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N® 266,

After the war, during one of his frequent summer visits to Los Alamos, Fermi became
interested in the development and potentialities of the electromic computing machines. He
held many discussions with me on the kind of future problems which could be stadied through
the use of such machines. We decided to try a selection of problems for hewristic work
where in absence of closed analytic sohstions experimental work on a computing machine would
perhaps coniribute to the understanding of properties of solutions. This could be particularly
fruitful for problems involving the asympiotic—long time or “in the large ™ behavior of
nen-linear physical systems.  In addition, such experiments on computing machines would
have at least the virtue of having the postulates clearly stated. This is not always the case
in an actual physical ebject or model where all the assumptions are not perhaps explicitly
recognized.

Fermi expressed often a belief that future fundamental theories in physics may involve
nog-linear operators and equetions, and that it would be useful to attempt practice in the
mathematics needed for the understanding of non-linear systems. The plan was then to start
with the possibly simplest such physical model and to study the results of the caleulation
of its long-time behavior. Then one would gradually increase the generality and the com-
plexity of the problems caleulated on the machine. The Los Alamos report LA-1040 (paper
N® 266} presents the results of the very first such atfempt. We had planned the work in the
summer of 1932 and performed the calculations the following summer. In the discussions
preceding the setting up and running of the problem on the machine we had envisapged as
the next problem a two-dimensional version of the first one. Then perhaps problems of pure
kinematics e.g., the motion of 2 chain of points subject only to constraints but no external
forces, moving on a smooth plane convoluting and knotting itself indefinitely, These were
to be studied preliminary to setting up ultimate models for motions of system where “ mixing
and “ tarbulence ” would be observed. The motivation then was to observe the rates of
mwixing and * thermalization ¥ with the hope that the calculational results would provide
hints for & future theory. One could venture a guess that one motive in the selection of
problems could be traced to Fermi’s early interest in the ergodic theory, In fact, his early
paper (N° T3 ¢) presents an important contribution to this theory,

Tt should be stated here that during one summer Fermi learned very rapidly how to
prograem problems for the electronic computers and he not only could plan the general out-
line and construct the so-called flow diagram but would work out himself the actual coding
of the whole problem in detail,

The results of the calculations (performed on the old MANIAC machine) were interest-
ing and quite surprising to Fermi. He expressed to me the opinion that they really constituted
a fittle discovery in providing intimations that the prevalent beliefs in the universality of
“mixing and thermalization ™ in non-linear systems may not be always justified.

A few words about the subsequent history of this non.inear problem. A number of
other examples of such physical systems were examined by caleulations on the electronic
computing machines in 1036 and 3037, I presented the results of the oripinal paper on
several occasions at sclentific meetings; they seemed to have aroused considerable interest
among mathematicians and physicists and there is by now a small literature dealing with this
problem.  The most recent results are due to N. ], Zabusky. (' His analytical work shows,
by the way, & good agreement of the numerical computations with the contimuous solution
up to a point where a discontinuity developed in the derivatives and the analytical work
had to be modified. Oune obtains from it another indication that the phenomenon discovered

(£} Exact Solutions for the Vibrations of a non-linear continuous string. A. E.C. Re-
search and Development Report. MATT-:o02, Plasma Physics Laboratory, Princeton Uni
versity, October 1961,
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is not due to numerical accidents of the algorithm of the computing machine, but seems fo
constitute a real property of the dynamical system.

In 106¥, on more modern and faster machines, the original problem was considered for
stiil longer periods of time. It was found by J. Tutk and M. Menzel that after one continues
the calculations from the first “return™ of the system to its original condition the return
is not complete.  The total energy is concentrated again essentially in the first Fourler mode,
but the remaining one or two percent of the total energy is in higher modes. If one continues
the calculation, at the end of the next great cycle the error {deviation from the original initial
condition) is greater and amounts to perhaps three percent. Continuing again one finds the
deviation Increasing—after eight great cycles the deviation amounis to some eight percent
but from that time on an opposite development fakes placel After eight more e, sixteen
great cycles attogether, the system gets very close—better than within one percent to the
original statel This supercycle constitutes another surprising property of our non-linear
systen

Paper N¢ 266 is not the only work that Fermi and [ did together. In the swmmer of
1950 we made a study of the behavior of the thermonuclear reaction in a mass of deuterium
and wrote a report, LA-1158, which is stifl classified. The problem is of enormous mathe-
matical complexity, involving the hydrodynamics of the motion of the material, the hydro-
dynamijcs of radiation energy, all interwoven with the processes of the varicus reactions
between the nueclel whose probabilities and properties depend i.a., on temperature, density,
and the changing geometry of the materials. The aim of this work was fo obtain, by 2 schema-
tized but still elaborate picture of the evolution of all these physical processes, an idea of
the propagation of such a reaction, This was to complement a previous work by Everett
and myself, dealing with the problem of ignition of 2 mass deuterinm. Assuming an ignition
somehow started in a large volume, one wanted to evaluate the prospects of propagation of
the reactions already started. Many ingenious schematizations and simplifications had to
be introduced in order to describe the process, without the possibility of caleulating in exact
detail the innumerable geometrical and thermodynamical factors. The results of our come
putations on the chances of propagation were negative and the report played an imporiant
role in channeling imagination and energies towards a search for a different scheme for a suc-
cessful hydrogen reaction. This was indeed found later on on a different basis, All the cal-
culations on which the work of the report is based were performed on desk computers and slide
rules. The subsequent massive and lengthy work on the electronic computer machines {or-
ganized and performed by von Neumann, F, and C. Evans and others) confirmed in large
lines, qualitatively and to a good degrec quantitatively the behavior of the system as
estimated and predicted in owr repert—with its combination of Intuitive evaluations,
schematized equations and hand calculations.

: S. M. ULam.
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STUDIES OF NON LINEAR PROBLEMS

E. Feru1, J. Pasra, and S, Uraw
Document LA~1040 (May 1935},

ABSTRACT.

A one-dimensional dynamical system of 64 particles with forces between neighbors
containing nonlinear terms has been studied on the Los Alamos computer MANIAC L. The
nonfinear terms considered are quadratic, cubie, and broken Iinear types. The results are
analyzed inte Fourier components and plotted as 2 function of time.
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The results show very Httle, if any, tendency toward equipartition of energy among
the degrees of freedom

The last few examples were calonlated in 1953, After the untimely death of Professor
E. Fermi in November, 1954, the caleulations were continued in Los Alamos,

This report is intended to be the first one of a series dealing with the be-
havior of certain nonlinear physical systems where the non-linearity is intro-
duced as a perturbation to a primarily linear problem. The behavior of the
systems is to be studied for times which are long compared to the character-
istic periods of the corresponding linear problems.

The probiems in question do not seem to admit of analytic solutions in
closed form, and heuristic work was performed numerically on a fast elec-
tronic computing machine (MANIAC I at Los Alamos).® The ergodic behavior
of such systems was studied with the primary aim of establishing, experi-
mentally, the rate of approach to the equipartition of energy among the var-
ious degrees of freedom of the system. Several problems will be considered
in order of increasing complexity. This paper is devoted to the first one only.

We imagine a one-dimensional continuum with the ends kept fixed and
with forces acting on the elements of this string. In addition to the usual
linear term expressing the dependence of the force on the displacement of the
element, this force contains higher order terins.  For the purposes of numerical
work this continuum is replaced by z finite number of points (at most 64 in
our actual computation) so that the partial differential equation defining the
motion of this siring is replaced by a finite number of total differential equa-
tions. We have, therefore, a dynamical system of 64 particles with forces
acting between neighbors with fixed end points. If x; denotes the displace- -
ment of the s~th point from its original position, and « denotes the coeffi-
cient of the quadratic term in the force between the neighboring mass points
and § that of the cubic term, the equations were either

() %y = (Hips b Tiwy = 32 + & [ &ons — 2)* e (8 L))
(imi,z,“',ﬁ&{.), .
or
) % = (Ko o+ Zig = 225) -+ B [0 — 2P — (3, — 2a)?]
(3'* 1,2, 04
% and B were chosen so that at the maximum displacement the nonlinear term
was small, e.g., of the order of one-tenth of the linear term. The correspond-

ing partial differential equation obtained by letting the number of particles

become infinite is the usual wave equation plus non-linear terms of a com-
plicated nature.

Another case studied recently was
(3) %,‘ b 8; (x;‘+; s x,‘) —_— 32 (xf - x:'—~x} "'l"" [

(1) We thank Miss Mary Tsingou for efficient coding of the problems and for running
the computations on the Los Alamos MANIAC machine.
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where the parameters 3, , 8., ¢ were not constant but assumed different values
depending on whether or not the quantities in parentheses were less than or
greater than a certain value fixed in advance. This prescription amounts
to assuming the force as a broken linear function of the displacement. This
broken linear function imitates to some extent a cubic dependence. We
show the graphs representing the force as a function of displacement in three
CASSE.

Quadratic Cubic Broken Linecar

The solution to the corresponding linear problem is a periodic vibration
of the string. If the initial position of the siring is, say, a single sine wave,
the string will oscillate in this mode indefinitely. Starting with the string
in a simple configuration, for example in the first mode (or in other problems,
starting with a combination of a few low modes), the purpose of our compu-
tations was to see how, due to nonlinear forces perturbing the periodic linear
solution, the string would assume more and more complicated shapes, and,
for ¢ tending to infinity, would get into states where all the Fourier modes
acquire increasing importance. In order to see this, the shape of the string,
that is to say, x as a function of / and the kinetic energy as a function 7 were
analyzed periodically in Fourier series. Since the problem can be considered
one of dynamics, this analysis amounts to a Lagrangian change of variables:
instead of the original #, and »,, é = 1,2,--+, 64, we may introduce &
and &,, A==1,2,..., 64, where
A .

64

(4 @y = Lz, sin

The sum of kinetic and potential energies in the problem with a quadratic
force is -

(xt'-}-l— SRR R 7R TN o

(5 a) R B Dty
. * £ 2 : 2

Ein T I . . Tk
(5 3.) Eaé "'}" Eﬁa— -“‘““‘E‘z““’a; "'?- 2@;311’13*{;@"

if we neglect the contributions to potential energy from the quadratic or
higher terms in the force. This amounts in our case to at most a few
percent,
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‘The calculation of the motion was performed in the x variables, and every
few hundred cycles the quantities referring to the z variables were computed
by the above formulas. It should be noted here that the calculation of the
motion could be performed directly in g, and &,. The formulas, however
become unwieldy and the computation, even on an electronic computer, would
take a long time. The computation in the @, variables could have been more
instruetive for the purpose of observing directly the interaction between the
@’s. It is proposed to do a few such calculations in the near future to ob-
serve more directly the properties of the equations for &,.

Let us say here that the results of our computations show features which
were, from the beginning, surprising to us. Instead of a gradual, continuous
flow of energy from the first mode to the higher modes, all of the problems show
an entirely different behavior. Starting In one problem with a quadratic
force and a pure sine wave as the initial position of the string, we indeed
observe initially a gradual increase of energy in the higher modes as predicted
(e.g., by Rayleigh in an infinitesimal analysis). Mode 2 starts increasing first,
followed by mode 3, and so on. Later on, however, this gradual sharing of
energy among successive modes ceases. - Instead, it is one or the other mode
that predominates. For example, mode 2 decides, as it were, to increase
rather rapidly at the cost of all other modes and becomes predominant.
At one time, it has more energy than all the others put together! Then mode
3 undertakes this role. It is only the first few modes which exchange encrgy
among themselves and they do this in a rather regular fashion. Finally, at
a later time mode 1 comes back to within one percent of its initial value so
that the systern seems to be almost periodic. All our problems have at least
this one feature in common. Instead of gradual increase of all the higher
modes, the energy is exchanged, essentially, among only a certain few. Itis,
therefore, very hard to observe the rate of “ thermalization” or mixing In
our problem, and this was the initial purpose of the calculation,

If one should look at the problem from the point of view of statistical
mechanics, the situation could be described as follows: the phase space of
a point representing our entire system has a great number of dimensions,
Only a very small part of its volume is represented by the regions where only
one or a few out of all possible Fourier modes have divided among themselves
aimost 2]l the available energy. If our system with nonlinear forces acting
between the neighboring points should serve as a good example of a trans-
formation of the phase space which is ergodic or metrically transitive, then
the trajectory of almost every point should be everywhere dense in the whole
phase space. With overwhelming probability this should also be true of the
point which at time # = 0 represents our initial configuration, and this point
should spend most of its time in regions corresponding to the equipartition
of energy among various degrees of freedom. As will be seen from the re-
sults this seems hardly the case. We have plotted (figs. 1 to %) the ergodic
sojourn times in certain subsets of our phase space. These may show a tend-
ency to approach limits as guaranteed by the ergodic theorem. These limits,
however, do not seem to correspond to equipartition even in the time average.
Certainly, there seems to be very little, if any, tendency towards equipartition



682 266, - Studies of non Lincar Problems

300 ’\ -
5 L 2 - /ﬂ‘
e [ \ /
=L M4 /

00

\2,
S/AEDLS N
\ WA\
20 36

t N THOUSANDS OF CYCLES

Fig. 1. — The quantity plotted is the energy (kinetic plus potential in each of the first fve

modes}. The units for energy are arbitrary, N s==32; ¢=1/4; 3% = 1/8. The initia} form

of the string was a single sine wave. The higher modes never exceeded in energy 20 of our
units, About 30,000 computation cycles were calculated.
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Fig. 3. - Same conditions as in fig. 1, but the initial configuration of the string was a ** saw-
teoth ™' inangular-shaped wave. Already at f = o, therefore, energy was present in some
modes other than 1, However, modes 5 and higher pever exceaded 40 of our units.
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Fig. 4. ~ The initial configuration assumed was 4 single sine wave; the force had a cubic

term with § = 8 and 8 = /8. Since a cubic force acts symmetrically (in contrast to a

quadratic fores}, the string will forever keep its symmetry and the efiective number of particles
for the computation i N == 16, The even modes will have energy o,
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Fig. 6.~ 52% == 2%, The force was taken as 2 broken linear function of displacernent. The

amplitude at which the slope changes was faken ag 279 o} 27 of the maximum amplitude.
After this cut-off value, the force was assumed still linear but the slope increased by 43 percent.
The effective N = 16,



266. - Studies of non Linear Froblems 083

200

ENERGY
&
&
L~
]

120

A \
\ / \ . ﬁ?eﬁajﬂ_{?j{
\ |/ M ALY
AN

5

0

Vo

B8O

40

O

Eﬁg "
P

5
PN THOUSANDS OF CYCLES

Fig. 7. ~ 82 = 275 Force is again broken Lnear function with the same cui-off, but the
slopes after that increased by 50 percent instead of the 25 percent charge as in problem 6.
The effective N = 16.
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Fig. 8 ~ This drawing shows not the energy but the actual shages, i.e., the displacement of
the string at various times {in cycles) indicated on each curve. The problem is that of fig. 1,
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Fig. 9. This graph refers to the problem of fig, 6. The curves, numbered I, 2, 3, 4, show
the time averages of the kinetic energy contained in the first 4 modes as a function of time.
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of energy among all degrees of freedom at a given time. In other words,
the systems certainly do not show mixing. %

The general features of our computation are these: in each problem, the
system was started from rest at time f== 0. The derivatives in time, of
course, were replaced for the purpose of numerical work by difference expres-
sions. The length of time cycle used varied somewhat from problem to
problem. What corresponded in the Hnpear problem to a full period of the
motion was divided into a large number of time cycles (up to 500} in the com-
putation. Each problem ran through many *‘ would-be periods” of the
linear problem, so the number of time cycles in each computation ran fo
many thousands. That is to say, the number of swings of the string was of
the order of several hundred, if by a swing we understand the period of the
initial configuration in the corresponding Hnear problems. The distribution
of energy in the Fourier modes was noted every few hundred of the com-
putation cyeles. The accuracy of the numerical work was checked by the
constancy of the quantity representing the total energy. In some cases, for
checking purposes, the corresponding linear problems were run and these
behaved correctly within one percent or so, even after 10,000 or more cycles.

It is not easy to summarize the resuits of the various special cases. One
feature which they have in comumon is familiar from certain problems in me-

{2} One should distinguish between metric transitivity or ergodic behavior and. the
stronger property of roixing.
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chanics of systems with a few degrees of freedom.  In the compound pendulum
problem one has a transformation of energy from one degree of freedom to
another and back again, and not a continually increasing sharing of energy
between the two. What is perhaps surprising in our problem is that this
kind of behavior still appears in systems with, say, 16 or more degrees of
freedom.

‘What is suggested by these special results is that in certain problems
which are approximately linear, the existence of quasi-siztes may be con-
jectured. :

In a linear problem the tendency of the system to approach a fixed
“state ' amounts, mathematically, to convergence of iterates of a trans-
formation in accordance with an algebraic theorem due to Frobenius and
Perron. This theorem may be stated roughly in the following way. Let A
be a matrix with positive elements. Consider the linear transformation of
the z—dimensional space defined by this matrix. One can assert that if ¥
is any vector with all of its components positive, and if A is applied repeatedly

to this vector, the directions of the vectors ¥, A, AT .., will
approach that of a fixed vector ¥, in such a way that A (%) = A (%), This
eigenvector is unique among all vectors with all their components non-neg-
ative. If we consider a linear problem and appiy this theorem, we shall
expect the system to approach a steady state described by the invariant
vector. Such behavior is in a sense diametrically opposite te an ergodic
motion and is due to a very special character, linearity of the transformations
of the phase space, The resulis of our calculation on the nonlinear vibrating
string suggest that in the case of transformations which are approximately
linear, differing from linear ones by terms which are very simple in the alge-
braic sense (quadratic or cubic in our case), something analogous to the con-
vergence 1o eigenstates may obtain.

One could perhaps conjecture a corresponding theorem. Let Q be a
transformation of a n~dimensional space which is nonlinear but is still rather
simple algebraically (let us say, quadratic in all the coordinates). Consider
any vector ¥ and the iterates of the transformation Q acting on the vector .
In general, there will be ne question of convergence of these vectors Q~ (%)
to a fixed direction.

But a weaker statement is perhaps true. The directions of the vectors
7 (F) sweep out certain cones C, or solid angles in space in such a fashion
that the time averages, Le., the time spent by Q* (%) in C,, exist for n—» oo,
These time averages may depend on the initial ¥ but are able to assume only
a finite number of different values, given C,. In ether words, the space of
all direction divides into a finite number of regions R;, = 1, --, 4, such
that for vectors ¥ taken from any one of these regions the percentage of time
spent by images of ¥ under the (" are the same in any C,.

The graphs fig. 10 show the behavior of the energy residing in
various modes as a function of time; for example, in fig. 1 the energy con-
tent of each of the first § modes is plotted. The abscissa s time measured
in computational cycles, 8¢, although figure captions give §# since this is the
term involved directly in the computation of the acceleration of each point.
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In all problems the mass of each point is assumed to be unity; the amplitude
of the displacement of each point is normalized to a maximum of 1. N de-
notes the number of points and therefore the number of modes present in the
calculation. « denotes the coefficient of the quadratic term and § that of the
cubic term in the force between neighboring mass peints.

We repeat that in all our problems we started the calculation from the
string at rest at £ 0, The ends of the string are kept fixed.



