5 Laplace’s Method

Laplace’s method is useful when trying to estimate integrals of the form

b
I\ = / e Wg(t) dt,

where a,b may be finite or infinite.
The following technique dates back to Laplace (1820). Observe that the peak
value of the function e™*P() occurs at the point t = ¢, where p(¢) is a minimum.

For large A the peak is concentrated in a neighbourhood of ¢t — ¢y, see for example
cosh(t)

Fig. 1 where a plot of the function e=( ~1 is shown for varying \.

Figure 1: Plot of f(\,t) = e7*hller Observe peak is concentrated near t = 0 .

In essence Laplace’s method is as follows: Suppose that ¢y = a and p/'(a) >
0,q(a) # 0. In the integral

b
10 = [ e 0q)at,
we replace p(t), q(t) by local series expansions near t = ¢y. Then
b
I(\) ~ / e—A(p(a)er’(a)(t—to))q(a) dt.
a
We replace the upper-limit by oo to obtain
(V) ~ g(a)e#@ / o~ Mt—a)p'(a) gy

a

Hence
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If instead ¢t = t( is an interior point and p”(¢y) > 0 then

b b
](A):/ O (1) di ~ / Ao+ 1010 g (1) gt (5.1)

Since the peak is concentrated in the neighbourbood of ¢ — t; we may replace

the upper and lower limits in (5.1) by oo with neglible error. Then using
ffooo e~ dt = /m/a for a > 0 we obtain,

ee —t 2T
I(\) ~ e o)t / NEEE 1) gp — o Mwlto) g4 :

These hand waving arguments work remarkably well and are proven more formally
below.
Theorem Suppose

1. p(t) > p(a) for t € (a,b) and the minimum of p(t) is only approached at

2. p'(t),q(t) are continuous in a neighbourhood of t = a except possibly at
t=a.

3. Ast — a+

) + Zpk a) e Z gr(t — a)" ot

where p > 0,Re(o) > 0,p9 # 0,q0 # 0. Also we assume that we can
differentiate p(t) to obtain

~ Y (kA p)pi(t — a)t
k=0

4. f e q(t) dt converges absolutely for large .
Then

b
I(A)Z/ e ()dtNG_Ap“)ZFc:J)%?
a k=0 H

where v = p(t) — p(a) and

q(t) > to —p
= ~ H A O .
f(v) V) Z ARV as v— 0+
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where f(v) = q(t)/p'(t). Hence

o0

I(\) = e @ / e f(v) dv — e @ / e f(v) dv. (5.2)
0 p(b)—p(a)

The contribution from the last integral in (5.2) can be shown to be negligble. If
we use Watson’s lemma for the other integral noting that as ¢ — a+, v — 0 and

k+o—p

f(v) ~ Z apv  ~
k=0

This gives
00 9]
I(\) ~e )‘p(“)/ e N Zakv% Y dv
0 k=0
_)\p(a)Z/ e )\vakUHTU* dv,
k=00
Hence
- k 1
10~ S (10)
k=0 ILL )\ M
Example

Consider the modified Bessel function of the second kind
K,(\) = / e~ teosh(vt) dt
0

and we need the behaviour for large A.
Here p(t) = cosht has a minimum value of 1 at t = 0. Hence put

v =-cosht —1

For small ¢
2t
BT

=3 +.... (5.3)
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We can invert this to find ¢ as a function of v for v small and the leading term is
1 . .
t = (2v)z. This suggests that for small v we may write,

+01’U+C2U%—|—....

[NIE

t=(20)

Thus substituting into (5.3) we find

2t
v = 1 + 1 +
1 3 3 2 1 2
:é[(QU)Q + v + cv2 +] +E[(2v) —i—...]—i—...,
3 9 a1
vt vzeV2+u [\/§CZ+§+6]+““
Comparing like powers of v on both sides implies that
1
=0, ¢c=——x.
1 2 6v2
Hence
= (21})% o Ve +
63 .
Hence

e8] 00 2
K,(\) = / e M eosh(vt) dt = e_’\/ e"“’%[l T dv
0 0 v 2

This gives

as A — oo.
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Example- Stirling’s formula for large x. We will show how Laplace’s method
can be used to estimate the Gamma function I'(\) for large values of the argu-
ment. Consider

FA+1)=A[(\) = / e Yyt dy. (5.4)
0
Hence |
I'(\) = —/ e Yyt dy.
A Jo
Now

e—yy>\ — e—y-‘r)\ logy,

and the function r(y) = —y + Alogy has a minimum at y = A. It is better to

work with a fixed point rather than one depending on A. So put y = At. Then
substituting into (5.4) gives

1 oo
P\ =< [ e\ dt,
A Jo

_ /\)\ /OO e—)\(t—logt) dt.
0

Consider

I(\) = / " AT—iosT) g
0

Now P(T) = T — logT has a minimum value of 1 at 7" =1 for 7" > 0. If we
are interesed in just the dominant term for I'(x) we can replace P(T) by a local
expansion in the vicinity of 7'= 1 and work with that. Below we show how more
terms can generated. First we write

1 o)
I\ = / e MM g + / e M@ T, (5.5)
0 1

and estimate the two integrals separately.
Consider

1
I = / e MO T, (5.6)
0

Put t =1—T in (5.6) so that the minimum occurs at ¢ = 0 and then
1
I = / e~ MI=t=log(1=0)) gy (5.7)

0

Next let
v=1—t—log(l—1t)—1=—t—log(l—1).

For small ¢ we have

e
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This suggests that for small v

t:(2v)%+clv+cgv%—|—....

Hence
1 1 3 5 1 1 3, 1 2
25[(2v)2+clv+021j2+...] +§[(2v)2+clv+...] +Z[(2v) +. ]+
1
= 5[21} + 2v20010 + 2V 200507 + v+ ..
1
+§[(2U)%+3(2v)(clv+cgv%)+...]+v2—|—...,
24/2
= g[\/_cl+T\/_]+U[\/_CQ+2+261+1]+
Equating like powers of v on both sides gives ¢; = —% and
c 4 2 1
20 =—(1+4+2c1+ 2)=—-1—-—=-+4+3)=-.
V2o =—(1+20+5)=—(1-3+7) =
Thus ¢y = *{g and we have
2 2
:(2v)2—§v+\1/—_vg—|—..

This gives

as v — 0+ . With the substitution v = —t —log(1 —¢) the integral (5.5) becomes

I = e_A/ ﬁal’u
0 dv

Using Watson’s lemma means replacing % by the expansion for small v to get

> 1 1 2 1
Ii(\) Ne_A/ e {%v ——+WU +. ] dv,

g e

We still need to consider the second of the integrals in (5.5), ie

12 _ /oo efx(TflogT) AT — 67)\ /OO e,)\(tflog(lth)) dt. (59)
1 0
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Here p(t) =t —log(1+t¢) has a minimum value of 0 at t = 0.Put v = t —log(1+1t).
As t — 0+ we have

Inverting this for small v suggests that
1 3
t=(20)2 + v+ V2 + ...

Thus

[NIES

1., .1 : 1 1
:5[(2@)5+01v+02v%+...]2—§[(211) tavt P20 T

1
= —|2v + 2V 2vciv + 2V QUCQ’U% + 20+
B 1

1
—g[(Qv)% +3(20)(crv + cv?) + . H 0P+

2v/2 2
:v+v%[\/§cl—i]+v2[\/§cz+ﬁ—201+1]+....

3 2
Hence clzgand
c? 4 2 1
20 =—(1-200+2)=—1—=+2)=~.
Vie=—(1-20+5)=-(1-3+5) =3
Thus ¢y = \1/5; and we have
1 2 \/_3
t=(2v)2 + = —2
A L T

This gives

dt 1 1 2 1

el EU + + Wu + .
as v — 04 . With the substitution v = t — log(1 + ¢) the integral (5.9) for I,
becomes

o0 1 1 2 1
Ir(A Ne_’\/ e [—v‘?—l———l——w—k...} dv,
2(N) V2 3 6v2

_A[\/7 N \/?12)\2 } (510)

Combining the two expressions (5.8),(5.10) for I; and I shows that

L) = MWL) + (),
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and using the derived asymptotic expansions for the two integrals gives

2T 1
r ~XNe M — T+ —
(A) ~ Ae )\{—1-12)\4— ],
as A — oo.

This is Stirling’s formula for the Gamma function for large values of the
argument.

6 Method of stationary phase

In place of Laplace type integrals of the form (4.1) suppose we consider integrals
of the form

I(\) = /b e (t) dt (6.1)

and we require the behaviour of I(A) for large A. A special case of these are
Fourier transforms with a,b replaced by +oo and p(t) = ¢. For integrals of the
form there is a famous result known as the Riemann-Lebegue lemma which
states that I(A\) — 0 as A\ — oo provided |g(t)] is integrable in the interval [a, b]
and that p(t) is continuously differentiable for a <t < b and not constant on any
subinterval in a < t < b.

If p/(t) is non-zero in a < ¢ < b then we can use integration by parts and show
that I(A\) = O(1/)X) as A — oo. The more interesting case is when p/(t) is zero in
a<t<h.

Observe that for large A the integrand in (6.1) oscillates and contributions
cancel out except near end points and near stationary points of p(t). The be-
haviour of the integral can be estimated by looking at the local behaviour of the
functions p(t), ¢(t) near end points and near the stationary points of p(t), as we
did with Laplace’s method. The basic idea of the method of stationary phase
is as follows. Suppose that p(¢) has a single stationary point for at ¢t = ¢, in
a <t < band we can write

p(t) = plto) + 52" (1)t — 10 + .-, alt) = alto) + ..

Then we can approximate I()\) as

]()\) ~ /00 eik(p(to)-l-%(t—to)zp”(to))q<t0) dt ~ eiAp(to)q(tO) /OO eiAwTQ dT,

— 50 —00

2 17 .
I(\) ~ \/Tﬂefew‘p(m)q(to),
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where we have used

/_Oo NP AT = \/geif.

The above can be generalised to deal with other behaviours and to obtain
higher order behaviour as follows. Suppose that p(¢) has a single stationary
point t =ty in t € [a,b]. We can write

to ) b )
I\ = / e (t) dt +/ e g(t) dt. (6.2)
a to
Assume that near t = ty+ we have
p(t) = plto) + alt —to)” +o((t —t0)"), q(t) = B(t—t0)"" +o((t —t0)"), (6.3)
where v > 0,0 > 0, and that the expression for p(t) is differentiable, ie

p(t) ~av(t —t)" ' as t—tg+.

Consider ,
1'1()\):/ e g(t) dt.
to

If we make the substitution

v =5(p(t) = p(to)) (6.4)
where s = sgn(a) then
I(\) = ewlto) /|P(b)P(t0)| "N F(v) dv (6.5)
where
Flo) = 210
0

Note that from (6.3), (6.4) as t — to+

1
Il] v

Thus using the behaviour of ¢(t) given in (6.3) we have
sB(t—to)? 1 8B [ w v
Flo) v 0 22— :
av(t —to)»=1  av \|qf

If F(v) is well behaved for large v then using the above we can approxmiate [
by

, [p(b)—p(to)l
L)) = el’\p(tO)/ e F(v) dv
0
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~ ei’\p(tO)/ eV F(v) du.
0

We can extract the leading order behavior of I; by replacing F'(v) with the local
behaviour near v — 0+. Thus

00 /8 S_1
Ii(\) ~ Sei)‘p(to)/ e (i> dv
0 av \ |o

P
~ ¢ip(to) s irls F(;)

—_— v

where we have used the result
/ ei)\ottsfl dt = >\78€Z'US7T/2F(S>
0

for A > 0 and 0 = £1. Hence

(6.6)

Similarly for

suppose that as t — to—

p(t) ~ plto) +~(to — 1)+ o((t = t0) ), q(t) ~ p(to — )7 + o((t — 10)7),
where € > 0,0 > 0. Then
. I
L() ~ P00 Pgizs L) (6.7)
€ (IvIA)

where S = sgn(7).
The dominant contribution to I is given by adding the estimates (6.6), (6.7)
for I; and I, to get

6 g
[()\) - ei)‘p(tO)éeiggsL;)é 6i)\p(t0)/_)eig%5 F(;)g.
v (lafA)> € (Iv[A) <

Near an end point one can adapt the above analysis as appropriate. The
above ideas can be treated more formally, see, for example, chapter 6 of Olver.

Example Consider the Bessel function of order n where n is real

™

1 ™
Jn(N) = —/0 cos(nt — Asint) dt.
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We can write this as

Jn(>\) _ l% |:/ 67Lnt—i/\sint dt:| )
0

™

Here p(t) = sint has a single stationary point at ¢ = & for ¢t € [0, 7]. First let
t =5 + T and then

0 ™
Jn<)\) :/ +/0‘2 (ein(ngT)efi)\cosT) dT. (68)

jus
2

Consider

jus

0
m . N R »
Il :/ ezn(2-|—T)6 ixcosT dT = eznz/ e znT6 iAcosT dT.
0

[NIE]

Put

T2
u:—cosT+1~7+O(T4) as 1T — 0.

Inverting gives

NI

T=Q2u2+... as u—>0+.

Thus 2
I, ~e™z / M1 4 ) (2u) 72 du,
0

T 1 o0 . T (s
I ~ e‘”?”\ﬁ/o eNiy T du = e3P T % (6.9)

Next consider

jus

12 — /2 ein(%JrT)efi)\cosT dT.
0

Put
T2
u:—cosT—l—lfv? as T —0+.

Thus )

T=_2u)2 as u—0+.
Hence

[T/ . .

I ~ ez / (14 ...)e?=D(2u)"2 du,
0
~ eing—i)\/ ei)\u(Qu)—% du
0

Thus

i s

I ~ em2 et % (6.10)
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Hence finally using (6.8), (6.9), (6.10) we obtain

1 T T
Jn(A) ~ ;?R l261”2_“\e4 % +.. }

2 T N
f\/ﬁcos(z—i-?—)\) as A\ — oc.
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