coordinates. one obtains

o ()= ¢(0)+ \/Eﬁ)dr()l (7).

on a circele of radius » with angular

By integrating (3.16)
(8.17) r(t) = const  and

This result implies that the particles move on |
velocity \/'EQI (/). The motion can he chaotic f{')r*ap]u-mprmtv val'u[_lH of the
control parameter Ra since Q, (1) 1t:-;fflf can be {-hantw.hThv ]""‘mm”ﬂm“_L.\'-'ri]'ni-
nov exponent is 4, =0 for all Ra since lmt!} or aml_ o are mrmtunt_ in time.
and hence two particles initially close remain --:'lm-:e in the same I‘Pi-ll'IZEiti{m of
the velocity field. In spite of this. the Lagrat_'lglan l]]l{tl”ﬂ of the ]mrt'u-lv':-a looks
chaotic when Az > 0 (see fig. 11), if the velocity field is not known with infipite

TN
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I

|
I
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40 50 EiO 70 80
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Fig. 11. — The Lagrangian coordinate x (¢) for the Lorenz model with Ra = 26.24 and Pr= 10

(the Eulerian part, eq. (3.14). is chaotic).
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precision, since in this case the total Lyapunov exponent by = Agp. see (3.4).
Inflev_-rl. the phase difference 0 (1) between a particle in the velocity field
described by Q and one In the velocity field described by Q + 0@ increases as

(3.18) 3¢ (1) = /2] dt8Q, (1) ~ exp [Agl] .

[n conclusion we can say that there is
gian and Eulerian chaos. In the

also for velocity fields with a

no general relation between Lagran-
typical situation Lagrangian chaos may appear
regular behaviour, like in the case of the 2d
incompressible fluid (3.13). However, it is also possible to have the opposite
situation. with Eulerian chaos but 4; = 0, as in the Lorenz model We finally
stress that, in any case, one is not able to separate the Lagrangian from the
Eulerian properties by the knowledge of the motion of only one trajectory, e.g.
a buoy in the oceanic currents [OKPBR6]|. Indeed. using the standard data
treatment methods [GPS3]. from X (f) one extracts the total Lyapunov expo-
nent A and not 4, or /g. Nevertheless, one can detect 4y by looking at the time
behaviour of a scalar field in two close points x and x’. From (1.6) one has

d
Ox.t)—O((x', t)~ ¥ 08,

= QAT )

(T 'x — T™%), ~ exp[dt].

Note once more that the kmm-*ler_lge of the scalar field in one

point x in
principle is not

| sufficient to decide whether the Lagrangian chaos is present or
not. One needs at least a two-point statistics. For example in the Lorenz model

one observes a very irregular behaviour of © (x, t), while @ (x. ) — 8(x..1D)
Increases only polynomially with ¢.

4. - Statistics of passive fields.

A chapter of remarkable interest in the physics of fluids
of the dispersive properties of flows on the distribution of some local property
of fluids. In most cases these distributions refer either to scalar quantities. @
whose total amount associated with a material volume of fluid is conserved. or
to vectorial quantities, F, whose flux through an open material surface of fluid
s conserved. The dissipation effects are negligible in both situations. We shall
discuss only this kind of fields. In this frame, some important phenomena
mvolving scalar quantities may be found in the theory of mixing (where @ is
the concentration of a second fluid), and in the study of other
problems (where @ is the temperature, the humidity.
example of vectorial quantity advected by the fluid
Is not of the passive type. The advection
quantity — the magnetic-field mtensity — is of great influence in magnetohyd-
rodynamics [W85]. In this section. we are mainly concerned with conserved
scalars; the magnetic dynamo is treated in subsect 4'5.

In the following we focus our attention on incompressible flows for which
V-u =0. This means that the volume of an element of fluid, ), remains

concerns the study

transport
..) [IM83]. An important
s the vorticity, although it
by the flow of another vectorial
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constant along the motion
D y gt &
—_Jdy=(0,+ 8- V)6V =0.

D1
ent of a material surface, viz. which aly,

- > 1ol : . AV
and dI a material (straight) line eleye, S
an also be written as nt

sents a (plane) ele
articles of fluid.

above t*quaiiml ¢

If dS repre

contains the same p
intersecting dS. the

)
l—([” - dS) = 0.

4.1
&4 D1
fields as being passively convected, ;¢
L] & - = 5 - ""- \.]
ﬂlll(l. :\t'{*nl'llll];_{ to the {I{_lf”-”timw s E]
| Sy adl(
lution laws are

We shall consider the dispersing
shall disregard their influence on the
neglecting molecular diffusion, the evo

(4.2) (a,+u-V)@=ﬂ.

and

(4.3) 0,4+ u-V)(F-dS)=0
a vector qua.ntit}'. I'EH[Jt‘l'tiV{‘l}'- E{_]llﬂ‘[ii}l] (4.2) indicates that
scalar quantit}- @ does not change along the motion of ﬂll}d
e of @ follows the evolution of the material surface
alue. On the other hand. (4.1) and (4.3
ional to dl. an infinitesimal |i.m-l

for a scalar and
the value of the
particles. Each level surfac
which is singled out by a particular O v

show that the vector quantity F is proport
element which initially has the same direction of F. The lines of force of F thy
follow the evolution of the material lines.

Therefore, as long as the molecular diffusion can be neglected, the changes

in the distribution of local quantities, like © and F. are determined hy
Imfi.{.‘.l‘(}S(‘Opit‘ offects related to the behaviour of the solutions of the hvdrodyna.
mic equations. | |
This is a simple consequence of the conservative properties ot @ and F. T,
get some further insight into the hehaviour of these fields. one must be uh]‘v t{}
say something about the Lagragian properties of the flow. It i1s at this ;mint]
that we can resort to the experience on Lagrangian chaos (see sect. 2).

;l.l. The growth of scalar gradients. — Let us discuss the evolution of the
a’ le Ik .,“‘. y ‘rl '~ 4 +1 » ' ' A . . |
gradients of passive scalars, VO, by using concepts borrowed trom the theory

of dynamical systems.
In Lagrangian terms, the solution of (4.2) 1s

(4.4) B (x {)=8,(T 'x),

where @, (x) = @ (x. 0) is the initial distributi '
_ ) (X. | stribution, and T' is the operator which
gives the evolution x(f) = T'x(0), related to the equation |

(4.5) X=ux, t).
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Une can write the spatial derivative of a passive scalar as

d
(4.6) 00 (x, t) 0O, (¥) Ay,

Ox, j=1 O 0Eg

where the variable y = T 1x s given by the time-reversed equation:

(4.7) Yy=—u(y, —t) y(0) =x.

The terms Oy,/0x, are strictly connected to the mstability properties of (4.7).
Indeed, after a time t. an uncertainty oy (0) on the initial condition becomes

oy (t) = A(t)dy(0) .
where the matrix elements of the linear operator A are 4, = Cy;/0x,. Then. the
behaviour of | V@ | is essentially the same of [0y (1)/8y (0)]: if the system (4.5) 1s
chaotic, this is the case also for the solution of (4.7). due to the volu-
me-preserving nature of the dynamics. The global chaotic behaviour is charac-
terized by the maximum Lyapunov exponent of the time-reversed flow

1 Ly oy (! |
4y = lim - In ,‘y_(__) = lim-In|V@®].
i~ |00} =t

Theretore, 4, gives the typical exponential growth of the gradients.

[t is worth stressing that the maximum Lyapunov exponent 4, of the
reserve motion is equal to the opposite of the minimum Lyapunov exponent of
the direct motion. The sum of the Lyapunov exponents is zero for conservative
systems (in our context defined by the flows of imcompressible fluids). There-
fore, the absolute value of the maximum and minimum Lyapunov exponents is
always equal in two dimensions. In three dimensions this could be false. It is
thus conceivable to find a different value for the maximum Lyapunov expo-
nents of the direct and of the reversed flows. although they seem to be equal in
most situations [FKP88]. However, even if in three dimensions the statistics of
contractions and expansions were not identical, these arguments should be still
valid, since the only important feature is the presence of Lagrangian chaos. i.e.
4y >0 and hence 2, <0 in the direct flow.

42. The multifractal structure for the distribution of scalar gradients. — The
maximum Lyapunov exponent is the typical rate of increasing in the distance
of nearby trajectories. Nevertheless, there exist fluctuations around /4 of the
ettective Lyapunov exponent y computed for a finite time trajectory. In fact,
the local growth rate y(x, () is defined by

(4.8) | VO | oc exp [yt]

and lim y (x, t) = 4,. for almost all initial conditions x. The generalized Lyapu-

1=+

nov exponents, L(g). are a natural way of characterizing these finite time
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fluctuations. They are defined as follows:
= o kg
| 1 |‘*_—_ o(T x)" ~{~xp|l.,(r/)f|. for large 1.
14:9) B ox,

(¢) will be discussed i more details i

rn 3
time average. I'he L . 2y
mum Lyapunov exponent an L(q)

where (...) means 7
lation between the maxi

subsect. 6°3. The re
is given by

ity
Ay = lim —.
g—0

J iy N - S Gw (M L
From general theorems of probabilty theory [F71], L(q) 15 shown to be 4 Con-

vex function of ¢, v.e.

Lig) > ———'L ) for ¢ > ¢q .

[

(/ o

implyimg

L(qg) = gi, .

The equal sign holds only when the effective l,_ﬁ'nlnmm' exponent has negligih|e
finite-time fluctuations O (1/t). In most cases, it is sensible to assume that the
probability of measuring a given effective Lyapunov exponent decays ag
E‘xp,-—* H(‘}?)f] for Y = )*l' [t can be shown thi'll I"'(V) = !Il.‘lxj,[}'r{ o .'\'(}-)I‘ the
Legendre tansform of S (y). Gaussian y-fluctuations gz.r. |:1;.:'nnrnm| Hluctuations
of the gradients) correspond to S(y) = () — A1)°/(267) and L (q) = A,q +
3 (0,2/2)({2_ The absence of p-fluctuations corresponds to the linear behavioyy

L(q) = 4,9q. : |
Using (4.6) and (4.9), for the moments of order ¢ we have

(4.10) (VO (x, )|*> ~exp|L(q)!].

where ¢ ...) means spatial average and, if the system 1s chaotic, we made the
ergodic assumption (...)= {(...)).

Let us consider now the probability measure du (x) o« [VEO (x)|dx. and its
coarse-graining over boxes A, of size [:p, () = Litip (x). If one looks at the
scaling properties of the moments of the discretized measure with respect to
the size of the boxes, one expects ( (p;(1))?) oc [~ D" where d is the spatial
dimension and d, are the Renyi dimensions [HJKPS86, PV8T7al. In the litera-
ture the interested reader can find the relations between the ceneralized
dimensions d, and L (¢q)[BPTV88]. Here it is sufficient to note that the
intermittency in the chaotic behaviour, i.e. a nonlinear dependence of L on g,
leads to a multifractal structure of the probability measure g That is to
say, the coarse-grained probability scales with a position-dependent  index
pi (1) oc 1", where a (i) is the singularity of the point x. centre of the box A,
with respect to the Lebesgue measure, which would give p,(l) o 1. The domi-
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nant contribution to the moment of order ¢ is given by an appropriate value

2(q), that is by the boxes with x(1)ela, &+ da]. The more relevant the

'"““'“'"‘“'m“t}'- the larger the deviations of dq from a constant value. see
subsect, 64

Negleting the diffusion coefficient, the conservative nature of (4.2) implies
that the support of the me:

asure u 1s the full space, i.e. the fractal dimension
dy = d. Moreover, it has been shown for rather generie cases that a nonuniform
growth of VO leads to an mnformation dimension (fractal dimension of the set

ot full probability measure) d, <d,, and to an anomalous scaling with a non-
constant d_ [PV87a)|.
Such a multifractal objects is observable only on length scales

(4.11) > 1, ~ 1, eXP [ = Vst ],
where [ is the initial scale of VO and y__ is the maximum local growth rate.
This is due to the fact that for / <[5, the volume stretching which originates
the increase of the @ gradients, has had no time enough to act. One can also
obtain an upper limit for the scale where multifractality can be observed (see
subsect. 44, remark [V).

It %, is the appropriate diffusion coefficient. that takes into account the
changes in the distribution of @ due to molecular effect, the molecular diffusion
s expected to be effective in smoothing the scalar-field distribution at scale

-)

(4.12) ly ~ \/;Xu/il :

Therefore, the approximate equation (4.2) breaks down and has to be replaced
by the diffusionlike equation:

1)
13 — @ = y V>
4.5 3, XeV @

atter the typical time needed by the stretching mechanism to generate a scale

of order 1, i.e. t; ~ (1/4,)In (L, \/Alfxﬂ). For t > t,, the gradients typically stop
their exponential growth. Actually, as the highest y-value in (4.8) begins to
satisty the relation ¢ ~ In (lq \/f/ll/xﬂ). a gradual smoothing of the highest

gradients should appear with corresponding modifications of the dimension d,
tor the g-order moments to which they give the main contribution.

4'3. The power spectrum of scalar fields. — We discuss the fluctuations of
passive scalars on length scales that are small enough, such that the convected
quantity is able to forget its gross scale initial state but not too small, in order
to sately neglect the molecular diffusion effects.

Useful information on the small-scale properties of @ (x) is provided by the
structure function [MY75]

- sin kr
(4.14) Sy =<{l@x+rn-0x)P>=2| Il dk .

5 kr




