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Outline of the talk

ZzIntroduction on negative differential mobility (NDM)

2 The model: driven tracer in a lattice gas (ASEP in a sea of SEPs)
¢ Physical argument for NDM at low density

2z General expression for the force-velocity relation
€ Analytical solution and the decoupling approximation
&Criterion for NDM in the parameter space

2 Transition rates out of equilibrium
&NDM and fluctuation-dissipation relations

2 Conclusions and perspectives



Passive and active microrheology

Rheological properties in soft matter from the microscopic motion of colloidal tracers
Puertas & Voigtmann (2014), Squires & Mason (2010)

\

/- Passive: probes freely diffusing in the host medium

due to thermal fluctuations
kgl

6mna

Stokes-Einstein relation D =

===d) Extension to the case where the probe size 1s comparable
to the interaction length scales relevant for the host

mmm)> Active: tracer particle (TP) driven by an
external force F (pulling with a constant force,
or dragging at constant velocity)

Linear response connects active and passive microrheology
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L ===) Extensions to the non-linear response regime F > B ~pN y
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mmm)> Active: tracer particle (TP) driven by an
external force F (pulling with a constant force,
or dragging at constant velocity)

Linear response connects active and passive microrheology
kT

===) Extensions to the non-linear response regime F > ~ pN )
a

Applications: complex fluids, gels, glasses, living cells, granular systems,...

Experimental techniques: optical and magnetic tweezers, Janus particles, etc...
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Negative ditferential mobility

Tracer particle (TP) driven by an external force F in a host medium

_ v
- OF |

velocity increases with changing F' — F' + dF’

The differential mobility i ( F') measures how the

At equilibrium, Einstein relation u(F=0)=BD(F =0)

Nonlinear response regime: increasing the applied |
force can reduce the probe’s drift velocity i
in the force direction p(F') < 0

F

mm)> | “Getting more from pushing less” | (Zia et al. Am. J. Phys. 2002)



Driven tracer in a hard-core lattice gas

General many-particle interacting system, analytically tractable

/(N— 1) hard-core particles,
symmetric exclusion process,

average waiting time 7T

Tracer driven by a force [’
asymmetric exclusion process,

. Particle densit =
 average waiting time 7 y P

N
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Driven tracer in a hard-core lattice gas

General many-particle interacting system, analytically tractable

/(N— 1) hard-core particles,
symmetric exclusion process,

average waiting time 7T

Tracer driven by a force [’
asymmetric exclusion process,
 average waiting time 7

N
V

Particle density p =
J

Tracer jump D, = e(B/2)F-e,
probabilities Y e(B/2F e

v=41,...,4d F = Fe,

P1 L | === 1.DB does not determine
univocally the transition rates

[Local detailed balance @—— =




Force-velocity relation in a hard-core lattice gas

Study of the force-velocity relation V(F ) and NDM phenomenon

Previous results in specific cases:

Fixed obstacles (Lorentz gas)
T /T = 00
analytic results at low density
Leitmann & Franosch PRL 2013

Mobile obstacles
T /T < 00, p=0.2
numerical analysis
Basu & Maes J. Phys. A 2014
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Force-velocity relation in a hard-core lattice gas

Study of the force-velocity relation V(F ) and NDM phenomenon

1

Previous results in specific cases:

Fixed obstacles (Lorentz gas)

ry velocity v(t — o0)

T /T = 00
analytic results at low density
Leitmann & Franosch PRL 2013
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Mobile obstacles
T /T < 00, p=0.2
numerical analysis
Basu & Maes J. Phys. A 2014
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mmm) General description in all regimes?

T

mmm) Role of density and time scales ratio? Physical mechanism?




Argument for NDM at low density

— Bénichou et al. PRL 2014
Strong external force € = 2e PF/2 « 1 énichou eta

€
2d — 2

Force-velocity V(F) = mean distance
relation: mean time of free flight 4 mean trapping time

pr=1—c¢€ p_1 = O(€) Putt+1l =
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Mean distance between two obstacles 1/p

Mean duration of free flight 7 /[p(1 — €)]



Argument for NDM at low density

_ Bénichou et al. PRL 2014
Strong external force € = 2¢ PF/2 « 1

€
2d — 2

Force-velocity V(F) = mean distance
relation: mean time of free flight 4 mean trapping time

pr=1—c¢€ p_1 = O(€) Putt+1l =

Mean distance between two obstacles 1/p

Mean duration of free flight 7 /[p(1 — €)]

1/ Tirap = 3/(477) +€/T | ]

obstacle steps ~ tracer steps in a

away transverse direction




Argument for NDM at low density
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Physical mechanism: a large force
== reduces the flight time between two |
consecutive encounters with bath particles;

== |ncreases the escape time from traps L

created by surrounding obstacles




Argument for NDM at low density

1 - 6 - 1=1 p=0.01
09—

T+ 4p(1 — €) 57

mmsd> | Criterion for NDM 7° 2 7/4/p

Physical mechanism: a large force

V(F)

== reduces the flight time between two |
consecutive encounters with bath particles;

created by surrounding obstacles

== |ncreases the escape time from traps L

*
For T large enough (“slow” obstacles), traps are sufficiently
long lived to slow down the TP when F is increased =) NDM



Master equation of the driven lattice gas

Master Equation for P (RT P, 1, If) R7p tracer position
7] obstacle configuration
d
1
O P(Rrp,m;t) = Sy Z Z [P(Rrp,n"";t) — P(Rrp,n;t)]

p=lr#4Rrp—e,,RrTp
1 d
+ — > pu{ll = n(Rrp)|P(Rrp — e, 1:t)
p=1

— [1—=n(Rrp +e,)|P(Rrp,n;t)}



Master equation of the driven lattice gas

Master Equation for P (RT P, 1, If) R7p tracer position
7] obstacle configuration
d
1
O P(Rrp,m;t) = Sy Z Z [P(Rrp,n"";t) — P(Rrp,n;t)]

p=lr#4Rrp—e,,RrTp
1 d
+ — > pu{ll = n(Rrp)|P(Rrp — e, 1:t)
p=1

— [1—=n(Rrp +e,)|P(Rrp,n;t)}

d<RTp . €1> 1
dt 2d1*

Tracer velocity V( F ) =




Decoupling approximation and analytic solution

Density profile k(X;t) = Z n(Rrp + AN)P(Rrp,n;t)
around the tracer Rrp,m

occupation variable

Equation of motion for the density profile

270 k(Mit) = ) (Vi —0xe.Vou) k(A1)
o
2dT*
+ > pu([l = n(Rrp +€,)|Vun(Rrp + \))

T

higher order correlations are involved



Decoupling approximation and analytic solution

Density profile k(X;t) = Z n(Rrp + AN)P(Rrp,n;t)
around the tracer Rrp,m

occupation variable

Equation of motion for the density profile

270 k(Mit) = ) (Vi —0xe.Vou) k(A1)
o
2dT*
+ > pu([l = n(Rrp +€,)|Vun(Rrp + \))

T

higher order correlations are involved

Decoupling approximation

(M(Rrp + XN)n(Rrp +e,)) ~ (n(Rrp + X)) (n(Rrp + €,))
for A # e,



Decoupling approximation and analytic solution
d<RT P 61> _ 1
dt 2dT*

The decoupling approximation allows us to obtain a

Tracer velocity V(F) = (A1 — A1)

closed nonlinear system of equations




Decoupling approximation and analytic solution

d<RTP y 61> B 1
di = ggr A1 A

The decoupling approximation allows us to obtain a

Tracer velocity V (F') =

closed nonlinear system of equations

C=(AV_pFe, —Quu)uv «= ZA“
n
C,=C— ((Vi—=V_1)Fe, v

A_l n1/2 o0 . ) d
= == 1, (2a7 /AL A_ I, (2a"tA
F. ( 1 > /o e Iy, (2 1A_1t) | [ Tni (207" Agt)at

1=2

m==)> | Solution for |/ ( F ) for arbitrary values of the parameters

Bénichou et al. PRL 2014



Linearized solution at low density

Low density limit p — 0 Auxiliary variable k(e,) = p(1 4 v, )

1

V = ;(pl —10—1) p(pl — pP—1 + P1V1 —p—lv—l)

T



Linearized solution at low density

Low density limit p — 0 Auxiliary variable k(e,) = p(1 4 v, )

1

V = ;(p1 —p_1) p(pl —p_1+p1v1 — P_1V_1)

-
Linear system of equations
7_* 7_>|<
2d(1 + 7)% = ) [+ 2d7py]veuv_,/fn
v==+1,2

*
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Low density limit p — 0 Auxiliary variable k(e,) = p(1 4 v, )

1 p
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T v==+1,2 T
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For 7* = 00 we recover the solution
of the Lorentz lattice gas
Leitmann & Franosch PRL 2013



Linearized solution at low density

Low density limit p — 0 Auxiliary variable k(e,) = p(1 4 v, )

1 p
V = ;(p1 —p_1) — ;(pl —p_1+p1v1 —p_1v_1)
Linear system of equations
21+ Yo = N 142400, Vo Fr
T v==+1,2 T

*

T
2 (- p ) (Vi - V) F
[ (a)l T ' ' T

| 1=1p=0.05

For 7* = 00 we recover the solution o
of the Lorentz lattice gas
Leitmann & Franosch PRL 2013
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Linearized solution at low density

Explicit criterion for NDM 1n the parameter space



Linearized solution at low density

Explicit criterion for NDM 1n the parameter space

Strong force P1 = 1 —e¢ P—-1— 0(62) Pu#+1 —

()= () (5)

S

The sign of 1748 (T—

. ) determines the region of NDM



Linearized solution at low density

Explicit criterion for NDM 1n the parameter space

€
Strong force P1 = 1 —e¢ P—-1— 0(62) Pu#+1 —
2d — 2
o) (7)) (7)
T T T
: oy ) : :
The sign of V' P determines the region of NDM
Exact asymptotic result _ \\\ NDM region
p 2 |
T T .
= oo 4 ( T )




Explicit solution at high density

41*

T

High density limit p — 1 A, =14 —p,[1 —p(2+Ek)]



Explicit solution at high density

4 b S
High density limit p — 1 A, =1+ : pu[l — p(2+ k)]
Tracer velocity
Vip—1) = ~ (1 p) :
P — P1 —P-1 P |+ 4:* (p1+p_81/)7(r4—8/7r)

sinh(8F/2)

P 4 cosh(BF/2)[1 + 2= (7 — 2)]

T




Explicit solution at high density

4 b S
High density limit p — 1 A, =1+ : pu[l — p(2+ k)]
Tracer velocity
Vip—1) = ~ (1 p) :
P — P1 —P-1 P |+ 4:* (p1+p_81/)7(r4—8/7r)

sinh(8F/2)

P ¥ cosh(BF/2)[1 + 22 (7 — 2),

For equal time scales T — T
Bénichou & Oshanin PRE (2002)



Explicit solution at high density

High density limit p —> 1 A, =1+ 4:* Pl —p(2+ k)]
Tracer velocity
Vip—1) = 1(p1 —p-1)(1—p) :
- 14 4:* (p1+p—§/)7(r4—8/77)
sinh(BF/2)
P ¥ cosh(BF/2)[1 + 22 (7 — 2),
(© -~

For equal time scales T — T
Bénichou & Oshanin PRE (2002)




Comparison with Monte Carlo numerical simulations

| d=2,7=1
—
081 (a) () p= 0.05
Y~ (b)y7* = 10
> 0al . (c) p = 0.999
¢ (d)p =0.5
0.2 A . _3
< 1=10
R
6

® -
" =2
¢ =10
A 30
9

mmm)> |Very good agreement in a wide range of parameters



time scales T * / T

and density

Phase chart 1n the parameter space:

Criterion for negative differential mobility

=) The analytical solution allows us to obtain a complete description

|

e—e complete solution
-1/2
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Transition rates out of equilibrium

Decoupling approximation === General solution

Tracer velocity V(F) = d{Rrp - €1) _ 1 (A1 — A_q)

dt 2T

Significant dependence on the choice of transition probabilities?



Transition rates out of equilibrium
General form of transition rates  k(x,y) = ¢ (x, y)e® ®¥)/25(K.C.)

m) V(x,y) =Y(y,x) >0 Symmetric (kinetic) part

mm) S(x,y)=-—-95(y,x) Antisymmetric part
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Transition rates out of equilibrium

General form of transition rates  k(x,y) = ¢ (x, y)e® ®¥)/25(K.C.)
m) V(x,y) =Y(y,x) >0 Symmetric (kinetic) part
mm) S(x,y)=-—-95(y,x) Antisymmetric part

Local detailed balance imposes a constraint on the antisymmetric part

S(x,y) < entropy flux = S(z,z+e,)=p3F e,

Arbitrary choice for the symmetric part

Leltman.n&Franosch, bz, x4+ e,) = 1/T[€BF/2 4 e BE/2 | 2]
Bénichou et al.

V(z,x+e,) =1/27[PF? 4+ e PE/2] for v =41
Y(x,x+e,)=1/41 for v =42

independent of F 1n the transverse direction

Basu & Maes {



Role of the transition probabilities

el P2 e e D D L dependent of F
Dy, = E 4+ = p, = — Independent o
ZM e(P/2)F e, 4 (Basu & Maes)
(Leitmann & Franoch, Bénichou et al.)
q #

?

One obstacle can create a long lived trap No trapping effect at linear order
in the density



Role of the transition probabilities

el P2 e e D D L dependent of F
Dy, = E 4+ = p, = — Independent o
ZM e(P/2)F e, 4 (Basu & Maes)
(Leitmann & Franoch, Bénichou et al.)
q #

?

One obstacle can create a long lived trap No trapping effect at linear order
in the density

Different choices =) significant macroscopic differences

Problem: how to define microscopic transition rates out of equilibrium?

(e.g. molecular motors with external load)



Fluctuation-Dissipation Relation

Linear response around nonequilibrium

Trajectory w = {xs}5=; characterized by discrete jumps at S;

and by exponentially distributed waiting times S;411 — S;

Entropy flux Y(w) = Zs(ws“fﬂszﬂ)

Dynamical t
activity D(w) - /O ds Z ]C(ZBS, y) B Z log w(wsm wSi—{—l)
Yy )

(“frenesy”)

Nonequilibrium dO)p 1/ d¥\ /[ dD
FDR > “ar —2\" . Our F

(Baiesi, Maes, Wynants PRL 2009)




Fluctuation-Dissipation Relation

In our case: Jumps on the TRt jumps on the left
Y(w) = BF(Ns —N.)

S
&
||

/0 ds{pl[l —n(xs +e1)] +p_1[l —n(zs +e_1)]

+ p2|l — (s + e2)] +p_2|l —n(xs + 6—2)]}
—  Nlog[1/(ePt/? 4 e=PF/2 1 9)]

N

total number of jumps



Fluctuation-Dissipation Relation

In our case: Jumps on the TRt jumps on the left
Y(w) = BF(Ns —N.)

S
&
||

/0 ds{pl[l —n(xs +e1)] +p_1[l —n(zs +e_1)]

+ p2|l — (s + e2)] +p_2|l —n(xs + 6—2)]}
—  Nlog[1/(ePt/? 4 e=PF/2 1 9)]

total number of jumps

| B . d{O)p 1/ _d% dD
Consider ) =V in dF _2<OdF>F_<OdF>F

Differential mobility, linear response around nonequilibrium

0 D V) = V-
— 29 (V- (t=t4))p . —h' (V- N)p,



Conclusions

* Microscopic theory for NDM in a driven lattice gas model:
[ Decoupling approximation
[ General expression for the force-velocity relation
[F Exact at low and high density

[A Unification of recent results

 Criterion for NDM 1n the parameter space:

[ Coupling between density and diffusion time scales

* Role of transition rates out of equilibrium

[ Significant macroscopic effects



Perspectives

» Analytical expression of velocity fluctuations and higher order moments

&How to infer the applied force from a velocity measurement?

» Nonequilibrium fluctuation-dissipation relations
&Linear FDR around nonequilibrium

€ Analytical expressions for the terms responsible for NDM



Perspectives

» Analytical expression of velocity fluctuations and higher order moments

&How to infer the applied force from a velocity measurement?

» Nonequilibrium fluctuation-dissipation relations
&Linear FDR around nonequilibrium

€ Analytical expressions for the terms responsible for NDM

» Is it possible to observe NDM in off-lattice systems?
&Recent studies show a monotonic behavior

&To explore a wider range of parameters (for tracer and obstacles)
» Experiments and simulations in driven granular systems?

» Role of the kinetic part of transition rates out of equilibrium

& To measure “effective” transition rates from molecular dynamics



Negative differential mobility in different systems

« Nonequilibrium steady states

(Zia et al. Am. J. Phys. 2002)
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e Models of Brownian motors

e

(Cecchi & Magnasco PRL 1996, (v)
Kostur et al. Physica A 2006)
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« Kinetically constraint models for

glassy dynamics
(Jack et al. PRE 2008, Sellitto PRL 2008)

Reduced velocity (v/vp)
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