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Abstract This is a tribute to Ludwig Boltzmann and a

short introduction to some of his many seminal contribu-

tions in physics and mathematics (entropy, ergodicity,

irreversibility and transport equations).
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1 Introduction

This article is meant as a small homage to the great Aus-

trian scientist to whom we owe many of the ideas that led

to the creation of new research areas in physics and

mathematics: a non-exhaustive list includes ergodic theory,

large deviations, transport equations and systems with

memory (hereditary mechanics). We shall only discuss in

detail a few aspects of Boltzmann’s contributions, for

obvious reasons. Ludwig E. Boltzmann (1844–1906) was

born in Vienna on February 20, 1844, the night between

Fat Tuesday and Ash Wednesday; he used to say, jokingly,

that was the origin of his changes of mood, which swung

from moments of sheer enthusiasm to periods of severe

depression and eventually led to his suicide in Duino (near

Trieste). Boltzmann’s stature is unquestionable, yet 170

years after his birth there still are historically inaccurate

accounts of his life. The introduction of statistical ensem-

bles, for example, although typically attributed to Gibbs,

was actually conceived by Boltzmann. There is no shortage

of erroneous opinions—some completely misleading:

Prigogine and Stenger said on many occasions that Boltz-

mann’s ideas were incoherent, if not utterly wrong. Noth-

ing is farther from the truth: Boltzmann’s intuitions have

been systematically confirmed by a number of detailed

mathematical papers and numerical simulations. There is

also the fabricated story, groundless, that his depression

grew out of unfulfilled academic recognition and the un-

welcoming reception of his theories. What is true is that his

ideas were vigorously opposed by some, in particular by

Mach. However, it is certainly false that those ideas were

considered irrelevant: Boltzmann was elected member of

the major scientific academies, awarded degrees and doc-

torates honoris causa, received countless invitations to give

seminars plus offers of Chairs at leading German univer-

sities, which at that time were the most prestigious in the

entire world.

2 The life and works

Ludwig Boltzmann (LB) was a restless soul, a generous

scientist looking for a tranquility of the mind that he could

never find. He moved from one job to the next relentlessly:

in 1869 he was appointed professor in Graz, in 1873 he

transferred to Vienna, after three years he went back to

Graz, and then in 1887—after accepting a Chair in Ber-

lin—he changed his mind and never took it (apparently

Berlin’s very formal circles scared him). In the letter he

wrote to renounce the post he said, rather cheekily, that he

did not feel sound enough, mathematically, to accept a

Chair in Theoretical Physics. In 1890 he went to Munich,

in 1894 to Vienna, in 1900 to Leipzig. He went back to

Vienna once again in 1902, and the preparations to have

the most renowned Austrian scientist of the time eventually

return were massive: this time, though, the Emperor Franz
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Josef, clearly annoyed by Boltzmann’s erratic behaviour,

required from him a formal written statement that he would

not emigrate yet another time. The comeback was sensa-

tional. Boltzmann had two Chairs (Theoretical Physics and

Philosophy of Science). The first lecture of the course on

philosophy of science was attended by more than 600

people; the largest lecture hall of the university was not big

enough so many were force to stand; all newspapers wrote

about the event and Boltzmann received the emperor’s best

wishes. One might think that Boltzmann was an oppor-

tunist, that he was after prestigious and well-paid positions,

but there is evidence that he did not feel comfortable in the

academic world. He was poorly skilled in the ‘art of

scheming’ (in a letter to his mother he wrote of being

‘better at integrating [equations] than at intriguing’) and he

clearly had no great interest in acclaim or reverence. He

even refused the noble title the emperor wanted to confer

saying ‘our bourgeois name was fine for my ancestors and

will be fine for my children and grandchildren as well’

(Fig. 1).

Despite the many awards he received, and the enormous

success of his students (among whom Walther Nernst and

Svante Arrhenius, both Nobel laureates for Chemistry, and

Paul Ehrenfest), Boltzmann often felt isolated and unap-

preciated, at least towards the end of his life. What he

wrote in the preface to Lectures on gas theory (his mas-

terpiece) is telling: ‘I am aware that I am only a frail person

fighting against the passing of time. But I can give my

contribution, so that when the theory of gases will be

revived there will not be that much that will need to be

rediscovered’.

Even during difficult times he was quite the fighter, and

his confrontations with the opponents of the atomic theory

became almost legendary. The most famous incident took

place in September 1895 in Lübeck, at the Congress of

German Scientists. Years after, Sommerfeld described

what happened thus: ‘Helm was the champion of energism;

then came Ostwald and, afterwards, the philosophical

theories of Mach (who was not present at the event). In the

opposite corner was Boltzmann, supported by Felix Klein.

The skirmish between Boltzmann and Ostwald looked

pretty much like a duel between a hefty bull and a trem-

bling bullfighter. Yet on that occasion the bull defeated the

man and his agility. Boltzmann’s arguments convinced

everybody. All young mathematicians like myself were on

Boltzmann’s side’. After the confrontation in which he was

defeated, Ostwald was very upset. The tone of the letter he

wrote to his wife is bitter, he mentions ‘tight antagonism’

and complains that for the first time he ‘faced such an

openly hostile group of people’. The harsh contention

between Ostwald and Boltzmann, who nevertheless

remained friends, carried on in a series of papers. Only in

1909 did Ostwald eventually acknowledge that he had been

wrong, whilst Mach never backtracked. If he had lived only

a few years more LB would have witnessed the full tri-

umph of his work.

Boltzmann was in touch with the major physicists of his

times (he wrote to Helmholtz, Lorentz, Planck and Ost-

wald) and visited the US several times. Reise eines De-

utschen Professors ins Eldorado (Journey of a German

professor in the Eldorado) is an amusing description of the

1905 trip to California. A significant part of the book is

devoted to food and beverages. On page one he tells about

the last meal in Vienna before departing: ‘I ate roasted

pork, sauerkraut and potatoes with a few glasses of beer

(...) I normally have a good memory, but counting beer

pints is somewhat of a challenge’. Californian cuisine was

not to his liking: during an official dinner he was served a

dish that he thought was more suited for geese, or even

worse: ‘a Viennese goose would not have deigned to eat

this’ he was heard to say.

Boltzmann admired the American way of life, which

was freer and more democratic than the lifestyle back in

the Habsburg empire, but he could not stand the puritan-

ism: ‘They hide the wine, as students do with their cigars.

This is what they call freedom’. He was disappointed to see

that anyone asking directions to a wine store was severely

frowned upon, as if he had enquired about ‘those ladies’.

On his way back to Europe, already far away from puritan

America, he cheered up by shunning water completely, and

drank only white wine from the Rhine valley.

LB’s scientific output was mostly devoted to the con-

struction of a statistical theory capable of describing the

behaviour of macroscopic systems, but there are also otherFig. 1 Ludwig Boltzman at age 31
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lesser-known yet far from negligible results. We shall

briefly overview Boltzmann’s contributions to physics.

It is relatively unknown that at the beginning of his

career LB worked a great deal on electromagnetism. He

was among the first to understand the importance of

Maxwell’s equations, and in particular the deep connection

between optics and electromagnetism. He made detailed

measurements of the relationship between the electric

constant and the refraction index. Maxwell congratulated

him on this and made the young Boltzmann very proud.

Following the famous experiments of Hertz on electro-

magnetic waves LB became so passionate about the subject

that in 1886 he repeated the experiments, gave courses on

electromagnetism and published his lectures (the two vol-

umes appeared in 1891 and 1893).

In 1872 LB published what is universally known as the

Boltzmann equation, which governs the evolution of the

probability density of a rarefied gas’s velocity, thus

recovering in a dynamical setting Maxwell’s distribution

and the celebrated H theorem. This is the first appearance

in the literature of an evolution equation for a probability

density. We may also say that it is the first example where

probability plays a truly significant role in the natural sci-

ences. Boltzmann’s equation, besides representing one of

the most elegant and profound chapters of theoretical

physics, has seen a host of applications in many scientific

and technological fields, from semiconductors to the

dynamics of rarefied gases in aerospace engineering.

Boltzmann was one of the forefathers of hereditary

mechanics, that is, the study of the effects of memory of

past events on the deformations of certain materials, such

as glass. In a 1874 paper LB introduces two functions

/ðt � sÞ and wðt � sÞ that account for the evolution of the

contributions occurred at time t � s and inherited, or

remembered, at time t. These contributions show up in

integral equations that will be developed by Picard and

Volterra only at the beginning of the twentieth century.

In 1877 LB published the probabilistic interpretation of

thermodynamics, incorporated in the well-known formula

S ¼ kB ln W .

In 1884 he proved the fact, until then only conjectured,

that the total energy of a black body is proportional to the

fourth power of the temperature, thus confirming the law

his teacher, based on experimental observations, had only

stated. Although the proof is simple from the mathematical

viewpoint, the result is very important because, at the time,

thermodynamics was not believed to hold for systems other

than gases. In the final decade of the nineteenth century,

trying to answer the criticisms raised by Zermelo and

Loschmidt, Boltzmann perfected his theory of statistical

mechanics and irreversibility and wrote the monumental

opus Lectures on Gas Theory. He had a great admiration

for Darwin, and considered the theory of evolution the

most important discovery of the nineteenth century: ‘If

someone were to ask me if this century will someday be

remembered as the century of steel, steam or electricity, I

would answer without a doubt that it will be called the

century of the mechanistic view of nature and of Darwin ....

In my opinion the entire philosophy of humankind is saved

by Darwin’s theory’. Boltzmann was very interested in

philosophy as well, albeit not in a systematic way (his main

fascination clearly remained with physics) and in the final

years of his life he gave a course on philosophy of science

(of which Mach had been in charge of). Some aspects are

extremely intriguing, for they anticipate ideas of Thomas

Kuhn on scientific revolutions and paradigms: ‘The man on

the street might think that new notions and explanations of

phenomena are gradually added to the bulk of the existing

knowledge (...). But this is untrue, and theoretical physics

has always developed by sudden jumps (...). If we look

closely into the evolution process of a theory, the first thing

we see is that it does not go smoothly at all, as we would

expect; rather, it is full of discontinuities, and at least

apparently it does not follow the logically simplest path.

Sometimes LB has been misunderstood. Popper, for

example, although an admirer, accused him of having

constructed theories that could not be falsified and called

him an idealist. The criticism refers specifically to Boltz-

mann’s computation of the return time TR�CNs0 of a

system at microscopic scale, where N is the number of

particles, C [ 1 is a constant and s0 a characteristic time.

For macroscopic objects, where N� 1020, the computation

gives a time much longer than the universe’s age, so

Popper believed this was a non-falsifiable hypothesis, in

practice: ‘I think that [Boltzmann’s idea of irreversibility]

is completely unsustainable, at least by a realist. It presents

the unidirectional evolution as an illusion (...). So it

transforms our world into an illusion, together with all our

efforts to understand the world better. But eventually it

defeats itself (as any form of idealism)’. The accusation is

unfair, and wrong: Boltzmann’s intuition on return times

has been proved rigorously (see Appendix 2). Moreover, if

we consider small systems, where N has order 101, the

problem can be analysed using a computer and the

expectations are matched.

It must be said that LB did not make much of an effort to

make himself understood; even Maxwell, who shared the

same philosophical view, remarked, ‘I studied Boltzmann

but never fully comprehended him. He did not understand

me because of my conciseness, but his verbosity was, and

still is, a snag for me’. (Fig. 2).

Boltzmann used to write articles 80–100 pages long and

filled with equations, and relegated (often almost hid) the

discussion of the important conceptual aspects in few lines.

He replied to criticism by saying ‘elegance is a matter for
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tailors and shoemakers’. His style had some enthusiasts,

too: a young Albert Einstein, a student at ETH in Zürich at

the beginning of the twentieth century, wrote to his girl-

friend that he had read Boltzmann and found him mag-

nificent. Despite the high esteem in which he held him,

Einstein, too, was well aware that Boltzmann’s papers were

hard, and admitted that many great physicists had not been

able to understand him.

3 The grand vision

The dominant idea in Boltzmann’s work was the attempt to

reconcile mechanics on the one hand and thermodynamics

on the other, that is, to try to build a bridge, both theoretical

and concrete, between these two worlds. The road was long

and winding, but we can summarise Boltzmann’s grand

vision in two points:

(I) the introduction of probabilistic ideas and their

interpretation in terms of physics;

(II) the quest for a relationship linking the macroscopic

world (thermodynamics) to the microscopic one

(dynamics).

Point I is extremely delicate and the object of intense study

still today. The idea of LB was to substitute time averages

with averages coming from a suitable probability density.

This conjecture is called the ergodic hypothesis. If true, the

probability of a region A in phase space is nothing but the

fraction of time spent in A during the evolution, computed

over a very long time.

The relation connecting thermodynamics to the micro-

scopic world (engraved on Boltzmann’s tombstone) is:

S ¼ kB ln W ;

where S denotes the entropy of the macroscopic body (a

thermodynamical quantity) and W is the number of

microscopic states (a mechanical-like quantity) realising

the macroscopic configuration. This law is one of the great

achievements of science (on a par with F ¼ m a and

E ¼ m c2) and subsumes the large part of statistical

mechanics.

3.1 The ergodic hypothesis

If we call qi and pi the position and momentum vectors of

the ith particle, the state of a system of N particles is

represented, at time t, by a vector XðtÞ � ðq1ðtÞ; . . .;
qNðtÞ; p1ðtÞ; . . .; pNðtÞÞ in a 6N-dimensional space called

phase space. The system’s observables are functions AðXÞ
defined on the phase space. As particles are subject to the

deterministic laws of classical mechanics, XðtÞ evolves

according to Hamilton’s equations. If the Hamiltonian does

not depend explicitly on time, the energy is a conserved

quantity during motion, and the system moves on a

hypersurface of constant energy.

Suppose we measure an observable in thermodynamical

equilibrium. It is crucial to notice that the macroscopic

time-scale, at which observations are made (order of

magnitude 10�1–10�3 s), is much bigger than the time-

scale of microscopic Hamiltonian dynamics, which gov-

erns changes at the molecular level (10�11 s). This means

that an experimental measurement is, in practice, the result

of a single observation during which the system assumes an

enormous number of microscopic states. If the datum refers

to the observable AðXÞ, it must be compared with the

average measured during the system’s evolution and taken

over a very long time (microscopically speaking):

Aðt0; T Þ ¼
1

T

Z t0þT

t0

AðXðtÞÞdt : ð1Þ

When we measure the pressure using a manometer, for

instance, the result we read is the average over a time T of

the force exercised in the unit of time over the unit of area,

with T depending on the features of the instrument, but

certainly much larger than molecular times.

The computation of Aðt0; T Þ for an arbitrary observable

requires, in principle, the knowledge of the entire micro-

scopic state at a given instant, and also the system’s exact

trajectory in phase space. This is patently impossible, so if

Aðt0; T Þ depended heavily on the initial state of the system,

we would not be able to make any guesses at all.

The ergodic hypothesis shows us a way out. In essence,

it says that any hypersurface of fixed energy is fully

accessible to any motion occurring at the given energy

level. Said in another way, a constant-energy hypersurface

Fig. 2 Boltzmann in later life
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cannot be divided in regions of finite measure each con-

taining complete motions, i.e. regions invariant under time-

evolution (if this is true the hypersurface is called ‘metri-

cally indecomposable’ or ‘metrically transitive’). Further-

more, for any trajectory the average sojourn time in a given

region is proportional to the region’s volume: hence, there

are no ‘preferred’ regions.

If the above assumption, which represents the core of

the ergodic hypothesis, is satisfied, for T large enough the

average in (1) depends only on the system’s energy, and

therefore it assumes the same value for each evolution with

the same energy level; this value, moreover, can be com-

puted by taking an average of AðXÞ where all states with

that given energy (and only these) contribute in the same

way. Given that the energy of any system is determined up

to a finite error, in the applications it is often useful to

average over all states with energy within a certain range.

The uniform probability density in the region with energy

given up to D defines the so-called microcanonical density,

or microcanonical ensemble. Let us denote such density by

qmcðXÞ and the volume element in phase space by dC ¼
dq1 � � � dqNdp1 � � � dpN (recall that this last is invariant

under Hamiltonian motions). Then

qmcðXÞ ¼
Z

E�HðXÞ�EþD
dX

 !�1

� CDðEÞð Þ�1

and the ergodic hypothesis allows to write

A � lim
T !1

1

T

Z t0þT

t0

AðXðtÞÞdt ¼
Z

AðXÞqmcðXÞdX � hAi :

ð2Þ

We remark that the previous equation, if valid, frees us from

the need to fix an (initial) state, solve the equations of motion

and integrate over time. The ergodic problem is precisely the

problem of deciding whether (2) holds, in other words

whether we can substitute the average of some observable

along the time-evolution with an average in phase space. If

an isolated system can be described through the microca-

nonical ensemble, it is not hard to show, for example, that a

system with a thermostat is well described by the canonical

ensemble. This implies that the proof of (2) justifies

dynamically the introduction of statistical ensembles.

We conclude this section by remarking that our pre-

sentation does not follow the line of thought of Boltzmann

(who changed his mind over the years), but is a modern

reconstruction of his ideas.

3.2 The entropy

The microcanonical ensemble defined above is particularly

apt for describing the equilibrium of an isolated system,

whose thermodynamical state is therefore determined by the

energy level (E) and, say, by the volume (V) and the number

of particles (N). Suppose the system in question is a gas. In

order to establish a link between the statistical and thermo-

dynamical descriptions, it may be convenient to select one

particular thermodynamical potential, the entropy (S). We

can recover in a rather direct way the entire thermodynamics

of the system once we know the expression of S in terms of

E;V;N. The rule is precisely the one Boltzmann found:

SðE;V;NÞ ¼ kB ln WðE;V;NÞ; ð3Þ

where kB is Boltzmann’s constant and WðE;V;NÞ denotes

all microscopic states corresponding to the given equilib-

rium. In classical mechanics dynamical states constitute a

continuous ensemble, so their number must necessarily be

a function of the volume in phase space; for this reason the

entropy can be defined, in the context of statistical

mechanics, as:

SðE;V;NÞ ¼ kB ln CDðE;V ;NÞ : ð4Þ

One motivation for the correspondence comes from

Helmholtz’s theorem, also known as heat theorem (see

Appendix 1).

3.3 Considerations on ergodicity

The ergodicity issue for a macroscopic system, apart from

being a hard problem to solve, might also be irrelevant in the

context of statistical mechanics. Because of the large num-

ber of particles, and the consequently very big size of the

phase-space regions, the time T necessary for the two

averages in (2) to be comparable (provided they are indeed

equal) might exceed the age of the universe, at least for

some observables. In this situation T would not have any

physical interest, nor would Eq. (2). Deciding how large T
is, so that Aðt0; T Þ be close to hAi, is therefore an important

point. We expect that the answer to this question, in general,

will depend both on the observable A and on the number of

particles N. At this stage we have to remark that the relevant

observables in thermodynamics, those characterising equi-

librium states, are not arbitrary functions. They are few and

of a very special kind; the physically interesting question is

whether the times to reach an equilibrium (the equality

between averages in time and phase space) are short enough

for these functions. As a matter of fact Eq. (2) can be

recovered from the following considerations:

(a) in macroscopic systems the number of microscopic

constituents is very large;

(b) the interesting point in statistical mechanics is to

look at (2) not for generic observables but in

relationship to the few observables relevant in

thermodynamics (such as kinetic energy, pressure,
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density) having a special structure: namely, those

that can be expressed, exactly or with good approx-

imation, as sums of the microscopic constituents’

separate contributions;

(c) it is acceptable that (2) might not hold for initial

conditions in regions of overall small measure

(tending to zero as N !1);

(d) it is acceptable for (2) to hold approximately:

A� hAi
�� ��\�

with � tending to zero as N !1.

These physical requirements are not so binding mathe-

matically, and Khinchin proved that for all macroscopic

systems studied in thermodynamics one can obtain inter-

esting results, even if not as general as the ergodic theo-

rems, that hold for arbitrary dynamical systems of even low

dimension, for arbitrary observables and for almost any

initial condition.

It is useful to emphasise two facts about this restricted

framework:

• dynamics does not play an essential role: for the

interesting observables the existence of good statistical

properties on any constant-energy hypersurface does

not depend on the dynamical details, but is related to

the fact that N � 1.

• interesting observables are usually (macroscopically)

constant on most of the constant-energy hypersurface,

but not everywhere; this fact allows non-equilibrium

states to exist in this picture;

The next step, to substantiate the idea of equilibrium and to

make the framework coherent, is to prove that if we start

from a non-equilibrium state, then Hamiltonian dynamics

makes the system evolve in the ‘right direction’ (Boltz-

mann equation).

3.4 The role of dynamics

When a system with given energy is initially in a non-

equilibrium state, which occupies a ‘small’ portion of the

hypersurface, we expect the evolution to move it to the

equilibrium region, which has biggest volume. We will

show, using a simplified situation, that the expected

behaviour is a consequence of the laws of dynamics.

One first step in this direction was made by LB with his

transport equation (simply known as Boltzmann equation).

He was trying to tackle the following problems:

(a) obtain, within Newtonian mechanics, the Maxwell–

Boltzmann (MB) distribution for the velocity of the

molecules of a gas in thermodynamical equilibrium

(we will explain later that additional assumptions are

needed to accompany the laws of dynamics);

(b) show, within classical mechanics, that a generic

probability distribution tends asymptotically to the

MB distribution.

The basic idea is to study the behaviour in time of a par-

ticular ‘collective’ variable, which provides partial infor-

mation on the system’s microscopic state: this is the

distribution fXðq; pÞ of molecules in the various single-

molecule states. By definition, fXðq; pÞ dq dp represents the

number of molecules that are in one of the states contained

in the volume element dq dp around the point ðq; pÞ in the

phase space of the single molecule, for a given state X of

the system. Let us emphasise that this function, as signalled

by the subscript X, is defined on states X �
ðq1; . . .; qN ; p1; . . .; pNÞ of systems of N particles. As fX is a

density in the single-molecule’s phase space, fXðq; pÞ=N

represents an ‘empirical’ probability density in terms of the

microscopic state X. The function fX depends upon time, as

a function of the state X whose evolution is governed by

the Hamiltonian equations.

Boltzmann considered diluted gases, whose density is

low and temperature high. He wrote the transport equation

by starting from an exact evolution equation for a generic

fXðtÞ and introducing the molecular chaos assumption

(which will be discussed below). From Boltzmann’s

equation it follows that:

(a) there exists a stationary solution f̂ given by the MB

distribution;

(b) the evolution takes every f 6¼ f̂ towards f̂ .

Boltzmann’s equation describes the ‘right’ behaviour of

fXðtÞ but carries an additional non-dynamical hypothesis

with it (molecular chaos). This flaw was eliminated in the

1970s using Lanford’s theorem. Assuming molecules to be

hard balls, this result shows that in the Boltzmann–Grad

limit (well suited for describing diluted gases) the evolu-

tion of a given fX , for short times, is governed exactly by

Boltzmann’s equation in the majority of the states X it

represents: this number is as close to the total as one

wants, provided one considers sufficiently many

molecules.

All this shows that the basic ideas for explaining the

thermodynamical behaviour of macroscopic systems from

microscopic equations are solidly rooted in the theory, at

least for a given system and within a certain limit.

More will be said about Boltzmann’s equation below.

3.5 E. Boltzmann’s equation and the H theorem

Let us consider a gas of N identical particles of mass m

contained in a box (of volume V) with elastic and smooth

walls (or periodic boundary conditions). The particles are

subject to:
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(I) an external force FðxÞ acting on the single particle

at x;

(II) a short-range coupling interaction, non-zero only

for jxi � xjj � r. We may for instance think of a gas

made of hard balls of radius r whose potential is1
if jxi � xjj � 2r and zero if jxi � xjj[ 2r.

We further assume the gas is diluted, that is, that r is much

smaller that the typical distance ‘ ¼ ðV=NÞ1=3
between

particles.

Let us reconsider the distribution f ðx; v; tÞ introduced

earlier, which multiplied by dxdv gives the number of

molecules of velocity v at x at time t. In this section, as was

customary in the past, we think of f as a function of ðx; vÞ
instead of ðq; pÞ, as the formalism of analytical mechanics

would traditionally dictate; we have also suppressed the

index X to simplify the notation.

The evolution equation for f reads:

of

ot
þ ðv � rÞf þ F

m
� rv

� �
f ¼ C ð5Þ

where rv is the gradient with respect to the velocity

components and C is the contribution coming from particle

interaction. In absence of interactions C ¼ 0 and (5)

becomes

of

ot
þ ðv � rÞf þ F

m
� rv

� �
f � Df

Dt
¼ 0: ð6Þ

where D=Dt is the total derivative along the trajectory, and

expresses the conservation of density f . Assuming for

simplicity that there are no external forces, and neglecting

the spatial dependence of f , Eq. (5) reads

of

ot
¼ C: ð7Þ

For diluted gases it suffices to consider the variation due to

binary collisions, as the contribution of multi-particle col-

lisions (triple and so on) can be disregarded. The equation

can be written in this form:

otf ðv1; tÞ ¼
Z

W ½ðv01; v02Þ ! ðv1; v2Þ�fFð2Þðv01; v02; tÞ

� Fð2Þðv1; v2; tÞgdv01dv02dv2; ð8Þ

where W ½ðv01; v02Þ ! ðv1; v2Þ� accounts for the cross section

of the given transition and Fð2Þðu; v; tÞ du dv is the number

of pairs with given velocities. It is important to point out

that the explicit expression of W ½ðv01; v02Þ ! ðv1; v2Þ� is in

many respects irrelevant; for example, for the stationary

distribution’s expression and for the H theorem. The

(necessary) appearance of Fð2Þ makes the system not

closed, and we must describe the evolution equation for

Fð2Þ; this entails introducing a new function Fð3Þ, whose

evolution requires an Fð4Þ and so on (this is the problem of

the BBKGY hierarchy, a common feature of all nonlinear

problems). Boltzmann’s hypothesis (usually called molec-

ular chaos assumption, ‘Stosszahlansatz’ in German) fac-

torises Fð2Þðv1; v2; tÞ as product f ðv1; tÞf ðv2; tÞ:

otf ðv1; tÞ ¼
Z

W ½ðv01; v02Þ ! ðv1; v2Þ�ff ðv01; tÞf ðv02; tÞ

� f ðv1; tÞf ðv2; tÞgdv01dv02dv2: ð9Þ

Introducing the function

HðtÞ ¼
Z

dvf ðv; tÞ ln f ðv; tÞ ; ð10Þ

as W ½ðv01; v02Þ ! ðv1; v2Þ� 	 0 and ðln x� ln yÞðx� yÞ	 0

for every x [ 0, y [ 0 it is easy to prove that dH=dt� 0.

What is more, (9) implies that dH=dt ¼ 0 only if the f ðvÞ
solve

f ðsÞðv1Þf ðsÞðv2Þ ¼ f ðsÞðv01Þf ðsÞðv
0

2Þ: ð11Þ

or equivalently

ln f ðsÞðv1Þ þ ln f ðsÞðv2Þ ¼ ln f ðsÞðv01Þ þ ln f ðsÞðv02Þ: ð12Þ

Since equal particles in an elastic collision satisfy

jv1j2 þ jv2j2 ¼ jv
0

1j
2 þ jv02j

2
, it follows that a generic initial

probability distribution f ðv; 0Þ tends to the MB distribu-

tion: f ðsÞðvÞ / exp�½mjvj2=2kBT �. If we set the entropy S

proportional to �H, it will never decrease and will have a

maximum corresponding to the MB distribution. At this

point it would seem that the H theorem provides a ‘proof’

of the second law of thermodynamics—one of the cor-

nerstones of macroscopic physics—in terms of kinetic

theory. That we wrote ‘proof’ indicates that things are not

quite that easy...

3.6 Two apparently hopeless paradoxes

The solution proposed by Boltzmann to the problem of

irreversibility clashes with the recurrence paradox (due to

E. Zermelo) and the reversibility paradox (due to J. Los-

chmidt). Zermelo noticed that the H theorem disagrees

with Poincaré’s recurrence theorem, whereby in any

mechanical system whose motion takes place in a bounded

region of phase space, at some finite time TR the system

will return arbitrarily close to the initial conditions. Since

the distribution function f , and thus H, depend on the

position and velocity of the molecules, when the system

returns to the initial state, H, too, must reach a value

arbitrarily close to the initial value. Consequently HðtÞ
cannot be a monotone function of time.

Now to the reversibility paradox: if H decreases from

time 0 to time t, and at t the velocities are reversed, then
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because of the time-symmetric nature of the equations of

motion the system will go back after t, and H should

increase. The main tool for addressing the objections to the

H theorem is to clarify the latter’s authentic meaning: this

is not a theorem of classical mechanics, and hence does not

hold for any solution of the equations of motion. According

to Boltzmann, ‘the second law [of thermodynamics] cannot

be deduced mathematically from the equations of dynamics

alone (...). What I proved is that it is highly likely that HðtÞ
will approach its minimum; if it is bigger, it can either

increase or decrease, but the probability that it will

decrease is [much] higher’.

Boltzmann managed to give a preliminary answer to the

paradoxes uncovered by Zermelo and Loschmidt (and later

his arguments would be proved to be essentially correct).

As for the recurrence paradox, he pointed out that if we

are given a non-equilibrium microscopic state Xð0Þ, asso-

ciated to the distribution f ð0Þ, at some later time TR the

state XðTRÞ will be close to Xð0Þ, and hence f ðTRÞ will be

‘close’ to f ð0Þ; but Poincaré’s return time is for macro-

scopic systems extremely long, and de facto not obser-

vable. For example, before one cubic centimetre of gas at

normal pressure and temperature returns to the original

state (allowing a measurement error of 10�9 m on the

position and 1 m/s on the velocity), we would have to wait

something like 101019

years, an eternity in comparison to

the universe’s age. Nowadays Boltzmann’s argument is

subsumed by Ka�c’s lemma (see Appendix 2).

We come now to the second paradox, which can be

presented as follows. States Xð0Þ, represented by the dis-

tribution f ð0Þ, occupy a volume Vð0Þ� expf�H½f ð0Þ�g in

phase space; as
R

f ðx; vÞ dx dv ¼ N, we have H / N. In the

diluted-gas limit (Boltzmann-Grad), the majority of states,

after a period t, will be well represented by f ðtÞ, the solution

to the Boltzmann equation with initial datum f ð0Þ; therefore

H½f ðtÞ�\H½f ð0Þ�. Hence the volume occupied by states

represented by f ðtÞ, i.e., VðtÞ� expf�H½f ðtÞ�g, is much bigger

than Vð0Þ. If we now take f ðtÞ as new (non-equilibrium)

initial condition, the majority of states in VðtÞ will be gov-

erned by the equation (with a further decrease of H); the

fraction of states—negligible just like Vð0Þ=VðtÞ—for

which that fails contains both states evolved from Xð0Þ and

states obtained from the latter by reversing velocities at time

t. The ‘anti-H’ behaviour of the paradox cannot be excluded,

but it may occur only by an extremely accurate preparation

of the microscopic state (one that reverses, at time t, the

velocities of all particles exactly and simultaneously). It is

practically impossible to obtain such a behaviour by a ran-

dom choice of initial conditions compatible with the given

f ðtÞ; the probability of preparing a state in VðtÞ with ‘anti-H’

evolution has order Vð0Þ=VðtÞ� expf�jHðtÞ�Hð0Þjg, which is

exponentially small in N since jHðtÞ � Hð0Þj / N.

Finally, we note that it is easy to prove that in presence of

molecular chaos, as in the vast majority of states represented

by a given f ðtÞ, HðtÞ has a local maximum, and the

reversibility paradox does not apply to initial conditions

where HðtÞ has a maximum point, as Boltzmann pointed

out.

The argument leads to the unsettling observation that

HðtÞ has (mostly) ‘peaks’ and at the same time is a

decreasing function; within simplified probabilistic models

it is possible to prove that Boltzmann’s intuition is essen-

tially correct (and rigorous in a suitable limit).

The greatness of Boltzmann’s work comes not so much

from having ‘reduced thermodynamics to mechanics’, as

some claim; rather, it lies in the explanation that irrevers-

ibility cannot be understood solely with the laws of

mechanics. He made us comprehend the subtle nature of

the emergence of irreversibility, for which two funda-

mental ingredients are necessary:

(a) a large number of particles (atoms or molecules),

which is at the heart of the substantial imbalance

between the microscopic and macroscopic scales;

(b) suitable initial conditions (those generating molecular

chaos): the laws of mechanics have nothing of the

kind of the second law of thermodynamics, which can

be reduced to mechanical terms only by means of

special assumptions on the initial conditions.

We may add to these a third element (somehow

related, and complementary, to (b):

(c) the use of probability: not all microscopic states

evolve in an irreversible way, but only ‘most of

them’. With macroscopic systems, where the number

of particles is enormous, it is practically certain that

an irreversible behaviour will be seen.

Boltzmann’s approach is probabilistic, which implies

that the second law of thermodynamics must lose (at least

conceptually) the status of absolute law to become a

probabilistic event. After a long journey strewn with con-

troversies and debates, Boltzmann grasped (and had some

explanation for) the fact that mechanical reversibility is not

at odds with thermodynamical irreversibility.

In contrast to the section on ergodicity, the previous

discussion is faithful to Boltzmann’s original thoughts

(albeit presented using contemporary language).

4 The decisive (posthumous) triumph

LB’s scientific legacy is gigantic: his ideas were the starting

point for whole new areas of mathematics (like the theory

of large fluctuations); they influenced Planck’s study of

black bodies, and provided the foundations of the modern

techniques of numerical simulation (see Appendix 3). Even
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the controversial aspects of his approach have been clari-

fied, thus showing that his intuitions were eventually correct

(Fig. 3).

4.1 Brownian motion

Boltzmann did not manage to convince all his critics that

atoms exist as physical entities, and not just as a useful

hypothesis for computations, as Mach believed when he

said ‘the atomic theory plays in physics a role similar to

certain mathematical concepts; it is a model to help fig-

uring out certain facts.’ By the 1910s the last opponents

had given up (not Mach): during a 1911 congress in Paris,

where he was summarising Einstein’s and Perrin’s work on

Brownian motion, Arrhenius declared ‘after this we can no

longer question the essentiality of the existence of atoms’.

Atoms really exist even if we cannot see them (as Mach

liked to say), and Perrin had in fact counted them using

Einstein’s formula on Brownian motion.

A macroscopically tiny but microscopically huge object

like a pollen grain, when immersed in a liquid, zig-zags in

a highly irregular way: the motion has very precise prop-

erties statistically speaking. If we observe one spatial

component long enough we have:

h½xðtÞ � xð0Þ�2i ’ 2Dt;

where h i indicates an average, for instance over a large

number of grains. As Einstein proved in his annus mirabilis

(1905):

D ¼ TR
6pgaNA

where D is the mass diffusivity while R, g, T , a and NA are

the gas constant, the viscosity, the temperature, the parti-

cle’s (pollen’s) radius and the Avogadro number. Brownian

motion is a superb magnifying glass on the microscopic

world, and enables us to detect relationships between

macroscopic quantities as D;R, g, T , a (accessible exper-

imentally), and microscopic quantities such as the Avo-

gadro number NA.

Apparently LB was not aware of Einstein’s 1905 work

on Brownian motion. It is interesting that Einstein did not

care about the phenomenon in itself, his real purpose being

to show that ‘in agreement with the molecular theory of

heat, bodies visible under the microscope and suspended in

a liquid possess a movement so evident that it can be

observed. Possibly, the phenomenon I am talking about is

related to so-called Brownian motion.’ In other terms he

wanted to find, using statistical mechanics, the experi-

mental evidence proving the existence of atoms, in line

with Boltzmann.

4.2 Mathematical developments of Boltzmann’s

equation

The technical machinery needed for proving the H the-

orem in a suitable limit is impressive. Starting from a

pivotal 1948 paper by Grad we have eventually arrived

at stating, and proving, what Boltzmann’s profound

physical insight had envisioned. Among the many people

that have taken part in this enterprise we mention Illner,

Lanford, Shinbrot, Di Perna, Lions, Pulvirenti and Cer-

cignani. The essence of their work may be summarised

as follows:

In Grad’s limit:

N !1; r! 0; Nr2 ! constant; ð13Þ

where N is the number of molecules per unit of volume and

r their diameter, the probability of having molecular chaos

tends to 1 (absolute certainty) if the system’s initial con-

dition is not in thermodynamical equilibrium and f ðx; v; tÞ
evolves according to Boltzmann’s equation, so that the H

theorem holds.

The physical meaning of Grad’s limit becomes clear if

we observe that while the total volume Nr3 tends to zero

and the gas becomes very diluted, the interactions survive

and allow for a finite variation of f , since the single-col-

lision’s cross section is proportional to r2 and the time

derivative of f ðx; v; tÞ is a multiple of Nr2.

For gases Grad’s limit is physically realistic: at normal

temperature and atmospheric pressure, for instance, 1 cm3

contains N� 1020 molecules and r� 10�8 cm, so

Fig. 3 Boltzmann’s tomb in Vienna
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Nr2� 1 m2; the volume occupied is small compared to the

total volume, for Nr3� 10�4 cm3.

It is really impressive how well this result agrees with

Boltzmann’s intuition.

Translated from the Italian by Simon G. Chiossi.
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Appendix 1: Helmholtz’s cycles and some ideas

of Boltzmann on ergodicity

Boltzmann’s journey towards a consistent formulation of

statistical mechanics starting from mechanics was long and

tortuous. Today we summarise the overall achievement

with two (apparently independent) facts:

• the ergodic hypothesis;

• the law relating entropy to mechanics: S ¼ kB ln W .

There is an interesting relationship between ergodicity and

the entropy-volume formula. It is based on a result of

Helmholtz for one-dimensional Hamiltonian systems,

which seems to be unknown even to those interested in the

history of physics. Luckily it was recently exhumed by

Gallavotti, and discussed with extreme clarity by Campisi

and Kobe (see Appendix 4, ‘‘For further reading’’). To

present it briefly, consider a one-dimensional mechanical

system with Hamiltonian

Hðq; p;VÞ ¼ p2

2m
þ /ðq;VÞ

where V is a control parameter that can vary, e.g., the

length of a pendulum. Assuming the potential /ðq;VÞ
diverges as jqj ! 1, the motion will be periodic for any

value of E and V . Denote by sðE;VÞ the period, and by

q�ðE;VÞ, qþðE;VÞ the minimum and maximum values of

q. The system is obviously ergodic: as the motion is peri-

odic, during the evolution the system visits the entire phase

space of given energy, and an easy computation shows that

the time and microcanonical averages coincide provided

we use the measure

dlðp; qÞ ¼ dðHðq; p;VÞ � EÞdqdpR R
dðHðq; p;VÞ � EÞdqdp

: ð14Þ

We have the following result

Helmholtz theorem. Define temperature and pressure in

terms of time averages h. . .it by:

T ¼ 2

kB

p2

2m

� �
t

; P ¼ � 1

kB

o/ðq;VÞ
oV

� �
t

ð15Þ

and set

SðE;VÞ ¼ kB ln 2

Z qþðE;VÞ

q�ðE;VÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E � /ðq;VÞ�

p
dq: ð16Þ

Then

oS

oE
¼ 1

T
;

oS

oV
¼ P

T
: ð17Þ

Note that SðE;VÞ can be written in the usual form

SðE;VÞ ¼ kB ln

Z
Hðq;p;VÞ\E

dpdq : ð18Þ

Helmholtz’s theorem implies a highly non-trivial fact:

namely, that there is a mechanical analogue of the second

law of thermodynamics. If T and P are given by time

averages of mechanical quantities, the expression

dE þ PdV

T

is an exact one-form.

Boltzmann’s idea was to generalise this to multi-particle

systems and find a function SðE;VÞ for which (15) and (17)

would hold. By assuming ergodicity on a system of N

particles (the periodic evolution in dimension one is

replaced by a motion that visits the entire constant-energy

hypersurface) one can prove a generalised Helmholtz the-

orem; the proof does not depart much from the one-

dimensional situation, but now we have

SðE;VÞ ¼ kB ln

Z
Hðq;p;VÞ\E

dqdp :

instead of (18). This definition of entropy is still not quite

(4), but the two expressions practically coincide when

N � 1.

In terms of cycles the ergodic hypothesis essentially

consists in assuming that the trajectory will sweep the

whole surface H ¼ E. Therefore, replacing the time aver-

age with the microcanonical average is completely natural.

Appendix 2: Return time and Ka�c lemma

Poincaré’s recurrence theorem says nothing about how

long the return time might be. The issue is addressed by

Ka�c’s lemma:

In an ergodic system the average return time in a region

A is

hsAi ¼
sc

lðAÞ ;

where sc is a characteristic time and lðAÞ the measure of A.

To understand how difficult it is to observe recurrence

we might consider a D-dimensional system; the probability
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PðAÞ of sojourning in a region A with normalised size � in

each direction is PðAÞ� �D, so

hTRi� ��D:

Since a macroscopic system of N particles has D ¼ 6N

already at low precision (e.g. 10 %, that is for � ¼ 0:1), the

average return period is Oð106NÞ. Assuming N� 1023 the

average return is � sc101023

, irrespectively of sc. This is far

longer than the age of the universe, a dwarf at a ‘mere’

� 1010 years 
 1017 s. Ka�c’s lemma is a direct conse-

quence of ergodicity. The proof is easy for systems with

discrete states, like Markov chains, with invariant proba-

bilities fP�kg. In that case the return time of a system ini-

tially (time 0) in state m is

hTmi ¼
1

P�m
: ð19Þ

Let s1 denote the time needed to return for the first time to

m, s2 the second return time and so on. After N iterations, a

period

tN ¼
XN
n¼1

sn

has passed and the system has been in state m for this

fraction of time:

fN ¼
N
tN
:

Ergodicity implies

lim
N!1

fN ¼ P�m; lim
N!1

tN
N ¼ hTmi;

and then (19) follows.

Appendix 3: Simulations à la Boltzmann in statistical

mechanics

The ergodic hypothesis is, strictly speaking, false. This is

confirmed by a series of mathematical results, like the

KAM theorem (after Kolmogorov, Arnold, Moser), as well

as by numerical simulations, first and foremost the work of

Fermi, Pasta and Ulam. A very interesting result in physics

is due to Khinchin, who proved how systems with many

degrees of freedom satisfy a slightly weaker form of

ergodicity: in a nutshell, ergodicity holds for a special class

of physically important functions, provided we exclude

‘small’ regions (of negligible measure) in phase space.

Despite these caveats ergodicity has many undoubted

merits. First of all, it allows introducing probability in the

framework of deterministic systems in a natural way. In

particular, as ergodicity is equivalent to the assumption that

different trajectories have the same asymptotic features, we

have a means to interpret probability in frequentist terms.

With ergodicity, the probability of an event (defined via its

asymptotic frequency) is an objective and measurable

property: it suffices to follow a trajectory long enough. We

insist on the fact that we are talking about a single system

(even if with many degrees of freedom) and not of a col-

lection of identical systems. By adopting Boltzmann’s

point of view, it is natural to believe that the only statistical

approach that is physically sound (at a theoretical level) is

the one where time averages are taken along the time

evolution of the system.

This is exactly what numerical simulations do (Monte

Carlo methods, or molecular dynamics), and is also what

happens in the laboratory.

Let us now rapidly discuss how ergodicity is employed in

numerical simulations. Consider a system of N particles of

mass m subject to an external potential Ue (generated, say,

by the walls of the container). The particles interact under a

coupling potential that depends on the distance UðrÞ, and the

system is described by the Hamiltonian function

H ¼
XN

i¼1

p2
i

2m
þ UeðqjÞ

� 	
þ
X

i;j

Uðjqi � qjjÞ:

The vector X ¼ ðq1; . . .; qN ; p1; . . .; pNÞ evolves under the

Newtonian dynamics

m
d2qj

dt2
¼ f jðQÞ

where Q ¼ ðq1; . . .; qNÞ and f j is the total force acting on

particle j. Clearly, the previous equations do not have an

analytic solution. The idea behind molecular dynamics is

conceptually simple: given an initial condition Xð0Þ one

wants to find numerically the trajectory XðDtÞ;Xð2DtÞ; . . .;

XðkDtÞ; . . .;XðMDtÞ, where Dt is the integration interval,

and then compute statistical averages over T ¼MDt:

�A
T ¼ 1

M
XM
k¼1

AðXðkDtÞÞ:

If T is large, ergodicity says that the time average will

approach the average of the microcanonical density; thus

we can reconstruct thermodynamics from dynamics. For

instance: given an energy level E we can determine the

temperature TðEÞ (with the average kinetic energy), and

repeating with other energies we find the specific heat Cv:

1

Cv

¼ oTðEÞ
oE

;

and hence the entropy

SðT2Þ � SðT1Þ ¼
Z T2

T1

CvdT

T
:
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Molecular dynamics enables us to determine accurately the

thermodynamical properties of a system starting from its

Hamiltonian (i.e. the microscopic interactions), and it was

employed successfully in fluid dynamics.

We conclude by mentioning in passing that molecular

dynamics, which is based on the idea that the statistical

properties generated by dynamics represent the core of a

physical phenomenon, is not just a tool that spits out

numbers. Sometimes numerical simulations are true

experiments that make it possible to discover phenomena

that are not obvious or even in contrast to established ideas.

The most notable example is the experiment that Fermi,

Pasta and Ulam carried out in the 1950s using one of the

first non-military computers. The experiment, simulating a

chain of particles linked by springs with weakly non-har-

monic potentials, showed how a small perturbation of an

integrable system is not sufficient to make a system ergodic

(in contrast to what physicists believed at the time).

Another example of some physical interest is the presence

of so-called hydrodynamic tails: in liquids certain corre-

lation functions do not decay exponentially (as long

believed), but as a power law.

Appendix 4: For further reading

There are English translations of the most important book

by Boltzmann and also a good selection of popular articles

that provide a rather exhaustive picture of his philosophical

position:

• L. Boltzmann, Lectures on Gas Theory, Dover Publi-

cations, 2011.

• L. Boltzmann, Theoretical Physics and Philosophical

Problems, ed. Brian McGuinness, Springer, 1974.

The figure of Boltzmann the physicist and the philosopher

(and the times in which he lived) is described in a won-

derful book, full of valuable information:

• C. Cercignani, Ludwig Boltzmann: The Man Who

Trusted Atoms (Oxford University Press 1998).

• C. Cercignani, Boltzmann, un genio nell’Austria felix (i

Grandi della Scienza, n 33, maggio 2003, Le Scienze).

A nice collection of articles on several technical and

conceptual aspects is:

• G. Gallavotti, W.L Reiter and J. Yngvason (eds.),

Boltzmann’s Legacy, (European Mathematical Society,

2008).

For a presentation (in some places historically inaccu-

rate, but still faithful) of Boltzmann’s ideas in statistical

mechanics see

• P. Ehrenfest and T. Ehrenfest, The Conceptual Foun-

dation of the Statistical Approach in Mechanics (Cor-

nell University Press, 1956; German original from

1911).

A nice textbook on statistical mechanics that collects a

number of accurate contributions (often with an uncon-

ventional approach) written for the Enciclopedia Treccani

• G. Gallavotti, Statistical Mechanics. A Short Treatise

(Springer-Verlag, Berlin 1995).

A lucid presentation of Helmholtz cycles and the rela-

tionship to ergodicity can be found in:

• M. Campisi and D. Kobe, ‘‘Derivation of the Boltz-

mann Principle’’, Am. J. of Physics 78, 608 (2010).

For a short discussion on the Fermi-Pasta-Ulam exper-

iment and its relevance in statistical mechanics:

• M. Falcioni and A.Vulpiani, ‘‘Enrico Fermi’s contri-

bution to non-linear systems: the influence of an

unpublished article’’ in Enrico Fermi: his work and

legacy, C. Bernardini and L. Bonolis (eds.), p. 271 (SIF

and Springer-Verlag, 2004).

The classic textbook on limit theorems for computing

probabilities in statistical mechanics, and the ergodic

hypothesis from a physical viewpoint is:

• A.I. Khinchin, Mathematical Foundations of Statistical

Mechanics, (Dover Publications, 1960).

For irreversibility theorems, Boltzmann’s equation, a

discussion on paradoxes and stochastic models the reader

should definitely read:

• M. Ka�c, Probability and Related Topics in Physical

Sciences, (Am. Math. Soc. 1957).

For chaos, coarse graining and the many degrees of

freedom of statistical mechanics:

• P. Castiglione, M. Falcioni, A. Lesne and A. Vulpiani,

Chaos and coarse graining in statistical mechanics,

(Cambridge University Press, 2008).

A detailed study of the technical and conceptual aspects

of the foundations of statistical mechanics:

• N. Zanghı̀, I fondamenti concettuali dell’ approccio

statistico in fisica, in La Natura delle Cose V. Allori,

M. Dorato, F. Laudisa and N. Zanghı̀ (eds.), (Carocci,

Roma 2005).

On Boltzmann and biology:

• P. Schuster, ‘‘Boltzmann, Atomism, Evolution, and

Statistics’’, Complexity 11, 9 (2006).
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A passionate reconstruction of the origins of Brownian

motion and the computation of the Avogadro number:

• J. Perrin, Les Atomes, (Alcan, Paris 1913); English

translation: Atoms, (Van Nostrand, 1916).

Something more recent:

• L. Cohen, ‘‘The History of Noise’’, IEE Signal Pro-

cessing Magazine, November 2005 p. 20.

• A. Baldassarri, A. Puglisi, D. Villamaina and A.

Vulpiani, ‘‘Relazione fluttuazione—dissipazione: una

finestra sul mondo microscopico’’, Lettera Matematica

Pristem 77, 21 (2011).
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