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Data
Sequences

Empirical
Correlation matrix

3D
 Contacts
prediction

Sites in contact are associated with high localized 
eigenvectors of the correlation matrix



  

 

Population Covariance 
Infinite statistics

(One matrix)



  

 

Population Covariance vs Empirical Covariance
Infinite statistics Finite statistics

Part of the signal is hidden
by finite sampling effects!

(One matrix) (Ensembles of matrices)



  

Random Matrix Model

Number of measures (M)

Number of 
variables (N)

Perfect sampling limit

Gaussian sample with correlation matrix C

Efficiency parameter



  

Toy model : Finite rank correlation matrix

 

continuous limit



  

Toy model : Finite rank correlation matrix

 

continuous limit

r large

r small

Marcenko-Pastur distribution

(Null model )Case

Wishart ensemble



  

The transition in the eigenvalue spectrum

 
Case of g finite and

Weak signal 

Strong signal 

delta peak



  

Noise undressing of empirical correlation matrices

(Only noise ?)
SignalBulk eigenvalues

L Laloux, P Cizeau, JP Bouchaud, M Potters - Physical Review Letters, (1999)

Real data

Null model
(uncorrelated variables)

(Measured) (True)



  

Noise undressing of empirical correlation matrices

(Only noise ?)
SignalBulk eigenvalues

What about eigenvectors ?

L Laloux, P Cizeau, JP Bouchaud, M Potters - Physical Review Letters, (1999)

Real data

Null model
(uncorrelated variables)

(Measured) (True)



  

Estimation of true eigenvectors from the empirical ones

Scalar product between the largest
 true and empirical eigenvectors



  

Estimation of true eigenvectors from the empirical ones

Scalar product between the largest
 true and empirical eigenvectors



  

 

Estimation of true eigenvectors from the empirical ones

 

Scalar product between the largest true and bulk eigenvectors



  

 

Summary on empirical eigenvectors

 

Is it possible to calculate analytically the scalar products ?

Is there information stored in bulk empirical eigenvectors ?

Two questions:



  

 

Part 1: How to calculate the scalar products?

Projection on the eigenvectors

Continuous limit of the spectrum
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Projection on the eigenvectors

Continuous limit of the spectrum



  

An extension of the Edwards-Jones technique
SF Edwards and RC Jones Journal of Physics A: Mathematical and General, 9(10), 1595 (1976) 



  

An extension of the Edwards-Jones technique

Replica-based calculation

Saddle point equation

Gaussian integrals

SF Edwards and RC Jones Journal of Physics A: Mathematical and General, 9(10), 1595 (1976) 



  

 

Equations for the densities 

 
Saddle point equation 

O. Ledoit and S. Péché, Probability Theory and Related Fields 151.1-2 (2011).
JW Silverstein Journal of Multivariate Analysis, 55(2),  (1995)



  

 

Equations for the densities 

 

Input 

Saddle point equation 

Noise dressing Scalar products

O. Ledoit and S. Péché, Probability Theory and Related Fields 151.1-2 (2011).
JW Silverstein Journal of Multivariate Analysis, 55(2),  (1995)



  

The transition from eigenvectors point of view

 
(with a divergence in                        )



  

Estimation of the principal component

 Inverse problem : How to estimate          ? 



  

 

''standard approach''   

Main limitation: reconstruction impossible for weak signals

The ws are Gaussian variables (fairly verified for large N)

Inverse problem : How to estimate          ? 

Estimation of the principal component



  

 

 

Is it possible to calculate analytically the scalar products ?

Is there information stored in bulk empirical 
eigenvectors ?

One question left:

YES !!



  

 

The mutual information

 
It measures how much knowing X reduces uncertainty about Y



  

 

The mutual information

 
It measures how much knowing X reduces uncertainty about Y

Information related to
     the first eigenvector



  

 

The mutual information

 
It measures how much knowing X reduces uncertainty about Y

Information related to
     bulk eigenvectors

Information related to
     the first eigenvector



  

 

Three questions:

 Is it possible to calculate analytically the scalar products ?    
    

Is there information stored in bulk empirical eigenvectors ?

Is it possible to exploit this information 
to improve the noise undressing procedure ?

YES !!

YES !!



  

An application: reconstruction of localized eigenvectors

 discrete approximation :



  

An application: reconstruction of localized eigenvectors

 discrete approximation :

The estimation problem is mapped onto an Ising model 

Estimate: attains its minimal valuefinding for which



  

An application: reconstruction of localized eigenvectors
Montecarlo results (simulated annealing)
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An application: reconstruction of localized eigenvectors
Montecarlo results (simulated annealing)

Transition point
  

below  g
c
 



  

Conclusions and Perspectives

General formalism for the calculation of the scalar products between the 
empirical eigenvectors and the true ones of a correlation matrix 

 Importance of minor components for the reconstruction of 

 eigenvectors 

Analogy between spin models and estimations of localized eigenvectors 

R. Monasson and D. Villamaina (arXiv:1503.00287)

Large deviations ?

Smarter algorithms ?



  

Perspectives: analogy with the Hopfield model
Hopfield Eigenvector estimation



  

Perspectives: analogy with the Hopfield model
Hopfield Eigenvector estimation

# of spins

# of patterns

DJ Amit, H Gutfreund and H Sompolinsky Physical Review Letters 55, 1530 (1985)



  

Perspectives: analogy with the Hopfield model

High 

(small quenched disorder)

Small 

(high quenched disorder)

Hopfield Eigenvector estimation

# of spins

# of patterns

DJ Amit, H Gutfreund and H Sompolinsky Physical Review Letters 55, 1530 (1985)
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