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Preface

This is a collection of ten 2-hours lectures given to an audience of Ph. D. students (and not only) at the
Physics Department of the Sapienza University, Rome, on March-April 2010. Parts of the first lectures
are excerpts of my Ph. D. thesis, defended on February 2002. This is the reason of a net difference
between the first and the last lectures, which - on the contrary - have been arranged following several
papers and textbooks and not a unitary source. I expect to write, in the next months, a more refined
version where such a discontinuity is smoothed and the reader can follow a more homogeneous line of
reasoning.

For these lectures, I have selected a few arguments with the aim of using granular fluids as “bench-
marks” for more general ideas and concepts. Any classical description of fluids (for instance kinetic
theory) needs a careful revision when equilibrium cannot be assumed. Equilibrium is a powerful sym-
metry which often offers shortcuts to conclusions without too much care for subtle details, microscopic
mechanisms and so on. Without equilibrium, one is compelled to look at all the passages and the
assumptions involved. This is a good occasion to learn these passages and assumptions, with an
over-critic eye, underlining the issues which are in doubt in the granular case.

Some useful general references:

• a divulgative useful introduction: Barrat, Trizac and Ernst, J. Phys.: Condens. Matter 17, S2429
(2005), http://arxiv.org/pdf/cond-mat/0411435

• on the Boltzmann equation for elastic gases: The Mathematical Theory of Dilute Gases, C.
Cercignani et al., Springer-Verlag (1994)

• on the Boltzmann equation for granular gases: van Noije and Ernst, Gran. Matt. 1, 57 (1998),
http://arxiv.org/pdf/cond-mat/9803042

• a good handbook for granular kinetic theory (focused to cooling only): Kinetic Theory of Granular
Gases, Pöschel and Brilliantov, Oxford Univ. Press (2003)

• a review of models of driven granular fluid: A. Puglisi, F. Cecconi and A. Vulpiani, J. Phys.:
Condens. Matter 17, S2715 (2005), http://arxiv.org/pdf/cond-mat/0411165

Other useful references:

• H. M. Jaeger, S. R. Nagel and R. P. Behringer, Granular solids, liquids, and gases, Rev. Mod.
Phys. 68, 1259 (1996)

• J. W. Dufty - Granular Fluids - http://arxiv.org/abs/0709.0479

• I. Goldhirsch, Scales and kinetics of granular flows, Chaos, Vol. 9, 659, (1999).

• L. P. Kadanoff, Built upon sand: Theoretical ideas inspired by granular flows, Rev. Mod. Phys.
71, 435 (1999)

• U. M. B. Marconi, A. Puglisi, L. Rondoni and A. Vulpiani, Fluctuation-Dissipation: Response
Theory in Statistical Physics, Phys. Rep. 461, 111 (2008)
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Lecture 1

Introduction to granular “states”

Inspired to a long history of problems in engineer and industrial application, with roots in the 19th
century, a large and heterogeneous family of experiments has demonstrated the richness of granular
phenomenology. Moreover, the fundamental properties of granular media (inelasticity of collisions and
entropic constraints) have motivated the study of a zoo of minimal models displaying an intriguing
behavior in spite of their simplicity. “Granular gas” models are an important category in this realm.
As for spin glasses, some “granular gas” models are observed only in the silicon cage of a computer
simulation, but their importance for a substantial criticism of the basic assumptions (and limits) of
Kinetic Theory, Hydrodynamics and general non-equilibrium Statistical Mechanics, is widely recognized.

What are granular materials?
A granular material is a substance made of grains, i.e. macroscopic particles with a spatial extension

(average diameter) that ranges from tenths of microns to millimiters. In line of principle the size of
grains is not limited as far as their behavior can be described by classical mechanics. For example, the
physics of planetary rings (made of objects with a diameter far larger than centimeters) is sometimes
studied with models of granular media. More often the term “granular” applies to industrial powders:
in chemical or pharmaceutical industries the problem of mixing or separating different kinds of powders
is well known; the problem of the transport of pills, seeds, concretes, etc. is also widely studied by
engineers; the prevention of avalanches or the study of formation and motion of desert dunes are the
subject of important studies all around the world, often involving granular theories; silos containing
granular products from agriculture sometimes undergo to dramatic breakages, or more often their
content become irreversibly stuck in the inside, because of huge internal force chains; the problem of
diffusion of fluids through densely packed granular materials (earths) is vital for the industry of natural
combustibles; the study of ripples formations in the sand under shallow sea waters can solve important
emergencies on many coasts of the world. Rough estimates of the losses suffered in the world economy
due to “granular ignorance” amount to billions of dollars a year.

The physicists usually have reduced the complexity of real situations, performing experiments to
probe the fundamental behavior of granular media. The models proposed by theoretical physicists are
even more idealized, in order to catch the essential ingredients of single phenomena. In an experiment
the grains are often all smooth spheres with the same size, same restitution coefficient, perfectly dry,
in the void, and so on. In a numerical simulation the grains can become rods moving on a segment
or disks without rotational freedom. However some ingredients are common in all the approaches to
granular systems and, in some sense, can be considered the very definition (from the point of view of
Physics) of the granular state of matter.

What are the basic properties of granular materials?
In the study of granular physics the properties usually shared by different models are the following:

• the grains are macroscopic: they are described by rules of classical mechanics and, moreover,
the volume occupied by a grain is excluded by the volume available for the motion of all the
other grains; when total occupied volume is a relevant fraction of the available volume this
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6 LECTURE 1. INTRODUCTION TO GRANULAR “STATES”

property has important consequences: mainly geometrical frustration, strong spatial correlations,
relevance of collisional transport versus streaming transport, enhancement of re-collisions in the
kinetic equations (breakdown of molecular chaos);

• as a consequence of macroscopicity, the grains interact (with each other as well as with the
boundaries) by means of dissipative interactions: this means that friction is always at work
and that collisions are inelastic; the energy lost is transferred to internal degrees of freedom, i.e.
heat, and then dispersed to the environment;

• the environmental thermal temperature plays a negligible role in the dynamics of the grains, i.e.
they are almost always considered at T = 0; this is due again to the macroscopic nature of
grains and in particular to their masses, which are usually of the order of 1020 molecular masses:
the kinetic or potential energy of a grain is therefore many orders of magnitude larger than the
thermal energy conserved in the internal degrees of freedom; in the kinetic theory of granular
gases the role of “microscopic degrees” is played by the grains themselves, so that a granular
temperature can be introduced in terms of the random motion of grains.

What are the open problems in the physics of granular materials?
It is useful to stress here the existence of a main division between two different “states” in which

the granular materials can be, depending upon the external conditions (available volume, intensity of
the driving, degree of inelasticity of the collisions, presence of fluids, and so on):

• Stable or metastable granular systems: this family of problems comprehends the study of the
distribution and the analysis of correlations in the internal forces in a pile or silo of grains, the
characterization of the propagation of mechanical perturbations (sound) inside densely packed
arrays of grains, the very slow compaction dynamics observed when a box full of grains is vibrated
(the grains can rest in a metastable state, in the absence of vibration, which is far from the
minimum packing fraction attainable), the study of time and size distributions of avalanches in
a pile which has reached its critical slope.

• Flowing granular systems: this set of problems is instead composed of all the situations where
an uninterrupted flow is present. Typically granular flows are divided in slow dense flows and
rapid dilute flows. When the stationary velocity of the flow increases (due to an increase of
external driving forces) the shear work induced by internal friction generates granular temperature
and granular pressure, which in exchange produces a decrease of volume fraction occupied by
grains [34]. This ensures that, almost always, a rapid flow is also dilute and that theoretical
methods belonging to kinetic theory, as well as a hydrodynamic description, can be tried and
are sometimes successful. Every kind of typical fluid experiment has been performed on granular
systems: from Couette cells to inclined channels to rotating drums, finding non-linear constitutive
relations. High amplitude vibrations can generate interesting convection phenomena in a box
containing grains, always associated to size and density segregation (apparently violating entropic
principles). Patterns (two dimensional standing waves) can form on the free surface of a vibrated
granular layer. The study of simulated models have arisen new questions on the constitutive
behavior in rapid flows, and recently new experiments have focused on this subject, measuring
the velocity probability distribution functions and finding that in a wide set of situations this
distribution is not Gaussian. The study of internal stress fluctuations and of velocity structure
factors has given further elements to the investigation of kinetics of granular flows. A strong
debate is still alive, on the limits of application of hydrodynamic formalism (and on the possibility
of its derivation through kinetic theory).

1.1 Janssen effect and the distribution of internal stresses

In 1895 H. A. Janssen [83] discovered that in a vertical cylinder the pressure measured at the bottom
does not depend upon the height of the filling, i.e. it does not follow the Stevin law which is valid for
Newtonian fluids at rest [101]:
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pv(h) = ρgh (1.1)

where pv is the vertical pressure, ρ the density of the fluid, g the gravity acceleration and h the
height of the column of fluid above the level of measurement. The pressure in the granular material
follows instead a different law, which accounts for saturation:

pv(h) = Λρg − (Λρg − pv(0)) exp(−h/Λ) (1.2)

where Λ is of the order of the radius R of the cylinder. This guarantees the flow rate in a hourglass
to be constant. Moreover, this law is very important in the framework of silos building, as the difference
between ordinary hydrostatic and granular hydrostatic is mainly due to the presence of anomalous side
pressure, i.e. force exerted against the walls of the cylinder. It happens that the use of a fluid-like
estimate of the horizontal and vertical pressure leads to an underestimating of the side pressure and,
consequently, to unexpected (and dramatic) explosions of silos.

The first interpretation of the law has been given by Janssen in his paper, in terms of a simplified
model with the following assumptions:

1. The vertical pressure pv is constant in the horizontal plane.

2. The horizontal pressure ph is proportional to the vertical pressure pv where K = ph/pv is constant
in space.

3. The wall friction f = µph (where µ is the static friction coefficient) sustains the vertical load at
contact with the wall.

4. The density ρ of the material is constant over all depths.

In particular the first assumption is not true (the pressure depends also upon the distance from the
central axis of the cylinder) but is not essential in this model (as it is formulated as a one-dimensional
problem), while the second assumption should be obtained by means of constitutive relations, i.e. it
requires a microscopic justification.

Imposing the mechanical equilibrium of a disk of granular material of height dh and radius R (the
radius of the container) the following equation is obtained:

πR2 dpv

dh
dh + 2πRµKpvdh = πR2ρgdh (1.3)

which becomes:

dpv

dh
+

pv

Λ
= ρg (1.4)

where Λ = R
2µK . This equation is exactly solved by the function (1.2).

The particular behavior of the vertical pressure in granular materials is mainly due to the anomalies
in the stress propagation. The configuration of the grains in the container is random and the weight
can be sustained in many different ways: every grain discharges its load to other grains underlying
it or at its sides, creating big arches and therefore propagating the stress in unexpected directions.
Moreover, arching is not only a source of randomness, but also of strong fluctuations, i.e. disorder: in
a granular assembly some force chains can be very long and span the size of the entire system, posing
doubts on the validity of (local) mean field modeling.

Further interesting phenomena have been experimentally observed in the statics of granular mate-
rials:

• the fluctuations of the pressure at the bottom of a silo are large, they can change of more
than 20% in repeated pouring of grains in the same container [31], and in a single pouring the
distribution of stresses, measured deep inside or at the bottom of the silo, show an exponential
tail [108, 130, 30].
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Figure 1.1: Force chains generated after a localized (on top) perturbation

• the vertical pressure below conical sandpiles does not follow the height of the material, but rather
has a minimum underneath the apex of the pile [168]

Different models have been proposed and debated in the last years, in order to understand the
problem of the distribution of forces in a silo or in a granular heap.

The q-model has been introduced in 1995 (remarkably a century after the work of Janssen) by Liu
et al. [108, 42] in order to reproduce the stress probability distribution observed in experiments. The
model consists of a regular lattice of sites each with a particle of mass unity. Each site i in layer D is
connected to exactly N sites j in layer D + 1. Only the vertical components of the forces w = σzz are
considered explicitly: a random fraction qij(D) of the total weight supported by particle i in layer D
is transmitted to particle j in layer D + 1. Thus the weight supported by the particle in layer D at the
i-th site, w(D, i), satisfies a stochastic equation:

w(D + 1, j) = 1 +
∑

i

qij(D)w(D, i) (1.5)

The random variables qij(D) are taken independent except for the constraint

∑

j

qij = 1 (1.6)

which enforces the condition of force balance on each particle. Given a distribution of q’s, it can
be obtained the probability distribution QD(w) of finding a site that bears a weight w on layer D. By
means of mean field calculations, exact calculations and numerical solutions, the authors conclude that
(apart of some limiting cases) a generic continuous distributions of q’s lead to a distribution of weights
that, normalized to the mean, is independent of depth at large D and which decays exponentially at
large weights. They find also a good agreement with molecular dynamics simulations of the packing
of hard spheres. The q-model has many limits:

• it is a scalar model, i.e. it takes into account only one component of the internal stress (this was
solved by P. G. de Gennes [48] who introduced a vectorial version of the q-model, obtaining a
more realistic propagation of forces)

• it does not reproduce the minimum (the “dip”) of the pressure measured under central axis at
the bottom of a sand heap

• it does not reproduce the Janssen law [119]; this problem appears as a consequence of the
diffusive nature of the q-model solution: the saturation depth Ds where the stress distribution
becomes independent of depth scales with the silo width R as Ds ∼ R2, at odds with the Janssen
observation that predicts Ds ≡ Λ ∼ R.
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A more refined version of the Janssen model has been introduced by Bouchaud et al. [20]: the
authors have considered a local version of the Janssen assumption on the proportionality between
horizontal and vertical stresses:

σxx = kσzz (1.7a)

σyy = kσzz (1.7b)

σxy = 0 (1.7c)

which lead to the linear equation:

∂2σzz

∂z2
− k

(

∂2

∂x2
+

∂2

∂y2

)

σzz = 0 (1.8)

This equation for the vertical stress is hyperbolic and therefore differs from the equivalent equation
for an elastic medium, which is elliptic [100], and from the q-model equation that is parabolic (as a
diffusion equation): it is equivalent to the equation for the wave propagation with z as the “time”
variable and k as the inverse of the propagation velocity. This model well reproduces the dip in
the measure of the pressure under the bottom of the conical heap [168]. A cellular automaton was
introduced by Hemmingsson [76] which was capable of reproduce the dip under the heap as well as the
correct Janssen law (with the linear scaling).

Figure 1.2: Propagation of sound

In the framework of the study of force networks in the bulk of a static arrangement of grains a
key role was played by the experiments on the propagation of sound. The inhomogeneities present
inside a granular medium can drastically change the propagation of mechanical perturbations. Liu and
Nagel [106, 107, 105] have addressed this issue in several experiments. They have discovered [106]
that the in the bulk of a granular medium perturbed by a harmonic force (4 Hz) the fluctuations could
be very large, measuring power-law spectra of the kind 1/fα with α = 2.2 ± 0.05. Then they have
seen [107] that the sound group velocity can reach 5 times the phase velocity and that a change in
the amplitude of vibration can result in a hysteretic behavior (due to a rearrangement of force chains).
They have also measured [105] a 25% variation of the sound transmission as a consequence of a very
small (compared to the size of the grains) thermal expansion of a little carbon resistor substituted to
a grain of the granular medium. This sensitivity to perturbation is another signature of the strong
disorder (arching and chain forces) in the bulk of the medium.
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1.2 Vibration induced compaction and glassy granular sys-
tems

Another frontier of the experimental granular physics is the problem of vibration induced compaction:
the granular material poured in a container (for example a simple box) quickly reaches the equilibrium,
i.e. the balance of all internal and external forces. At that point one can measure the volume fraction,
or packing fraction, i.e. the ratio:

φ =

∑

i Vi

Vbox
(1.9)

where the Vi are the volumes of the grains and Vbox is the volume of the container measured up
to the maximum (or average) height reached by the material. The packing fraction measured at the
end of the filling, for spheres, has been estimated to be bounded by the limiting values φmin = 0.55
and φmax = 0.64. After the initial filling, some external force, i.e. a vibration, can change the
arrangement of grains and therefore its volume fraction, usually increasing it. S. F. Edwards and A.
Mehta [125] have proposed a new formalism that resembles thermodynamics and that describes the
evolution of a granular system subject to slow vibration: in this formalism the energy is the occupied
volume V and the Hamiltonian is a functional W that gives the occupied volume if applied to a certain
configuration (spatial positions) of the grains. The granular system is assumed to evolve through states
of equilibrium (in this new thermodynamics). The entropy S is defined as the logarithm of the number
of possible configurations with the same occupied volume V , while the temperature is substituted by
the “compactivity” X which is defined as

X =
∂V

∂S
(1.10)

With this formalism, Barker and Mehta [11] have shown that the relaxation of the volume fraction in
response to a continuous sequence of vibrations is fast exponential with two relaxation times associated
with collective and individual modes. Another mechanism has been proposed to describe the vibration-
induced compaction: in this theory the motion of the voids filling the space between the particles is
effectively diffusive and as a result a power-law relaxation is predicted [38].

The careful experiment of Knight et al. [90] demonstrated that the vibration-induced compaction
(in a tube subject to tapping followed by long pauses) is governed by a logarithmically slow relaxation
(see Fig. 1.3 on the facing page):

φ(t) = φf − ∆φ∞

1 + B ln(1 + t/τ)
(1.11)

where the parameters φf , ∆φ∞, B and τ depend only on the acceleration parameter Γ that is the
ratio between the peak acceleration of a tap and the gravity acceleration g. The discover of this inverse
logarithmic behavior (very slow with respect to previous predictions) has motivated the introduction
of new models and has also attracted the interest of specialists of other fields: in particular the slow
relaxation is a typical phenomenon observed in glassy states of matter, e.g. the aging in amorphous
solids like glasses.

E. Ben-Naim et al. [15] have explained the slow relaxation law (1.11) in terms of a simple stochastic
adsorption-desorption process: the desorption process is unrestricted and happens with a well defined
rate, while the adsorption process is restricted by the occupied volume, i.e. new particles cannot be
adsorbed on top of previously adsorbed particles. This model has been also called car parking model,
as it reproduces the increasing difficulty of parking a car in a parking lot as the number of parked cars
get larger and larger. The inverse logarithmic law has been recovered solving this model.

Another way, perhaps more realistic, of recovering the inverse logarithmic relaxation, is described
by Caglioti et al. [33] by means of a “Tetris-like” model (displayed in Fig. 1.4 on the next page). In
this model the grains are represented by objects disposed on a regular lattice: the different shapes
of the objects induce geometrical frustration, i.e. some kinds of grains cannot stay near some other
kinds of grains and therefore the equilibrium configuration of a filled box is disordered and present a
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Figure 1.3: Slow Compaction: the packing fraction vs. time (in units of taps)

Figure 1.4: An example configuration of the Tetris-model
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random packing fraction: a computer simulation of the vibration dynamics (short periods of tapping
followed by long periods of undriven rearrangement until the new equilibrium is reached) shows that
this model reproduces the inverse logarithmic relaxation. The study of this model has shed light on
many features of the dynamics of dense granular media, such as vibration-induced segregation, bubbling
and avalanches. Moreover, the possibility of mapping the dynamics of the Tetris model onto that of
a Ising-like spin system with vacancies has introduced a new bridge between the physics of granular
media and that of disordered systems (like spin glasses and structural glasses) [132]. In particular the
interest of researchers has focused on the following remarkable fact: spin glass models [21] (such as the
Sherrington- Kirkpatrick model or the Edwards-Anderson model) always contain a quenched (frozen)
disorder, usually given by the set of J ’s that weight the interactions among spins. A dense granular
media evolve without any frozen disorder, nevertheless its dynamics presents many “glassy” features
(such as history dependence of the dynamics, hysteresis, frustration, metastable equilibria and so on).
This consideration is at the base of all the recent studies on spin lattice models without quenched
disorder. It must be said that many of these models have little in common with the real granular
materials and are often more useful tools in the study of the behavior of spin or structural glasses.

1.3 Sandpiles

When sand is added on the top of a sand heap (also known as sandpile problem) two phenomena are
observed:

• the slope of the pile grows (with little flowing of sand on it) until a critical angle is reached; after
that (if sand is still poured on the top) the slope stays almost constant and the sand flows along
it;

• at the critical angle the flowing of sand is made of “avalanches” of different sizes and durations;

Figure 1.5: Possible configurations of a sandpile

Starting from this qualitative observation, P. Bak et al. [8, 9] have introduced a cellular automaton
model (see Fig. 1.5) where each site (for example in two dimensions (i, j)) of the lattice has associated
a slope z(i, j). If the slope exceeds a critical value zc a rearrangement of the neighboring sites is
performed, e.g. 4 is subtracted to the exceeded value and 1 is added to its 4 neighboring sites. The
automaton may be executed in two different ways:

1. the field at time 0 has an average slope greater than zc, and the system evolves freely;
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2. the field at time 0 is everywhere equal to zero and at every step a randomly chosen site is
incremented;

In both cases the systems reaches a stable configuration corresponding to the critical slope: every
successive perturbation (i.e. increasing the field on some site) generates an avalanche that involves
the rearrangement of a certain number of sites of the lattice. The authors show that the distribution
of the extension of the avalanche follows a power law:

D(s) ∼ s−τ (1.12)

with τ ≃ 0.98 for three or four logarithmic decades. In another work [159] the same authors define
and study a set of critical exponents similar to those used in statistical mechanics of phase transitions.

The novelty of the work of Bak and coworkers is represented by the fact that a model was found
that showed a critical behavior (i.e. power law relaxations, correlations at all sizes) without any fine
tuning of the external parameter, whereas usual critical phase transitions need a precise tuning of
the temperature to the critical temperature Tc. This self-organized critical behavior was intriguing as
it seemed to be a key concept to understand the ubiquity of power laws in nature (e.g. 1/f noise,
self-similar structures like fractals, turbulence and so on). The sandpile model is still studied, with all
its variants, but it has been recognized to be not a good paradigm for the self-organized criticality: it
was seen in fact [166] that the driving rate (i.e. the rate of falling of grains on the top of the pile) acts
exactly as a control parameter that has to be fine tuned to zero in order to observe criticality. However
many important issues are still open: the interplay between the self-organization into a stationary state
and the dynamical developing of correlations, the (numerical) measure of critical exponents, universality
classes, upper critical dimensions and so on.

Figure 1.6: The experiment of Nagel and coworkers to measure avalanches in sandpiles

More remarkably, it has been pointed out that the sandpile model has little to do with sand (and
granular matter) in general. In 1992 Nagel has published [131] the results of a series of experiments
on sand in order to verify the predictions of Bak and coworkers. He has initially shown the difficulty of
performing an exactly constant rate in the pouring of grains from above the top of a pile. Therefore
he has introduced a different kind of experiment (see Fig. 1.6), where the sand fills partially a rotating
drum: the constant angular velocity of the drum guarantees the constant driving needed to reach
the critical slope and the avalanche regime. The statistical analysis of the avalanches has clearly
demonstrated that sand does not reproduce the critical behavior expected in self-organized criticality.
The sandpile has two critical slopes: Θr is the rest angle (when the slope is less than Θr the pile is
stable), Θm is maximum angle (when the slope is larger than Θm avalanches form and reduce the
slope to an angle less than Θr). If the slope is comprised in between Θr and Θm there is bistability,
i.e. the sand can rest or can produce avalanches, based on its previous history. The avalanches have a
typical duration and the hysteretic cycle between the two angles has a well defined average frequency.
No power laws have been observed.
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1.4 Slow vs. rapid granular flows

If the motion of granular material occurs slowly, particles will stay in contact and interact frictionally
with their neighbors over long periods of time. This is the “quasi-static” regime of granular flow and
has been classically studied using modified plasticity models [14, 13, 19] based on a Coulomb friction
criterion [44, 45].

At the other extreme is the rapid-flow regime which corresponds to high-speed flows [154, 35].
Instead of moving in many-particle blocks, each particle moves freely and “independently”. In the
rapid-flow regime, the velocity of each particle may be decomposed into a sum of the mean velocity of
the bulk material and an apparently random component to describe the motion of the particle relative
to the mean. The analogy between the random motion of the granular particles and the thermal motion
of molecules in the kinetic-theory picture of gases is so strong that the mean-square value of the random
velocities is commonly referred to as the “granular temperature” - a term first used by Ogawa [133]. As
pointed out in the introduction, however, granular temperature has nothing to do with environmental
thermal temperature, which usually plays no role in the dynamics of granular flows. Nevertheless,
using this kinetic analogy, granular temperature generates pressure and governs the internal transport
rates of mass, momentum and energy. Thus, while the term temperature sometimes leads to some
semantical confusion for the uninitiated, the physical analogy between the two temperatures is so apt
that its use has become standard throughout the field.

1.4.1 Couette cylinders

The first tentatives of studying granular media under the point of view of rheology, i.e. transport
properties (discussed in more detail in Lecture 5) have been performed using typical shear experiments
used to probe ordinary fluids. In particular the Couette geometry has been largely used and is still now
an important tool of investigation.

Figure 1.7: The experiment of Mueth and coworkers on a Couette cylinder: the paths of the
internal forces are evidenced by means of non-invasive X-ray imaging

Even if there were earlier important experimental studies on the flow properties of granular materials
(mainly initiated by Hagen [74] and Reynolds [146]), the modern pioneering work on the constitutive
behavior of rapid granular flows was Bagnold’s experimental study [6] of wax spheres, suspended in a
glycerin-water-alcohol mixture and sheared in a coaxial cylinder rheometer (Couette experiment). His
main finding was a constitutive relation between internal stresses and shear rate:

Tij = ρpσ
2γ2Gij(n) (1.13)
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with ρp the particle density, σ the particle radius, γ the shear rate and Gij a tensor-valued function
of the solid fraction φ. This relation has been confirmed in shear-cell experiments with both wet
or dry mixtures by Craig et al. [46], Hanes et al. [75], Savage et al. [156], and in many computer
simulations [36, 37, 171].

Bagnold measured not only shear stresses (i.e. transversal components, say i 6= j in Tij), but
also normal stress (i = j), that is the analogous of pressure in gas kinetics: he referred to them as
“dispersive stresses” as they tend to cause dilation of the material.

Many experiments have focused on different phenomena observed in the Couette rheometer:

• Fluctuations of stresses: already in the experiments of Savage and Sayed [156] large fluc-
tuations of internal (normal) stresses were observed; Howell and Behringer [80] have seen that
in a 2D Couette experiment the mean internal stress follows a continuous transition when the
packing fraction of the granular material changes and passes through a critical value φc = 0.776:
when the packing fraction is above the critical threshold the material shows strong fluctuations
of internal stress, while under the threshold the stresses are averagely zero and the system is
highly compressible.

• 3d experiments: Mueth et al. [129] have studied the formation of microstructures in the dense
shearing regime in a 3D Couette rheometer, using non-invasive imaging by X-Ray microtomog-
raphy (see Fig. 1.7 on the facing page); they have found that the velocity parallel to the shear
direction decays more rapidly than linear (from exponential to Gaussian-like decay, depending
upon the regularity of the grains). A similar strong decay of the flow with the distance from the
moving wall was observed in many experiments, for example by Losert et al. [110]

• Diluted (air-fluidized) shear: Losert et al. [169] have performed a Couette experiment
with a flow of air coming from the bottom of the cylinder, in order to fluidize the material and
obtaining smoother profiles. They have put in relation the RMS fluctuations of velocity and the
shear forces, observing that T 1/2(y) ∼ γ(y)α with α =≃ 0.4, and suggesting a phenomenological
model that explains the shear velocity profiles.

• Size segregation: Khosropour et al. [87] have observed convection patterns and size segrega-
tion in a Couette flow with spherical glass beads; they also checked the effect of interstitial fluids
finding it irrelevant.

• Planetary rings: planetary rings (those of Saturn for example) have been sometime studied
in the framework of granular rheology, whereas the “geometry” of the planetary experiment is
similar to a Couette cell (grains are circularly sheared because the angular velocity depends upon
the distance from the planet). A review of these study can be found in the work of Brahic [22].

1.4.2 Flow under gravity acceleration

Another way to probe hydrodynamic descriptions of rapid granular dynamics is the study of flows along
inclined channels. In this kind of experiments the whole material is accelerated by gravity, but the
friction with the plane induce shearing, so that measurements similar to the ones performed in Couette
cells can be performed. The first experiments in this configuration were performed by Ridgway and
Rupp [147], and reviews can be found in the works of Savage [153] and Drake [51]. Interest has focused
on constitutive relations, as before, but also on the profiles of the hydrodynamic fields, mainly flow
velocity and solid fraction: computer simulations (see for example Campbell and Brennen [36] and for an
exhaustive review the classical work of Campbell [35]) have allowed the measurement of the temperature
field: this has confirmed the picture of a fluid-like behavior, explaining the reduction of density (solid
fraction) near the bottom by means of an increase of granular temperature, due to the shear work.
In this framework the scheme representing the “mechanical energy path” sketched by Campbell in
his review on rapid granular flow [35] is enlightening. The external driving force (i.e. gravity) induces
mean motion (kinetic energy) which consequently generates friction with boundaries, that is shear work
(granular temperature). The randomization represented by the granular temperature induces collisions
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among the grains, which are dissipative and therefore produce heat. Moreover, granular temperature
generates internal (transversal as well as normal) stresses.

Figure 1.8: The draining from the bottom of a silo: it is clear the separation between a region
where grain move downward and a region where grain do not move at all

Another configuration of granular flow under the force of gravity is the simple hopper geometry (a
hopper is a funnel-shaped container in which materials, such as grain or coal, are stored in readiness for
dispensation). The bottom of hopper is opened and the grains start to pour out. As already discussed
the pressure (and therefore the flow rate) does not depend upon the height of the column of material.
However the flux of grains leaving the container produces complex flow regions inside the container.
Four regions of density and velocity can be identified, most notably a tongue of dense motion just
above the aperture and an area of no grain motion below a cone extending upwards from the opening
(a similar can be observed in a silo, see Fig. 1.8). Baxter et al. [12] have showed that for large opening
angles, density waves propagate upward from above the aperture against the direction of particle flow,
but downwards for small angles. The flow can even stop due to “clogging”, i.e. the grains can form
big arches above the aperture and sustain the entire weight of the column.

More recent experiments have been performed on granular flows along inclined planes or chutes,
evidencing other interesting phenomena:

• Validations of kinetic theory Azanza et al. [53] have repeated the experiment of grain
flow along an inclined channel, studying the stationary profiles of velocity, solid fraction and
granular temperature. They have verified that there is a limited range of inclinations of the
channel that allow for a stationary flow. Moreover they have probed the validity of the kinetic
theories developed in the previous years [155, 85, 118, 84, 116], based on the assumption of
slight perturbation to the Maxwellian equilibrium. The profiles of hydrodynamic fields show
two different regions: a collisional region (higher density) where the transport is mainly due to
collisions, and a ballistic region (on the upper free surface) where the grains fly almost ballistically.

• Size segregation in silo filling or emptying: Samadani et al. [152] have studied the phe-
nomena of size segregation in a quasi-two dimensional silo emptying out of an orifice. They [151]
have also studied the effects of interstitial fluids.

• Size segregation in rotating drums: another typical experiment, inspired to many industrial
situations, is the tumbling mixer, or rotating drum, i.e. a container with some shape that rotate
around a fixed axis, usually used to mix different kind of granular materials (typically powders, in
the pharmaceutical, chemical, ceramic, metallurgical and construction industry). Depending on
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the geometry of the mixer, the shapes of the grains, the parameters of the dynamics and so on,
the grains can mix as well as separate. A very large literature exists on this phenomena (see the
review by Ottino and Khakhar [137]). Usually segregation is strictly tied to convection: there
is a shallow flowing layer on the surface of the material inside the rotating drum, the grains at
the end of it are transported into the bulk and follow a convective path so that they emerge
again in another point of the surface. Segregation happens in many different ways: segregated
bands appear and slowly enlarge (like in a coarsening model), segregation can emerge in different
directions, e.g. parallel to the rotation axis as well as transversal to it.

• Granular jets several experiments have been conducted on the phenomenon of granular jets
(see Fig. 1.9), where a heavy object falls on a fine granular bed determining an eruption followed
by a very high expelled granular column, which (during the successive falldown) breaks into small
clusters [160, 109].

Figure 1.9: Formation of a granular “jet”

1.4.3 Vibrated grains

Many interesting observations can be done when the granular medium is subject to periodic vibration.
As already discussed (see paragraph 1.2) the effect of slow vibration under of the bottom of a container
filled of grains induces a very slow compaction of the material. When the amplitude of vibration is
strong enough, i.e. when

Γ =
amax

g
> 1 (1.14)

(where amax is the maximum acceleration of the vibrating plate, e.g. amax = Aω2 if the plate
is harmonically vibrating with A amplitude and ω frequency), then the granular shows several new
phenomena.

• Convection and segregation: A large literature [62] exists on the convection and segregation
phenomena observed in granular media contained in a box shaken from the bottom (or from the
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sides). Faraday [63] was perhaps the first to observe such a phenomenon. The geometry of
the container can change dramatically the quality of the convection (e.g. in a cylinder may
happen that the grains near the walls move downwards and the ones in the bulk move upwards,
while inside an inverted cone the convection occurs in the opposite direction). Usually the larger
grains (independent of their density) tend to move upwards (see Fig. 1.10), so that the material
segregate (see for example [91, 54, 98, 89, 88]).

Figure 1.10: Segregation and convection in a vibrated mixture of grains of different sizes

• Pattern formation in surface waves: another problem that has been extensively studied in
recent years is the formation of patterns on the surface of vibrated layers of grains. Depending
on the whole set of parameters (amplitude and frequency of the vibration, shapes and sizes of the
grains, size of the container, depth of the bed and so on) different qualities of standing waves can
be observed, leading to unexpected and fascinating textures [126, 127, 161, 128] (see Fig. 1.11
and Fig. 1.12 on the next page).

Figure 1.11: Different surface patterns obtained by vertical vibration of granular layers
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Figure 1.12: The oscillon: a two-dimensional solitary standing wave on the surface of a granular
monolayer

• Clustering: Kudrolli and Gollub [94, 96] have studied the formation of clusters measuring
the density distribution in an experiment consisting of steel balls rolling on a smooth surface
which could or could not be inclined with a vibrating side. The experiment takes into account a
monolayer (not completely covered) of grains, in order to study a true 2d setup. In both cases
(inclined or horizontal), at high enough global densities, the distribution of density (going from
Poissonian to exponential) indicates strong clustering. The formation of high density clusters has
also been studied in a vibrated cylindrical piston [59, 61, 60]. A transition has been observed with
the increasing number of particles in the cylinder, from a gas-like behavior to a collective solid-like
behavior. Such a transition has been also observed in the framework of fluidized beds [134], i.e.
vertically shaken granular monolayers: the authors have observed a transition (with reducing the
vibration amplitude) from a gas-like motion to a coexistence between a crystallized state (a pack
of particles arranged in an ordered way) surrounded by gas.

• Non-Gaussian velocity distributions: After the recent progresses in the numerical study of
granular rapid dynamics, the question of the true form of the velocity distributions has arisen and
has induced many new experiments in order to give a realistic answer to it. Kudrolli and Henry [95]
have studied the distributions of velocities in the same setup cite above, with varying angles of
inclination, obtaining non-Gaussian statistics with enhanced high energy tails; moreover they
have seen that increasing the angle of inclination the distributions tends toward the Maxwellian
(see Fig. 1.13 on the following page).

The experiment of Olafsen and Urbach [134, 135] with a horizontal granular monolayer subject
to a vertical vibration (and measuring horizontal velocities) has proven that, in the presence of
clustering, the distributions are non-Gaussian, showing nearly exponential tails. The experiment
of Losert et al. [112] on a similar monolayer with vertical vibration verify that both the predictions
of van Noije and Ernst [162] on the high energy tails for cooling and driven granular gases are
correct, measuring exponential tails for the former and exp(−v3/2) for the latter. Very recently
Rouyer and Menon [150] have again measured the velocity fluctuations in a vertically vibrated
vertical monolayer of grains, obtaining again a velocity distribution with exp(−v3/2) tails.

• Velocity correlations: An experiment by Blair and Kudrolli [17] with the same experimental
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Figure 1.13: The experiment of Kudrolli and Henry [95]: distributions of horizontal velocities of
grains rolling on an inclined plane, with the inferior wall vibrating.

setup of the previous ones has revealed strong correlations between velocity particles.

• Validations of kinetic theory: a part of the experimental effort [114, 174, 173, 172] has
also devoted to the study of hydrodynamic and kinetics fields (i.e. packing fraction profiles,
granular temperature profiles, self-diffusion, velocity statistics) in vertically vibrated boxes (or
vertical slices, that is 2d setups). The interest has also focused on the difficulties of imposing
boundary conditions to the existing kinetics model, due to the existence of non-hydrodynamic
boundary layers. This has also led to the formulation of hypothesis of scaling for the granular
temperature as a function of the amplitude of vibration [97, 158]. For more recent experiments
see [175].

• Non-equilibrium behavior: a few experiments have been devoted to the study of non-
equilibrium granular properties. In particular Feitosa and Menon have led two important exper-
iments to verify the breakdown of energy equipartition [64] and to measure the fluctuations of
internal energy flow [65]: in the last experiment they have claimed a verification of the Gallavotti-
Cohen Fluctuation theorem [66], but successive theoretical work has proven that it was not the
case [144].



Lecture 2

Inelastic collisions

2.1 Kinematics of the elastic collision

Let us consider two point-like particles with masses m1 and m2, coordinates r1 and r2 and velocities
v1 and v2. One can introduce the center of mass vector rc:

rc =
m1r1 + m2r2

m1 + m2
(2.1)

and the relative position vector:

r = r1 − r2. (2.2)

Their time derivatives are: the velocity of the center of mass:

vc =
m1v1 + m2v2

m1 + m2
(2.3)

and the relative velocity:

V12 = v1 − v2. (2.4)

The forces between these two particles depends only on their relative position and are of equal
magnitude and pointing in opposite directions:

F12(r) = −F21(r). (2.5)

This is equivalent to say that the center of mass does not accelerate, i.e.:

d2rc

dt2
= 0 (2.6)

while the relative position obeys to the following equation of motion:

m∗ d2r

dt2
= F12(r) (2.7)

where

m∗ =

(

1

m1
+

1

m2

)−1

(2.8)

is the reduced mass of the system of two particles. If the collision is elastic an interaction potential
can be introduced so that:

F12 = −dU(r)

dr
r̂ (2.9)

21
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where r̂ is the unit vector along the direction of the relative position of the two particles. The
force vector lies in the same plane where the relative position vector and relative velocity vector lie.
The evolution of the relative position r is the evolution of the position of a particle of mass m∗ in a
central potential U(r). The angular momentum of the relative motion L = r × m∗V12 is conserved.
This means that the particle trajectory, during the collision, will be confined to this plane. In Fig. 2.1
is sketched the typical binary scattering event when the interacting force is repulsive (monotonically
decreasing potential), in the center of mass frame.

m2

v2c
0

b
v1c

0

m1

v1c

v2c

f

f

χ

χ

Figure 2.1: The binary elastic scattering event in the center of mass frame, with a repulsive
potential of interaction

In the center of mass frame the elastic scattering has a very simple picture: the velocities of the
particles are v1c = V12m

∗/m1 and v2c = −V12m
∗/m2. The elastic collision conserves the modulus

of the relative velocity V12 and therefore also the moduli of the velocities of the particles in the center of
mass frame. If one consider the collision event as a black box and observes the velocities of the particles
“before” and “after” the interaction (i.e. asymptotically, when the interaction is negligible), then the
velocity vectors are simply rotated of an angle χ called angle of deflection, which also represents the
angle between asymptotic initial and final directions of the relative velocity. During the collision the
total momentum is conserved (this happens also for inelastic collisions) but is redistributed between the
two particles, i.e. the variation of the momentum of the particle 1 is δ(m1v1) = m∗(V′

12−V12) where
the prime indicates the post-collisional relative velocity. Obviously δ(m1v1) = −δ(m2v2). Finally, one
can calculate the components of the momentum transfer parallel and perpendicular to the relative
velocity:

δ(m1v1)‖ = −m∗V12(1 − cosχ) (2.10a)

δ(m1v1)⊥ = m∗V12 sin χ. (2.10b)

To calculate the angle of deflection χ one needs the exact form of the interaction potential, the
asymptotic initial relative velocity V 0

12 (i.e. at a distance such that the interaction is negligible) and
the impact parameter b that is the minimal distance between the trajectories of the particles if there
were no interaction between them:

χ = π − 2

∫ ∞

rm

dr
b

r

[

r2 − b2 − 2r2U(r)

m∗(V 0
12)

2

]−1/2

(2.11)

where rm is the closest distance effectively reached by the two particles. From Eq. (2.11) it is
evident that the angle of deflection decreases as the initial relative velocity increases.
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2.2 Hard spheres

Hard spheres are one of the simplest models of molecular fluids and have represented for many years
the testing ground for the predictions of the kinetic theory, thanks to the pioneering efforts of physicists
who have developed hard spheres simulations on the old computers which were huge in encumbrance
and very small in power (the work of Alder and Wainwright is considered the foundation of this
subject [2, 3, 1, 4, 5]). Nowadays liquids and gases are almost always simulated with different tools
and models (e.g. Lenard-Jones potentials or others), i.e. typically soft spheres models. Nevertheless
the study of granular materials has again awakened the interest in hard spheres molecular dynamics,
as the geometric character of the grain-grain interaction seems to be better modeled by an hard core
interaction. Here we define the hard core potential and give expressions for the quantities calculated
in the previous paragraphs.

Two hard spheres in 3D (hard disks in 2D, hard rods in 1D) of diameters σ1 and σ2 interact by
means of a discontinuous potential U(r) of the form:

U(r) = 0 (r > σ12) (2.12a)

U(r) = ∞ (r < σ12) (2.12b)

where σ12 = (σ1 + σ2)/2 = rm is the distance of the centers of the spheres at contact. The
potential in Eq. (2.12) can be taken as a definition of hard spheres systems. In this case the deflection
angle is given by:

χ = 2 arccos

(

b

σ12

)

(2.13)

and the dependence from the initial relative velocity disappears (only geometry determines the
deflection angle).

x
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σ12
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Figure 2.2: The collision between two elastic smooth hard spheres

Finally we give a definition of smooth hard spheres (we consider this model as a paradigm for
granular gases): smoothness is the absence of irregularities on the surface of the spheres, i.e. the
instantaneous collision does not change the rotational degrees of freedom of the spheres at contact.
Therefore, in the study of smooth hard spheres systems, a complete description of the dynamics requires
only the positions of the centers r and their velocities v. In particular the collision is an instantaneous
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transformation of the velocities of two particles i and j at contact which are “reflected” with the
following rule (see Fig. 2.2 on the previous page):

v′
i = vi −

2m2

m1 + m2
n̂[n̂ · (vi − vj)] (2.14)

v′
j = vj +

2m1

m1 + m2
n̂[n̂ · (vi − vj)] (2.15)

(2.16)

where n̂ = (ri − rj)/|ri − rj | and the primes denote the velocities after the collision. This collision
rule conserves momentum and kinetic energy. It only changes the direction of the component of the
relative velocity of the particles in the direction of n̂ (normal component), leaving unchanged the
tangential component.

2.3 Statistics of hard spheres collisions

The concept of mean free path was introduced in 1858 by Rudolf Clausius [41] and paved the road to
the development of the kinetic theory of gas. For the sake of simplicity (and coherently with the rest of
this work, as well as with the literature on granular gases) we consider a single species gas composed
of hard spheres, all having the same diameter σ and mass m (see [40]).

The mean free time is the average time between two successive collisions of a single particle. We
define νdt the probability that a given particle suffers a collision between time t and t + dt (ν is called
collision frequency) and assume that ν is independent of the past collisional history of the particle. The
probability ftimedt of having a free time between two successive collisions larger than t and shorter
than t + dt is equal to the product of the probability that no collision occurs in the time interval [0, t]
and the probability that a collision occurs in the interval [t, t + dt]:

ftime(t)dt = Ptime(t)νdt (2.17)

where Ptime(t) is the survival probability, that is the probability that no collisions happen between
0 and t, and can be calculated observing that Ptime(t + dt) = Ptime(t)Ptime(dt) = Ptime(t)(1 − νdt)
so that dPtime/dt = −νPtime, i.e. Ptime(t) = e−νt.

Finally one can calculate the average of the free time using the probability density ftime(t):

τ =

∫ ∞

0

dttftime(t) =

∫ ∞

0

dttνe−νt =
1

ν
. (2.18)

With the same sort of calculations an expression for the mean free path, that is the average distance
traveled by a particle between two successive collisions, can be calculated. One again assumes that
there is a well defined quantity (independent of the collisional history of the particle) αdl which is the
probability of a collision during the travel between distances l and l + dl . The survival probability in
terms of space traveled is Ppath(l) = e−αl and the probability density of having a free distance l is
fpath(l) = e−αlα so that the mean free path is given by:

λ =
1

α
(2.19)

The other important statistical quantity in the study of binary collisions is the so-called differential
scattering cross section s which is defined in this way: in a unit time a particle suffers a number of
collisions which can be seen as the incidence of fluxes of particles coming with different approaching
velocities V12 and scattered to new different departure velocities V′

12. Given a certain approaching
velocity V12 the incident particles arrive with slightly different impact parameters (due to the extension
of the particles), and therefore are scattered in a solid angle dΩ′. If I0 denotes the intensity of the
beam of particles that come with an average approaching speed V12, which is the number of particles
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intersecting in unit time a unit area perpendicular to the beam (I0 = nV12 with n the number density
of the particles), then the rate of scattering dR into the small solid angle element dΩ′ is given by

dR

dΩ′
= I0s(V12,V

′
12) (2.20)

where s is a factor of proportionality with the dimensions of an area (in 3D) which is called
differential cross section and depends on the relative velocity vectors before and after the collisions.
The total rate of particles scattered in all directions, R is the integral of the last equation:

R = I0

∫ ∫

4π

dΩ′s(V12,V
′
12) = SI0 (2.21)

and defines the total scattering cross section S.
In the case of a spherically symmetric central field of force the differential cross section is a function

only of the modulus of the initial relative velocity V12, the angle of deflection χ, and the impact
parameter b which in turn, once fixed the potential U(r), is a function only of χ and V12, that is
s = s(V12, χ). In particular it can be easily demonstrated that

s(V12, χ) = −b(V12, χ)

sin χ

db

dχ
. (2.22)

The differential scattering cross section for hard spheres is calculated from Eq. (2.22) obtaining
a very simple formula: s(V12, χ) = σ2/4 which can be integrated over the entire solid angle space
giving an expression for the total cross section S = πσ2. This result is consistent with the physical
intuition of the cross section: it is the average of the areas of influence of the scatterer in the planes
perpendicular to the approaching velocities of the incident particles.

In addition to the differential and total scattering cross sections, in non-equilibrium transport theory
several other cross sections are defined:

Sk(V12) =

∫ 2π

0

dǫ

∫ π

0

dχ sinχ(1 − coskχ)s(V12, χ) (2.23)

where k is a positive integer (n=1,2,....). For instance, the transfer of the parallel component of
the particle momentum is proportional to 1− cosχ (see Eq. (2.10)) and therefore S1 is related to the
transport of momentum and plays an important role in the study of diffusion. Moreover, viscosity and
heat conductivity depend on S2.

For hard spheres these quantities are easily calculated. The first two are given here:

S1 = πσ2 (2.24a)

S2 =
2

3
πσ2 (2.24b)

To conclude this paragraph we recall that the collision frequency defined at the beginning is strictly
tied to the total scattering cross section by the relation

ν = nSV12 (2.25)

where n is the average density of the gas and V12 is an average of the relative velocities. Generally
speaking (in the framework of a non-equilibrium discussion) n and V12 are averages taken in space-time
regions in which equilibrium can be assumed. Assuming that in this region the distribution of velocities
of the particle is the Maxwell-Boltzmann distribution:

f(v) =
m3/2

(2πkBT )3/2
e
− mv2

2kB T (2.26)

the collision frequency can be calculated obtaining the formula:
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ν =
√

2nSv (2.27)

where v is the average of the modulus of the velocities and, in this case, is given by:

v =

√

8kBT

πm
. (2.28)

In the same way the mean free path is given by

λ =
1√
2nS

. (2.29)

2.4 The effects of inelasticity

Granular particles collide dissipating relative kinetic energy. This is due to the macroscopic nature of the
grains which leads to the presence of internal degrees of freedom. During the interaction, irreversible
processes happen inside the grain and energy is dissipated in form of heat. All these processes conserve
momentum, so that the velocity of the center of mass of the two grains is not modified.

Many modelizations of the binary inelastic collision have been proposed (soft spheres [171, 170, 35,
77, 113] as well as hard spheres models [36, 79, 71, 124]): this is usually a difficult problem relatively
to the information that can be gained from. Simplification often pays more, as very idealized models
lead to interesting and physically meaningful results. The most used model in granular gas literature
is also the most simple one, that is the inelastic smooth hard spheres gas with the fixed restitution
coefficient rule given by the following prescriptions:

m1v
′
1 + m2v

′
2 = m1v1 + m2v2 (2.30a)

(v′
1 − v′

2) · n̂ = −r(v1 − v2) · n̂ (2.30b)

where, as usual, the primes denote the postcollisional velocities, n̂ is the unity vector in the direction
joining the centers of the grains, and 0 ≤ r ≤ 1. In this model the collisions happen at contact and are
instantaneous. When r = 1 the gas is elastic and the rule coincides with the collision description for
hard spheres given in the paragraph 2.2. When r = 0 the gas is perfectly inelastic, that is the particles
exit from the collision with no relative velocity in the n̂ direction.

As a matter of fact, the transformation that gives the (primed) postcollisional velocities from the
precollisional velocities of the two colliding particles is

v′
1 = v1 − (1 + r)

m2

m1 + m2
((v1 − v2) · n̂)n̂ (2.31a)

v′
2 = v2 + (1 + r)

m1

m1 + m2
((v1 − v2) · n̂)n̂ (2.31b)

Sometimes it may be useful to have the reverse transformation that give precollisional velocities
from postcollisional ones, with the primes exchanged:

v′
1 = v1 −

(

1 +
1

r

)

m2

m1 + m2
((v1 − v2) · n̂)n̂ (2.32a)

v′
2 = v2 +

(

1 +
1

r

)

m1

m1 + m2
((v1 − v2) · n̂)n̂ (2.32b)

As it can be seen, the inverse transformation is equivalent to a change of the restitution coefficient
r → 1/r. Obviously in the case of a perfectly inelastic gas (r = 0) there is no inverse transformation.
We also note that in 1D and when m1 = m2 Eqs. (2.31) become:
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v′1 =
1 − r

2
v1 +

1 + r

2
v2 (2.33a)

v′2 =
1 + r

2
v1 +

1 − r

2
v2 (2.33b)

which coincide to an exact exchange of velocities in the elastic (r = 1) case, and in a sticky collision
in the perfectly inelastic (r = 0) case. In dimensions higher than one the r = 0 case is very different
from the so-called sticky gas, which is defined as a gas of hard spheres that in a collision become stuck
together. In one dimension, instead, the r = 0 case may be considered equivalent to a sticky gas but a
further prescription of “stickiness” must be given in order to consider collisions among more than two
particles.

Variants of this models have been largely used in the literature. The importance of tangential
frictional forces acting on the grains at contact may be studied taking into account the rotational
degree of freedom of the particles, i.e. adding a variable ωi to each grain. The most simplified model
which takes into account the rotational degree of freedom of particles is the rough hard spheres gas
( [84, 117, 116, 72, 122, 81, 115]). In this model the postcollisional translational and angular velocities
are given by the following equations (where the bottom signs in ± are to be considered for particle 2):

v′
1,2 = v1,2 ∓

1 + r

2
vn ∓ q(1 + β)

2q + 2
(vt + vr) (2.34a)

σω′
1,2 = σω1,2 +

1 + β

2q + 2
[n̂× (vt + vr)] (2.34b)

where q is the dimensionless moment of inertia defined by I = qmσ2 (with I the moment of inertia
of the hard object), e.g. q = 1/2 for disks and q = 2/5 for spheres; vn = ((v1 − v2) · n̂)n̂ is the
normal relative velocity component, vt = v1 − v2 − vn is the tangential velocity component due to
translational motion, while vr = −σ(ω1 − ω2) is the tangential velocity component due to particle
rotation. In Eqs. (2.34) the tangential restitution coefficient β appears: it may take any value between
−1 and +1. When β = −1 tangential effects disappear, i.e. rotation is not affected by collision (rough
spheres become smooth spheres). When β = +1 the particles are said to have perfectly rough surface.
It can be easily seen that (when r = 1) energy is conserved for β = ±1.

Moreover, a new class of models for collisions has been recently introduced, justified by a deeper
analysis of the collision process. In these models the restitution coefficient r (or the coefficients r
and β in the more detailed description given above) depends on the relative velocity of the colliding
particles. In particular it has been seen that the collision tends to become more and more elastic as the
relative velocity tends to zero. This refined prescription, referred to as ’viscoelastic’ model [78, 29], has
relevance (usually quantitative rather than qualitative) in different issues of the statistical mechanics of
granular gases. An important kinetic instability of the cooling (and sometimes driven) granular gases is
the so-called inelastic collapse [123, 124], i.e. a divergence of the local collision rate due to the presence
of a few particles trapped very close to each other: simulations of the gas with the viscoelastic model
have shown that this instability is removed, suggesting that it is an artifact of the fixed restitution
coefficient idealization.

Here we give an expression of the leading term for the velocity dependence of the normal restitution
coefficient r in the viscoelastic model (the viscoelastic theory may be applied to give also a velocity
dependent expressions for the tangential restitution coefficient):

r = 1 − C1|(v1 − v2) · n̂|1/5 + ... (2.35a)

where C1 depends on the physical properties of the spheres (mass, density, radius, Young modulus,
viscosity).
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2.5 A couple of examples of granular kinetic “problems”

2.5.1 The Kadanoff model

In 1995 Du, Li and Kadanoff [52] have published the results of the simulation of a minimal model of
granular gas in one dimension. In this model N hard rods (i.e. hard particles in one dimension) move
on a segment of length L interacting by instantaneous binary inelastic collisions with a restitution
coefficient r < 1. To avoid the cooling down of the system (due to inelasticity) a thermal wall is
placed at the one of the boundaries, i.e. when the leftmost particle bounces against the left extreme
(x = 0) of the segment, it is reflected with a new velocity taken out from a Gaussian distribution with
variance T . This particle carries the energy to the rest of the system. The main finding of the authors
was that even at very small dissipation 1 − r << 1 the profiles predicted by general hydrodynamic
equations (they used constitutive relations of Haff [73] or Jenkins and Richman [84]) were not able
to reproduce the essential features of the simulation. In particular the stationary state predicted by
hydrodynamics is a flow of heat from the left wall to the right (it goes to zero at the right wall),
with no macroscopic velocity flow (u(x, t) = 0), a temperature profile T (x, t) which decreases from
x = 0 to x = L, and a density profile inversely proportional to the temperature (as the pressure
p = nT is constant throughout the system). In Fig. 2.3 some snapshots of the system (i.e. the
position of the grains at different instants) are shown. The system is in an “extraordinary” state with
almost all the particle moving slowly and very near the right wall, while almost all the kinetic energy is
concentrated in the leftmost particle. The system cannot be considered in a stationary state, even if
its kinetic energy is statistically stationary (i.e. fluctuates around a well defined average which is time
translational invariant). Moreover, reducing the dissipativity 1− r at fixed N the cluster near the wall
becomes smaller and smaller. If the heat bath is replaced by a sort of saw-tooth vibrating wall which
reflects the leftmost particle always with the same velocity v0, the evolution of the baricentrum changes
in a stationary oscillation very near to the rightmost wall, so that this clustering instability does not
disappear. The authors also point out the fact that the Boltzmann Equation can give a qualitative
prediction of this clustering phenomena in the limit N → ∞, 1 − r → 0 with N(1 − r) ∼ 1. We have
reproduced the results of Du et al. and have discovered the this model has no proper thermodynamic
limit, i.e. when N, L → ∞ with N/L ∼ 1 the mean kinetic energy and the mean dissipated power
reduce to zero. This is consistent with the scenario suggested by the authors: the equipartition of
energy (i.e. local equilibration of the different degrees of freedom) is broken and the description of
the system in terms of macroscopic (slowly varying) quantities no more holds. In this scenario, usual
thermodynamic quantities such as mean kinetic energy or mean dissipated power, are not extensive
quantities.

Figure 2.3: Some snapshots of the 1D system from the work of Du et al. [52]

L. P. Kadanoff has also addressed, in a recent review article [86], a set of experimental situations
in which hydrodynamics seems useless. We have already discussed a well known experiment by Jaeger,
Knight, Liu and Nagel [82] where a container full of sand is shaken from the bottom, when the shaking
is very rapid. The observations indicate that there is a boundary layer of a thickness of few grains near
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the bottom that is subject to a very rapid dynamics with sudden changes of motion of the particles.
At the top of the container, instead, the particles move ballistically encountering very few collisions in
their trajectory. Both the top and the bottom of the container cannot be described by hydrodynamics,
as the assumption of slow variation of fields or that of scale separation between times (the mean free
time must be orders of magnitude lower than the characteristic macroscopic times, as the vibration
period) are not satisfied. On the other hand, the slow dynamics regime has been studied, when the
vibration is reduced to a rare tapping, so that the system reaches mechanical equilibrium (stop of
motion) between successive tappings [90]. The equilibrium is reached at different densities, and - as
the tapping is carried on - the “equilibrium” density slowly changes and its evolution depends on many
previous instants and not on the very last tap, i.e. is history dependent. This non-locality in time
cannot be described by a set of partial differential equations, therefore the hydrodynamic description
here again fails.

2.5.2 Inelastic collapse

The situation discussed in the previous example can be even more dramatic in the case of inelastic
collapse. The simplest example involves just three particles, as shown in Fig. 2.4 [16, 123]. The two
outer particles move monotonically toward each other and the one in the middle bounces between them.
One can easily show that, after the two collisions shown in the figure, the relation between the final
and initial velocities is u′ = Mu where u = (u1,u2,u3)T and M is a 3x3 matrix whose entries are
quadratic polynomials in r. If this matrix has one real eigenvalue in the interval (0, 1), the cycle shown
in Figure endlessly repeats with geometrically smaller space and time scales at each successive cycle.
This requires r = rc < 7−4

√
3 ≈ 0.0718 to happen. In this case an infinite number of collision happens

in a finite time. When r > rc, inelastic collapse can still occur, but with the collective participation
of more than three particles, or with the presence of an inelastic wall (because of symmetry, this
is equivalent to an interaction between four inelastic particles), as discussed in the figure. As the
coefficient of restitution r increases toward 1, the number of particles required for collapse increases.
For instance, with r = 0.8, it is required that N = 16 particles bounce off an inelastic wall. Rough
estimates suggest (in agreement with numerical calculations) that Nmin(r) ≈ ln(4/(1 − r))/(1 − r)
as r → 1.

Figure 2.4: Examples of particles’ trajectories with or without a wall: (a) three particles collapse
(r < 7 − 4

√
3 ≈ 0.0718); (b) two particles bouncing off an inelastic wall: when r > 0.346015 they

finally leaves the wall and never come back; (c) critical value r = 0.346015, the inner ball remains
stationary after two collisions with the other particle; (d) when r < 3 − 2

√
2 ≈ 0.17157 there is

inelastic collapse.

The simulation of cooling granular gases have also interested L. P. Kadanoff in his excursus of the
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limits of hydrodynamics. The clustering instabilities and the inelastic collapse are clear signatures of the
failure of macroscopic description. Moreover, in the inelastic collapse Kadanoff and Zhou [176] have
pointed out (see Fig. 2.5) that there is a correlation between velocity directions of the particles involved
in the collapse: in particular collapse is favored by parallel velocities (because they cannot escape in
perpendicular directions). This situation implies a dramatic breakdown of Molecular Chaos assumption
and gives evidence of the fact that Inelastic Collapse cannot be described even by a Boltzmann equation.

Figure 2.5: A snapshot from a MD simulation of cooling inelastic hard spheres [176]. The particles
in black are those that have participated in the last collisions, just before a collapse



Lecture 3

The granular Boltzmann equation

3.1 The Liouville and the pseudo-Liouville equations

In order to discuss the behavior of a system of N identical hard spheres (of diameter σ and mass m)
it is natural to introduce the phase space, i.e., a 6N−dimensional space where the coordinates are
the 3N components of the N position vectors of the sphere centers ri and the 3N components of
the N velocities vi. The state of the system is represented by a point in this space. We call z the
6N -dimensional position vector of this point. If the positions ri of the spheres are restricted in a space
region Ω, then the full phase space is given by the product ΩN ×ℜ3N

If the state is not known with absolute accuracy, we must introduce a probability density P (z, t)
which is defined by

Prob(z ∈ D at time t) =

∫

D

P (z, t)dz (3.1)

where dz is the Lebesgue measure in phase space and we implicitly assume that the probability is
a measure absolutely continuous with respect to the Lebesgue measure.

The mean value of a dynamical observable A(z) can be calculated from either the following ex-
pressions:

∫

∞

dzP (z, 0)A(z(t)) =

∫

∞

dzP (z, t)A(z) (3.2)

which are respectively the Lagrangian and Eulerian averages (analogous to the Heisemberg and
Schroedinger averages in quantum mechanics). In Eq. (3.2) the time dependence of the observable A
and of the distribution P is due to the time evolution operator St (also called streaming operator, that
is A(z(t)) ≡ St(z)A(z). Considering the equivalence in Eq. (3.2) as an inner product implies that

P (z, t) = S†
t P (z, 0) (3.3)

where S†
t is the adjoint of St.

In a general system (not necessarily made of hard spheres) with conservative and additive inter-
actions, the force between the particle pair (ij) is Fij = −∂V (rij)/∂rij so that the time evolution
operator is given by:

St(z) = exp[tL(z)] = exp



t
∑

i

L0
i − t

∑

i<j

Θ(ij)



 (3.4)

where the Liouville operator L(z)... ≡ {H(z), ...} is the Poisson bracket with the Hamiltonian, so
that

31
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L0
i = vi ·

∂

∂ri
(3.5a)

Θ(ij) =
1

m

∂V (rij)

∂rij
·
(

∂

∂vi
− ∂

∂vj

)

(3.5b)

and St(z) is a unitary operator, S†
t = S−t, while L† = −L. In Eq. (3.4) the evolution operator St

has been divided into a free streaming operator S0
t = exp[t

∑

i L0
i ] which generates the free particle

trajectories, plus a term containing the binary interactions among the particles.

Finally the Liouville equation is obtained writing explicitly Eq. (3.3):

∂

∂t
P (z, t) =



−
∑

i

L0
i +

∑

i<j

Θ(ij)



P (z, t) (3.6)

which is an expression of the incompressibility of the flow in phase space.

In the specific case of identical hard spheres, the interaction among particles is defined by Eq.
(2.12). It can be shown that this kind of interaction carries no contraction of phase space at collision,
i.e.

P (z′, t) = P (z, t) (3.7)

where z′ and z are the phase space points before and after a collision. This can be considered
a form of detailed balance law. It is important to stress that z′ 6= z: a collision represents a time
discontinuity in the velocity section of phase space. In particular we use the elastic collision model
defined in this list of prescriptions (it coincides with the collision rule for smooth hard spheres, see Eq.
(2.14)):

|ri − rj | = σ (3.8a)

n̂ij = (ri − rj)/σ (3.8b)

Vij = vi − vj (3.8c)

Vij · n̂ij < 0 (3.8d)

z ≡ (r1,v1, r2,v2, ..., ri,vi, ..., rj ,vj , ..., rN ,vN ) (3.8e)

z′ ≡ (r1,v1, r2,v2, ..., r
′
i,v

′
i, ..., r

′
j ,v

′
j , ..., rN ,vN ) (3.8f)

r′i = ri (3.8g)

r′j = rj (3.8h)

v′
i = vi − n̂ij(n̂ij ·Vij) (3.8i)

v′
j = vj + n̂ij(n̂ij ·Vij) (3.8j)

(3.8k)

these relations conserve the total momentum and the total energy of the system.

To derive the Boltzmann equation, the collisions events z → z′ are considered as boundary
conditions and the Liouville Equation (3.6) is restricted to the interior of the phase space region
Λ ≡ ΩN ×ℜ3N − Λov where

Λov =
{

z ∈ ΩN × ℜ3N | ∃ i, j ∈ {1, 2, ..., N} (i 6= j) : |ri − rj | < σ
}

(3.9)

is the set of phase space points such that one or more pairs of spheres are overlapping. With this
conditions, the Liouville equation reads:
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∂

∂t
P (z, t) =

(

−
∑

i

vi ·
∂

∂ri

)

P (z, t) (z ∈ Λ) (3.10a)

P (z, t) = P (z′, t) (z ∈ ∂Λ) (3.10b)

This version of the Liouville equation is time-discontinuous: this means that formal perturbation
expansions used in usual many-body theory methods cannot be applied to it.

An alternative master equation for the probability density function in the phase space can be
derived [56]. The streaming operator St for hard spheres is not defined for any point of the phase
space z ∈ Λov. In the calculation of the average (3.2) of physical observables, this is not a problem,
as the streaming operators appears multiplied by P (z, 0) which is proportional to the characteristic
function X(z) of the set Λ (the characteristic function is 1 for points belonging to the set and 0
for points outside of it). In perturbation expansions it is safer to have a streaming operator defined
for every point of the configurational space. A standard representation, defined for all points in the
phase space, has been developed for elastic hard spheres and is based on the binary collision expansion
of St(z) in terms of binary collision operators. The binary collision operator is defined in terms of
two-body dynamics through the following representation of the streaming operator for the evolution of
two particles:

St(1, 2) = S0
t (1, 2) +

∫ t

0

dτS0
τ (1, 2)T+(1, 2)S0

t−τ (1, 2) (3.11)

with S0
t = exp(tL0) the free flow operator and a collision operator

T+(1, 2) = σ2

∫

V12·n̂<0

dn̂|V12 · n̂|δ(σn̂ − (r1 − r2))(bc − 1) (3.12)

where bc is a substitution operator that replaces v1,v2 with v′
1,v

′
2 (see Eqs. (3.8)).

The Eq. (3.11) is a representation of the evolution of two particles as a convolution of free flow
and collisional events. Noting that T+(1, 2)S0

τ (1, 2)T+(1, 2) = 0 for τ > 0 (two hard spheres cannot
collide more than once), Eq. (3.11) can be put in the form

St(1, 2) = exp {t[L0(1, 2) + T+(1, 2)]} (3.13)

that can be generalized to the N-particle streaming operator (here considered for the case of an
infinite volume):

S±t(z) = exp







±t[L0(z) ±
∑

i<j

T±(i, j)]







(3.14)

where

T−(1, 2) = σ2

∫

V12·n̂>0

dn̂|V12 · n̂|δ(r1 − r2 − σn̂)(bc − 1) (3.15)

Equation (3.14) defines the so-called pseudo-streaming operator. In order to write an analogue
of the Liouville Equation (3.6), the adjoint of S±t is needed: its definition is identical to that in Eq.
(3.14) but for the binary collision operators which must be replaced by their adjoints:

T±(1, 2) = σ2

∫

V12·n̂<
>

0

dn̂|V12 · n̂|[δ(r1 − r2 − σn̂)bc − δ(r1 − r2 + σn̂)] (3.16)

Finally the pseudo-Liouville equation can be written:
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∂

∂t
P (z, t) =



−
∑

i

L0
i +

∑

i<j

T−(ij)



P (z, t). (3.17)

This equation is the analogue of Eq. (3.6) for the case of hard core potential (hard spheres). In
this sense it replaces Eq. (3.10) and will be used in the following, precisely in paragraph 3.7, to derive
kinetic equations different from the ones discussed just below.

3.2 The BBGKY hierarchy

We define the reduced (marginal) probability densities Ps as

Ps(r1,v1, r2,v2, ..., rs,vs, t) =

∫

ΩN−s×ℜ3(N−s)

P (r1,v1, r2,v2, ..., rN ,vN , t)

N
∏

j=s+1

drjdvj (3.18)

In order to derive an evolution equation for Ps the first step is to integrate Eq. (3.10) with respect
to the variables rj and vj (s + 1 ≤ j ≤ N) over ΩN−s ×ℜ3(N−s), obtaining:

∂Ps

∂t
+

s
∑

i=1

∫

Λs

vi ·
∂P

∂ri

N
∏

j=s+1

drjdvj +

N
∑

k=s+1

∫

Λs

vk · ∂P

∂rk

N
∏

j=s+1

drjdvj = 0 (3.19)

where the integration space Λs extends to the entire ℜ3(N−s) for the velocity variables, while it
extends to ΩN−s deprived of the spheres |ri −rj | < σ (i = 1, ..., N, i 6= j) with respect to the position
variables.

The typical term in the first sum contains the integral of a derivative with respect to a variable ri

over which one does not integrate, but in the exchange of order between integration and derivation
one must take into account the domain boundaries which depend on ri, writing:

∫

Λs

vi ·
∂P

∂ri

N
∏

j=s+1

drjdvj = vi ·
∂Ps

∂ri
−

N
∑

k=s+1

∫

Λs

Ps+1vi · n̂ikdσikdvk (3.20)

where n̂ik is the outer normal to the sphere |ri − rk| = σ, dσik is the surface element on the same
sphere and Ps+1 has k as its (s + 1) − th index.

The typical term in the second sum in Eq. (3.19) can be immediately integrated by means of
the Gauss theorem, since it involves the integration of a derivative taken with respect to one of the
integration variables (and assuming that the boundary of Ω is a specular reflecting wall or a periodical
boundary condition):

∫

Λs

vk · ∂P

∂rk

N
∏

j=s+1

drjdvj

=

s
∑

i=1

∫

Ps+1vk · n̂ikdσikdvk +

N
∑

i=s+1,i6=k

∫

Ps+2vk · n̂ikdσikdvkdridvi (3.21)

The last term in the above equation, when summed over s+1 ≤ k ≤ N vanishes: this fact directly
stems from the equivalence (3.10b) (we do not enter in the few steps of this simple proof). Moreover,
in both above equations the integral containing the term Ps+1 is the same no matter what the value
of the dummy index k is, so that we can drop the index and write r∗,v∗ instead of rk,vk.

As a matter of fact, Eq. (3.19) finally reads:
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∂Ps

∂t
+

s
∑

i=1

vi ·
∂Ps

∂ri
= (N − s)

s
∑

i=1

∫

Ps+1Vi · n̂idσidv∗ (3.22)

where Vi = vi−v∗, n̂i = (ri−r∗)/σ and the arguments of Ps+1 are (r1,v1, r2,v2, ..., rs,vs, r∗,v∗, t).
Integrations in Eq. (3.22) are performed over the 1-particle velocity space ℜ3 and over the sphere Si

(given by the condition |ri − r∗| = σ) with surface elements dσi.
Eq. (3.22) states that the evolution of the reduced probability density Ps is governed by the free

evolution operator of the s-particles dynamics, which appears in the left hand side, with corrections
due to the effect of the interaction with the remaining (N − s) particle. The effect of this interaction
is described by the right-hand side of this equation.

Usually Eq. (3.22) is written in a different form, obtained using some symmetries of the problem. In
particular one can separate the sphere Si of integration in the right-hand side, in the two hemispheres
Si

+ and Si
− defined respectively by Vi · n̂i > 0 and Vi · n̂i < 0 (considering also that dσi = σ2dn̂i):

∫

Ps+1Vi · n̂idσidv∗ = σ2

∫

ℜ3

∫

Si
+

Ps+1|Vi · n̂i|dn̂idv∗ − σ2

∫

ℜ3

∫

Si
−

Ps+1|Vi · n̂i|dn̂idv∗ (3.23)

and observe that in the Si
+ integration are included all phase space points such that particle i and

particle ∗ (the (s + 1) − th generic particle) are coming out from a collision: this means that on the
sphere Si

+ we can write the substitution

Ps+1(r1,v1, ..., ri,vi, ...rs,vs, ri − σn̂i,v∗)

→ Ps+1(r1,v1, ..., ri,vi − n̂i(n̂i · Vi), ...rs,vs, ri − σn̂i,v∗ + n̂i(n̂i ·Vi)). (3.24)

Moreover we can make the change of variable in the second integral (that on the sphere Si
−)

n̂i → −n̂i which only changes the integration range Si
− → Si

+. Finally, replacing n̂i with simply n̂
(and therefore Si

+ → S+) we have:

∂Ps

∂t
+

s
∑

i=1

vi ·
∂Ps

∂ri
= (N − s)σ2

s
∑

i=1

∫

ℜ3

∫

S+

(P ′
s+1 − Ps+1)|Vi · n̂|dn̂dv∗ (3.25)

where we have defined

P ′
s+1 = Ps+1(r1,v1, ..., ri,vi − n̂i(n̂i · Vi), ...rs,vs, ri − σn̂i,v∗ + n̂i(n̂i ·Vi)) (3.26)

The system of equations (3.25) is usually called the BBGKY hierarchy for the hard sphere gas.

3.3 The Boltzmann hierarchy and the Boltzmann equation

In a rarefied gas N is a very large number and σ is very small; let us say, to fix ideas, that we have
a box whose volume is 1 cm3 at room temperature and atmospheric pressure. Then N ≃ 1020 and
σ ≃ 10−8cm and (from Eq. (3.25)) for small s we have (N − s)σ2 ≃ Nσ2 ≃ 1m2; at the same
time the difference between ri and ri + σn̂ can be neglected and the volume occupied by the particles
(Nσ3 ≃ 10−4cm3) is very small so that the collision between two selected particles is a rather rare
event. In this spirit, the Boltzmann-Grad limit has been suggested as a procedure to obtain a closure
for Eq. (3.25): N → ∞ and σ → 0 in such a way that Nσ2 remains finite. We stress the fact that (as
seen in section 2.3) the total number of collisions in the unit of time is given by the total scattering
cross section multiplied by N , which for a system of hard spheres gives Nπσ2. The Boltzmann-Grad
limit, therefore, states that the single particle collision probability must vanish, but the total number
of collisions remains of order 1.
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Within this limit, the BBGKY hierarchy reads:

∂Ps

∂t
+

s
∑

i=1

vi ·
∂Ps

∂ri
= Nσ2

s
∑

i=1

∫

ℜ3

∫

S+

(P ′
s+1 − Ps+1)|Vi · n̂|dn̂dv∗ (3.27)

where the arguments of P ′
s+1 and of Ps+1 are the same as above, except that the position of the

(s + 1) − th particle (r′∗ and r∗) is equal to ri (as σ → 0). Eq. (3.27) gives a complete description
of the time evolution of a Boltzmann gas (i.e. the ideal gas obtained in the Boltzmann-Grad limit),
usually called the Boltzmann hierarchy.

Finally the Boltzmann equation is obtained if the molecular chaos assumption is taken into account:

P2(r1,v1, r2,v2, t) = P1(r1,v1)P1(r2,v2) (3.28)

for particles that are about to collide (that is when r2 = r1 − σn̂ and V12 · n̂ < 0). This
assumption naturally stems from the Boltzmann-Grad limit, as it is reasonable that, in the limit of
vanishing single-particle collision rate, two colliding particles are uncorrelated. The lack of correlation
of colliding particles is the essence of the molecular chaos assumption. We underline that nothing is
said about correlation of particles that have just collided.

With the assumption (3.28) we can rewrite the first equation of the hierarchy (3.27), omitting the

1 subscript for simplicity:

∂P (r,v)

∂t
+ v · ∂P (r,v)

∂r
= Nσ2

∫

ℜ3

∫

S+

(P (r,v′)P (r,v′
∗) − P (r,v)P (r,v∗))|V · n̂|dv∗dn̂ (3.29)

with v′ = v− n̂(V · n̂), v′
∗ = v∗ + n̂(V · n̂), V = v−v∗. This represents the Boltzmann equation

for hard spheres. We also observe that the integral in Eq. (3.29) is extended to the hemisphere S+

but could be equivalently extended to the entire sphere S2 provided a factor 1/2 is inserted in front of
the integral itself, as changing n̂ → −n̂ does not change the integrand.

From a rigorous point of view, the molecular chaos has to be assumed and cannot be proved.
However it has been demonstrated that if the Boltzmann hierarchy has a unique solution for data that
satisfy for t = 0 a generalized form of chaos assumption:

Ps(r1,v1, ..., rs,vs, t) =

s
∏

j=1

P1(rj ,vj , t) (3.30)

than Eq. (3.30) holds at any time and therefore the Boltzmann equation is fully justified. Otherwise
it has also been proved that if Eq. (3.30) is satisfied at t = 0 and the Boltzmann equation (3.29)
admits a solution for the given initial data, then the Boltzmann hierarchy (3.27) has at least a solution
which satisfy (3.30) at any time t.

3.4 Collision invariants and H-theorem

The integral appearing in the right-hand side of Eq. (3.29) is usually called collision integral:

Q(P, P ) =

∫

ℜ3

∫

S+

(P ′P ′
∗ − PP∗)|V · n̂|dv∗dn̂ (3.31)

where we have used an intuitive contracted notation (the prime or ∗ must be considered applied to
the velocity vector in the argument of the function P ). In the collision integral, the position r is the
same wherever the function P appears, and therefore it can be considered a parameter of Q(P, P ).

Let us have a look to the integral

∫

ℜ3

Q(P, P )φ(v)dv =

∫

ℜ3

∫

ℜ3

∫

S+

(P ′P ′
∗ − PP∗)φ(v)|V · n̂|dv∗dn̂dv (3.32)
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which can be transformed in many alternative forms, using its symmetries. In particular one
can exchange primed and unprimed quantities, as well as starred and unstarred quantities. With
manipulations of this sort, it is immediate to get the following alternative form of Eq. (3.32):

∫

ℜ3

Q(P, P )φ(v)dv =
1

8

∫

ℜ3

∫

ℜ3

∫

S+

(P ′P ′
∗ − PP∗)(φ + φ∗ − φ′ − φ′

∗)|V · n̂|dv∗dn̂φ(v)dv (3.33)

From this equation it comes that if

φ + φ∗ = φ′ + φ′
∗ (3.34)

almost everywhere in velocity space, then the integral of Eq. (3.33) is zero independent of the
particular function P . Many authors have proved under different assumptions that the most general
solution of Eq. (3.34) is given by

φ(v) = C1 + C2 · v + C3|v|2 (3.35)

Furtherly, if φ = log P , from Eq. (3.33) it follows that

∫

ℜ3

Q(P, P )φ(v)dv =
1

8

∫

ℜ3

∫

ℜ3

∫

S+

(P ′P ′
∗ −PP∗) log(PP∗/P ′P ′

∗)|V · n̂|dv∗dn̂φ(v)dv ≤ 0 (3.36)

which follows from the elementary inequality (z − y) log(y/z) ≤ 0 if y, z ∈ ℜ+. This becomes an
equality if and only if y = z, therefore the equality sign holds in Eq. (3.36) if and only if

P ′P ′
∗ = PP∗ (3.37)

This is equivalent to two important facts:

• φ + φ∗ = φ′ + φ′
∗ (taking the logarithms of both sides of Eq. (3.37)), so that we can use the

result (3.35) obtaining P = exp(C1 + C2 · v + C3|v|2) = C0 exp(−β|v − v0|2) where we have
defined C0 = exp(C1), β = −C3 and v0 = C2/2β; this function is called Maxwell-Boltzmann
distribution or simply Maxwellian;

• Q(P, P ) ≡ 0, i.e. the collision integral identically vanishes.

Equation (3.36) is a fundamental result of the Boltzmann theory (it is often called Boltzmann
Inequality) and can be fully appreciated with the following discussion: we rewrite the Boltzmann
Equation (3.29) with a simplified notation:

∂P

∂t
+ v · ∂P

∂r
= Nσ2Q(P, P ). (3.38)

We multiply both sides by φ = log P and integrate with respect to v, obtaining a transport equation
for the quantity φ:

∂H

∂t
+

∂

∂r
· jH = SH (3.39a)

H =

∫

ℜ3

P log Pdv (3.39b)

jH =

∫

ℜ3

vP log Pdv (3.39c)

SH = Nσ2

∫

ℜ3

log PQ(P, P )dv. (3.39d)
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Then Eq. (3.36) states that SH ≤ 0 and SH = 0 if and only if P is a Maxwellian. For example, if
we look for a space homogeneous solution of the Boltzmann equation, it happens that

∂H

∂t
= SH ≤ 0 (3.40)

that is the famous H-Theorem. It simply states that there exists a macroscopic quantity (H in
this case) that decreases as the gas evolves in time and eventually goes to zero when (if and only
if) the distribution P becomes a Maxwellian. When the homogeneity is not achievable (due to non-
homogeneous boundary conditions) rigorous results are more complicated, but we are still tempted
to say that the Maxwellian represents the local asymptotic equilibrium, with the spatial dependence
carried by the parameters of this distribution function.

For a discussion of the H-Theorem and the consequent paradoxes (irreversibility obtained starting
from reversibility), see the reference “Qualche osservazione su irreversibilita’, equazione di Boltzmann
e Teorema H” by Angelo Vulpiani.

3.5 The Maxwell molecules

The collisional integral of Boltzmann equation for hard spheres, Eq. (3.31), contains a term g = |V · n̂|
which multiplies the probabilities of particles entering or coming out from a collision. In general the
collisional integral must contain the differential collision rate dR/DΩ for particle coming at a certain
relative velocity (in modulus g and direction n̂, or equivalently scattering angle χ centered in the solid
angle dΩ), which may be expressed in terms of the scattering cross section s (see for example Eq.
(2.20)):

dR

dΩ
= gs(g, χ)P2(r, r + σn̂,v1,v2, t)dv2 (3.41)

We discussed in paragraph 2.3 the fact that the scattering cross section depends strongly on the
kind of interaction between the molecules of the gas. For power law repulsive interaction potential
V (r) ∼ r−(a−1), the scattering angle χ depends on the relative energy g2/2 and on the impact
parameter b only through the combination (g2ba−1). This means that there exists a function γ(χ)
such that:

b = g−2/(a−1)γ(χ) (3.42)

and this means that from relation (2.22) one obtains:

gs(g, χ) ∼ g1−4/(a−1) γ(χ)

sin χ

dγ

dχ
(3.43)

which holds in d = 3. The extension to generic dimension of the last equation is:

gs(g, χ) ∼ g1−2(d−1)/(a−1) γd−2

(sin χ)d−2

dγ

dχ
∼ g1−2(d−1)/(a−1)α(cos χ) (3.44)

Therefore when a = 1 + 2(d − 1) (i.e. a = 5 for d = 3 and a = 3 for d = 2) the collision
rate gs(g, χ) does not depend upon g. This property defines the so-called Maxwell molecules [55].
Interaction with a < 1 + 2(d − 1) are called soft interactions (e.g. the electrostatic or gravitational
interaction). Interactions with a > 1 + 2(d − 1) are called hard interactions. Hard spheres (a → ∞)
belongs to this set of interactions, with gs(g, χ) ∼ g. It has been also studied the Very Hard Particles
model, which is characterized by gs(g, χ) ∼ g2, which is not attainable with an inverse power potential,
as it requires an interaction harder than the hard sphere interaction.

The obvious advantage of Maxwell molecules is that the Boltzmann equation greatly simplifies, as
g does not appear in the collision integral. A further simplification of the Boltzmann equation came
from Krook and Wu [92], who studied the Boltzmann equation of Maxwell molecules with an isotropic
scattering cross-section, i.e α = const, often called Krook and Wu model. A very large literature
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exists for linear and non-linear model-Boltzmann equations (for a review see [55]). The importance
of the Maxwell molecules model is the possibility of obtaining solutions for it: the general method
(extended to other model-Boltzmann equations) is to obtain an expansion in orthogonal polynomial
where the expansion coefficients are polynomial moments of the solution distribution function. For
Maxwell molecules the moments satisfy a recursive system of differential equations that can be solved
sequentially. Given an initial distribution, one can solve the problem if the series expansion converges.
Bobylev [18] has shown that if one searches for similarity solutions (i.e. solutions with scaling form
P (v, t) ≡ e−αtF (e−αtv)), then the solution can be found solving a recursive system of algebraic
equation.

The Maxwell molecules model has been subject of study also in the framework of the kinetic theory
of granular gases [10].

3.6 The Enskog correction

The Boltzmann-Grad limit (see paragraph 3.3) restricts the validity of the Boltzmann equation to
rarefied gases. This conditions is necessary to consider valid the Molecular Chaos which states the
independence of colliding particles. In principle, in fact, two colliding particles can be correlated due
to an intersection of their collisional histories: one simple possibility is that they may have collided
some time before or, alternatively, they may have collided with particles that have collided before.
Moreover, the spatial extension of particles (i.e. the fact that they are not really pointlike) restricts the
possibilities of motion and as a consequence the degree of independence (this is the so called excluded
volume effect). All these kinds of correlations become relevant when the gas is not in the situation
considered by the Boltzmann-Grad limit, that is when the gas is not rarefied but (either moderately or
highly) dense.

The first approach to the problem of not rarefied gases was introduced by Enskog [40]: he did not
consider the effects of velocity correlations due to common collisional histories, but simply added to the
Boltzmann equation an heuristic correction to take into account short range correlations on positions
only. In general the two-body probability distribution function can be written in terms of the one-body
functions:

P2(r1,v1, r2,v2, t) = g2(r1,v1, r2,v2)P1(r1,v1)P1(r2,v2) (3.45)

where g2 is the pair correlation function. The Molecular Chaos assumption states that g2(r1, r1 +
σn̂,v1,v2) ≡ 1.

In the Enskog theory the Molecular Chaos assumption is modified in the following way:

P2(r1,v1, r1 + σn̂,v2, t) = Ξ(σ, n(r1))P1(r1,v1)P1(r1 + σn̂,v2) (3.46)

i.e. g2 ≡ Ξ(σ, n) for particles entering or coming out from a collision, and the existence of a well
defined coarse-grained density n(r1) is assumed. The term Ξ(σ, n) becomes a multiplicative constant in
front of the collisional integral Q(P, P ), giving place to the so-called Boltzmann-Enskog equation. Of
course, in a general non-homogeneous situation, the density is a spatially and temporally non-uniform
quantity which can be described by a macroscopic field: one may assume (as it is in kinetic theory)
that this field changes slowly in space-time, so that the Boltzmann-Enskog equation can be locally
solved with constant n as it was a Boltzmann equation with an effective total scattering cross section
Ξ(σ, n)Nσ2.

For elastic hard disks or hard spheres, spatial correlations are described by the formulas of Carnahan
and Starling [39]:
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Ξ(σ, n) =
1 − 7φ/16

(1 − φ)2
(d = 2) (3.47a)

Ξ(σ, n) =
1 − φ/2

(1 − φ)3
(d = 3) (3.47b)

(3.47c)

where φ is the solid fraction (φ = nπσ2/4 in d = 2, φ = nπσ3/6 in d = 3). This formula is
expected to work well with solid fractions below φc, where a phase transition takes place [3], with
φc = 0.675 in d = 2.

The Enskog correction produces, for example, important corrections to the transport coefficients
and to the pressure term in the hydrodynamic description.

.

3.7 The ring kinetics equations for hard spheres

The BBGKY hierarchy for hard spheres can be obtained by integration of the Eq. (3.17). Here we
report the first two equations of the hierarchy derived in this way. Note that here a slightly different
notation is used, where Pi(1, 2...i) is used to denote the reduced i-particles distribution, with (1, 2..., i)
indicating phase-space (position and velocity) of particles 1, 2, ... i respectively. Moreover, we are
using a normalization such that

∫

d(1)..d(i)Pi returns the number of possible choices of i different
particles (this normalization is widely used in the granular gas literature).

(

∂

∂t
+ L0

1

)

P1(1) =

∫

dr2

∫

dv2T−(1, 2)P2(1, 2) (3.48a)

[

∂

∂t
+ L0

1 + L0
2 − T−(1, 2)

]

P2(1, 2) =

∫

dr3

∫

dv3[T−(1, 3) + T−(2, 3)]P3(1, 2, 3) (3.48b)

This set of equations is an open hierarchy which expresses the time evolution of the s-particle
distribution function in terms of the (s + 1)-th function.

Using again the Molecular Chaos assumption (Eq. (3.28)), the Boltzmann Equation (3.29) is
immediately recovered from Eq. (3.48a).

Using the Enskog correction to the Molecular Chaos, Eq. (3.46), the Boltzmann-Enskog Equation
is obtained.

As the density increases, the contributions of correlated collision sequences to the collision term
become more and more important. At moderate densities, a simple way to take these correlations
into account has been found in a cluster expansion of the s−particle distribution functions, defined
recursively as

P2(1, 2) = P1(1)P1(2) + g2(1, 2) (3.49a)

P3(1, 2, 3) = P1(1)P1(2)P1(3) + P1(1)g2(2, 3) + P1(2)g2(1, 3) + P1(3)g2(1, 2) + g3(1, 2, 3) (3.49b)

etc., where g2(1, 2) = P2(1, 2) − P1(1)P1(2) accounts for pair correlations, g3(1, 2, 3) for triplet
correlations, etc. The molecular chaos assumption implies g2(1, 2) = 0. The basic assumption to
obtain the ring kinetic equations is that the pair correlations are dominant and higher order ones can
be neglected, i.e. g3 = g4 = ... = 0 in the above cluster expansion. The ring kinetic equations,
obtained in this way, read:
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(

∂

∂t
+ L0

1

)

P1(1) =

∫

dr2

∫

dv2T−(1, 2)(P1(1)P1(2) + g2(1, 2)) (3.50a)

[

∂

∂t
+ L0

1 + L0
2 − T−(1, 2)

]

g2(1, 2) −
[

(1 + X (1, 2))

∫

dr3

∫

dv3T−(1, 3)(1 + X (1, 3))P1(3)

]

g2(1, 2)

= T−(1, 2)[P1(1)P1(2) + g2(1, 2)]

(3.50b)

with X (i, j) the operator that interchanges the particle labels i and j. With further algebra and
approximation one can derive the generalized Boltzmann equation in ring approximation. We do not
give here this derivation, as it is not the aim of this work to review the entire ring kinetic theory in
details, but just to give its basic ideas (which are the binary collision expansion Eqs. (3.11) and the
cluster expansion, Eqs. (3.49)).

.

3.8 The Boltzmann equation for granular gases

The binary collision operator T−(1, 2), for inelastic particles, must be changed [164] according to the
inelastic collision rules, Eqs. (2.31) and Eqs. (2.32). It must be noted that when r = 1 (elastic colli-
sions), the two set of equations coincide, i.e. the direct or inverse collision are identical transformation.
This is not true if r < 1. Therefore, in the definition of the inverse binary collision operators at the end
of section 3.1, that is T−(1, 2) and T−(1, 2), we have put the same operator bc that appears in the
direct binary collision operators T+(1, 2) and T+(1, 2), while in general it must be used the operator
b′c that replaces velocities with precollisional velocities (using the transformation given in Eqs. (2.32)).
The adjoint of inverse binary inelastic collision operator(the only one needed in the following) therefore
reads:

T−(1, 2) = σ2

∫

V12·n̂>0

dn̂|V12 · n̂|
[

1

r2
δ(r1 − r2 − σn̂)b′c − δ(r1 − r2 + σn̂)

]

(3.51)

Deriving from this the BBGKY hierarchy (analogue of (3.48)) and putting in the first equation of
it the Molecular Chaos assumption, the Boltzmann Equation for granular gases is obtained [25, 164]:

(

∂

∂t
+ L0

1

)

P (r1,v1, t) = σ2

∫

dv2

∫

V12·n̂>0

dn̂|V12 · n̂|

×
[

1

r2
P (r1,v

′
1, t)P (r1,v

′
2, t) − P (r1,v1, t)P (r1,v2, t)

]

(3.52)

where the primed velocities are defined in Eqs. (2.32).
This equation has been studied in the spatially homogeneous case (no spatial gradients, L0

1 = 0),
with the Enskog correction (i.e. a multiplying factor Ξ(σ, n) in front of the collision integral) by
Goldshtein and Shapiro [72] and by Ernst and van Noije [162]. The equation is

∂

∂t
F (v1, t) = Ξ(σ, n)σ2

∫

dv2

∫

V12·n̂>0

dn̂|V12 · n̂|

×
[

1

r2
F (v′

1, t)F (v′
2, t) − F (v1, t)F (v2, t)

]

(3.53)

where F (v, t) =
∫

drP (r,v, t).



42 LECTURE 3. THE GRANULAR BOLTZMANN EQUATION



Lecture 4

Non-equilibrium thermostats

In this chapter we are mainly interested in spatially homogeneous situations.

4.1 Average energy loss

We rewrite here the Boltzmann Equation for a 3D cooling granular gas [27, 164] (see paragraph 3.8):

(

∂

∂t
+ L0

1

)

P (r1,v1, t) = σ2

∫

dv2

∫

V12·n̂>0

dn̂|V12 · n̂|

×
[

1

r2
P (r1,v

′
1, t)P (r1,v

′
2, t) − P (r1,v1, t)P (r1,v2, t)

]

= σ2Q(P, P ) (4.1)

It is useful to define a rescaled distribution, under the assumption of spatial homogeneity:

P (~v, t) =
n

v3
T

f̃(~v/vT ) (4.2)

with T (t) = 1
2mv2

T (t) e ~c = ~v/vT and n the average number density.

We may replace Q → n2v−2
T Q̃ where

Q̃ =

∫

d~c2

∫

+

dn̂|~c12 · n̂|
[

1

r2
f̃(~c′1, t)f̃(~c′2, t) − f̃(~c1)f̃(~c2)

]

. (4.3)

The main contribution to the time derivative of temperature is given by the effect of inelastic colli-
sions: in homogeneous situations, where collisions reduce the kinetic energy by a quantity proportional
to the kinetic energy itself, we expect to find Ṫ ∼ ωT where ω is the average collision rate. The
rigorous calculations reads

d

dt

(

3

2
nT

)∣

∣

∣

∣

coll

=

∫

d~v
mv2

2

∂

∂t
P (~v, t)|coll =

∫

d~v
mv2

2
σ2Q(P, P )

= σ2n2vT
mv2

T

2

∫

d~c1c
2
1Q̃ = −σ2n2vT Tµ2 (4.4)

with

µp = −
∫

d~c1c
p
1Q̃ (4.5)

so that
dT

dt
|coll = −ζ(t)T (4.6)
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where

ζ(t) =
2
√

2

3
nσ2µ2

√

T

m
. (4.7)

Computation of µ2, and therefore of ζ, requires the knowledge of f̃(c, t).

4.2 Sonine polynomials

It is useful to introduce a polynomial expansion in polynomials which reveals useful in standard kinetic
theory as well as in granular kinetic theory: in fact it serves the purpose of describing small corrections
to the Maxwellian. Such small corrections appear in homogeneous granular gases, as well as in all
(granular or elastic) dilute gases in spatially non-homogeneous situations. The expansion reads:

f̃(~c) = φ(~c)

[

1 +

∞
∑

p=1

apSp(c
2)

]

(4.8)

with the basic Maxwellian given by

φ(c) = π−3/2exp(−c2). (4.9)

The polynomials Sp are said “Sonine” polynomials (they are in fact assocaited Laguerre polynomials

S
(m)
p with m = d/2 − 1) and constitute a complete set of orthogonal functions:

∫

d~cφ(c)Sp(c
2)Sp′(c2) =

2(p + 1/2)!√
πp!

δpp′ = Npδpp′ (4.10)

In granular homogeneous situations one finds good fit by using expression (4.8) stopping the expansion
at p = 2. In dimension d = 3 the first polynomials read

S0(x) = 1 (4.11)

S1(x) = −x + 3/2 (4.12)

S2(x) =
x2

2
− 5x

2
+

15

8
(4.13)

It is easy to verify that

〈c2〉 =
3

2
(1 − a1) (4.14)

and

〈c4〉 =
15

4
(1 + a2). (4.15)

Note also that
∫

d~v
mv2

2
P (r, v, t) =

mv2
t

2
n

∫

d~cc2f̃(~c) = 〈c2〉mv2
t

2
n (4.16)

and
∫

d~v
mv2

2
P (r, v, t) = n

m〈v2〉
2

=
3

2
nT =

3

2
n

mv2
T

2
(4.17)

so that 〈c2〉 = 3/2 and therefore a1 = 0: the first non trivial coefficient is a2.

Equations for a2 are found once a model (boundary conditions) is specified.
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4.2.1 Approximation of µ2

The explicit expression for µ2 reads

µ2 = −
∫

d~c1c
2
1

∫

d~c2

∫

+

dn̂|~c12 · n̂|
[

1

r2
f̃(~c′1, t)f̃(~c′2, t) − f(~c1)f(~c2)

]

(4.18)

By using the Sonine expansion truncated at p = 2, with lot of algebra and changes of variables, one
finally gets

µ2 =
√

2π(1 − r2)

(

1 +
3

16
a2 + O(a2

2)

)

. (4.19)

4.3 The Homogeneous Cooling State

This is the simplest granular regime: it is assumed spatial homogeneity and absence of any energy
injection. The system is initialized with some starting velocity distribution.

The rescaled distribution implies the appearance of additional contribution to the time-derivative:

∂P

∂t
=

n

v3
T

∂f̃

∂t
+

(

−3n

v4
T

f̃ +
n

v3
T

∂f̃

∂c1

∂c1

∂vT

)

dvT

dt
. (4.20)

One finally gets to the following time evolution equation:

1

vT

∂f̃

∂t
− 1

v2
T

∂(~c1f̃)

∂~c1

dvT

dt
= σ2nQ̃. (4.21)

Recalling the expression for Ṫ (t) = −ζ(t)T (t) as well as for ζ(t), we can see that

1

v2
T

dvT

dt
|coll =

1

2vT T

dT

dt
= −1

3
σ2nµ2 (4.22)

is time-independent.

We make the hypothesis that a scaling function exists f̃ → f̃HC with ∂f̃HC

∂t = 0. If it exists, it
must satisfy

µ2

3

∂(~c1f̃HC)

∂~c1
= Q̃. (4.23)

This is the kinetic definition of Homogeneous Cooling State.

The solution of the temperature equation reads:

T (t) =
T (0)

(1 + ζ(0)t
2 )2

(4.24)

Eq. (4.24) is known as Haff’s law [73]

Using the Sonine approximation truncated at the second polynomial one has

ζ(t) =
4
√

π

3
nσ2

√

T (t)

m
(1 − r2)

(

1 +
3

16
a2 + O(a2

2)

)

=
1 − r2

3
ωc(t). (4.25a)

with

ωc = 4
√

πnσ2

√

T (t)

m

(

1 +
3

16
a2 + O(a2

2)

)

(4.26)

the collision frequency.
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4.3.1 The Gaussian thermostat

After the Haff’s law, it is immediate to realize that

ωc ∼ 1

1 + ζ(0)t/2
(4.27)

which means that the cumulated number of collisions goes as τc(t) ∼ ln(1+ζ(0)t/2). This observation
suggests to introduce a new time-scale

τ = τ0 ln(1 + ζ(0)t/2) (4.28)

with arbitrary τ0, getting
∂

∂t
=

τ0ζ(0)/2

1 + ζ(0)t/2

∂

∂τ
. (4.29)

This is interesting, since it shows that

1

vT (t)

∂

∂t
=

τ0ζ(0)/2

vt(0)

∂

∂τ
. (4.30)

Finally, with the new time-cale, we have

∂f̃

∂τ
+

nσ2µ2

3

∂(~c1f̃)

∂~c1
= σ2nQ̃ (4.31)

equivalent to the Boltzmann equation for particles under the effect of a force

F =
nσ2µ2~c

3
(4.32)

which is equivalent to a positive viscosity!

All this equivalence makes sense until the state remains homogeneous. We will see in lecture 6 that
the homogeneous cooling state is unstable for large wavelength perturbations.

4.3.2 High velocity tails

Ernst and van Noije [162] have given estimates for the tails of the velocity distribution, using an
asymptotic method employed by Krook and Wu [92]. This method assumes that for a fast particle the
dominant contributions to the collision integral come from collisions with thermal (bulk) particles and
that the gain term of the integral can be neglected with respect to the loss term.

The loss term in the Boltzmann equation reads

−
∫

dc2

∫

+

dn̂|c12̇̂n|f̃(c1)f̃(c2) ≈ −πc1f̃(c1). (4.33)

If f̃ is isotropic, then ~c d
d~c f̃ = c d

dc f̃ . Then it remains

µ2f̃ +
1

3
µ2c

d

dc
f̃ = −πcf̃ (4.34)

and for large c one finds

f̃ ∼ exp

(

−3π

µ2
c

)

. (4.35)

It must be recalled that µ2 ∼ (1 − r2), which means that this estimate is valid when c > 1/(1 − r2).
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4.4 An example of bulk driving

4.4.1 Equations of motion and collisions

The randomly driven granular gas (introduced by Puglisi et al. [140, 141]) consists of an assembly of
N identical hard objects (spheres, disks or rods) of mass m and diameter σ. We put, for simplicity,
m = 1 and kB = 1 (the Boltzmann constant).

The grains move in a box of volume V = Ld (L is the length of the sides of the box), with periodic
boundary conditions, i.e. opposite borders of the box are identified.

The mean free path (calculated exactly in Eq. (2.29) for the case of an homogeneous gas of 3D
hard spheres with a Maxwellian distribution of velocities) can be roughly estimated as

λ =
1

nS
(4.36)

where, n = N/V is the mean number density and S is the total scattering cross section. We stress
the fact that S has the dimensions of a surface in d = 3 (S ∼ σ2), of a line in d = 2 (S ∼ σ) and no
dimensions in d = 1 (this is consistent with the fact that the diameter, in d = 1 is irrelevant).

The dynamics of the gas is obtained as the byproduct of three physical phenomena: friction with
the surroundings, random accelerations due to external driving, inelastic collisions among the grains.
We model the first two ingredients in the shape of a Langevin equation with exact fulfillment of the
Einstein relation (see for example[93]), for the evolution of the velocities of the grains in the free time
between collisions. The inelastic collisions follow the usual inelastic rule. The equations of motion for
a particle i that is not colliding with any other particle, are:

m
d

dt
vi(t) = −γbvi(t) +

√

2γbTbηi(t) (4.37a)

d

dt
xi(t) = vi(t) (4.37b)

We call the parameters τb = m/γb and Tb characteristic time of the bath and temperature of
the bath respectively. The function ηi(t) is a stochastic process with average < ηi(t) >= 0 and

correlations < ηα
i (t)ηβ

j (t′) >= δ(t − t′)δijδαβ (α and β being component indexes) i.e. a standard
white noise.

4.4.2 Characteristic times, elastic limit, collisionless limit, cooling limit:
the two stationary regimes

In the dynamics of the N particles, as defined in Eqs. (4.37) and by the inelastic hard core collision
rules, the most important parameters are:

• the coefficient of normal restitution r, which determines the degree of inelasticity;

• the ratio ρ = τb/τc between the characteristic time of the bath and the “global” mean free time
between collisions;

On the basis of these two parameters, we can define three fundamental limits of the dynamics of
our model:

• the elastic limit: r → 1−;

• the collisionless limit: ρ → 0 (τc ≫ τb);

• the cooling limit: ρ → ∞ (τc ≪ τb);
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The elastic limit is smooth in dimensions d > 1, so that we can consider it equivalent to put r = 1.
In this case the collisions mix up the components leaving constant the energy (in the center of mass
frame as well in the absolute frame). We can assume that, in this limit, the effect of the collisions is
that of homogenizing the positions of the particles and making their velocity distribution relax toward
the Maxwellian with temperature Tg = 〈v2〉/d = 〈v2

x〉 (this temperature is equal to the starting kinetic
energy, but is modified by the relaxation toward Tb due to the Langevin Eqs. (4.37)). In one dimension
this mixing effect (toward a “Maxwellian”) is no more at work, as the elastic collisions exactly conserve
the starting velocity distribution (the collisions can be viewed as exchanges of labels and the particles
as non-interacting walkers).

In the collisionless limit we have τc ≫ τb and therefore, the collisions are very rare events with
respect to the characteristic time of the bath. In this case we can consider the model as an ensemble
of non-interacting Brownian walkers, each following the Eqs. (4.37). Therefore, whatever r is, and in
any dimension, the distribution of velocities relaxes in a time τb toward a Maxwellian with temperature
Tg = 〈v2〉/d = Tb with a homogeneous density.

Finally, in the cooling limit, the collisions are almost the only events that act on the distribution
of velocities, while between collisions the particles move almost ballistically. In this limit (if r < 1)
the gas can be considered stationary only on observation times very long with respect to the time of
the bath τb, where the effect of the external driving (the Langevin equation) emerges. For observation
times larger than the mean free time τc but shorter than τb, the gas appears as a cooling granular gas.

To conclude this brief discussion on the expected behavior of the randomly driven granular gas
model, we sketch a scenario with the presence of two fundamental stationary regimes:

• the “collisionless” stationary regime: when ρ ≪ 1, i.e. approaching the collisionless limit; in
this regime we expect, after a transient time of the order of τb, the stationary statistics of an
ensemble of non-interacting Brownian particles (homogeneous density and Maxwell distribution
of velocities, absence of correlations);

• the “colliding” stationary regime: when ρ ≫ 1, i.e. approaching the cooling limit, but observing
the system on times larger than τb; here we expect to see anomalous statistical properties.

4.4.3 Boltzmann equation

For this model, the Boltzmann equation includes two additional contributions which are equivalent
to the “Fokker-Planck” operators which evolve the velocity distribution in a Langevin equation. The
equation therefore reads:

∂P

∂t
= σ2Q +

γb

m

∂~vP

∂~v
+

γb

m

Tb

m
∇vP (4.38)

Using the definition of rescaled distribution (4.2), and obviously v̇T = 0 (we are in a statistically
stationary state), one gets

∂f̃

∂t
= vT nσ2Q̃ +

γb

m

∂~cf̃

∂~c
+

γb

2m

Tb

Tg
∇cf̃ . (4.39)

4.4.4 Stationary granular temperature

From the definition, it follows that

T =
m

dim
〈v2〉 (4.40)

and therefore

〈vv̇〉 =
Ṫ

2m
= −γb

m
〈v2〉 +

γb

m

Tb

m
− ζ

T

2m
. (4.41)

Imposing Ṫ = 0, in the stationary state, we get

T − Tb = ζτbT (4.42)

which can be (numerically) solved to obtain T (we remind that ζ ∝ (1 − r2)T 1/2).
It is worth noting that r e τb appear through a factor (1 − r2)τb.



4.4. AN EXAMPLE OF BULK DRIVING 49

4.4.5 High velocity tails

For the heated case, assuming that at large velocities Q̃ ∼ −πcf̃ , one finds

−πvT nσ2cf̃ +
γb

2m

Tb

Tg

(

d2

dc2
+

2

c

d

dc

)

f̃ +
γb

m

(

3 + c
d

dc

)

f̃ = 0. (4.43)

This has two different “solutions”

• in the limit γ → 0 (with Tb → ∞ with finite γTb ), one has f̃ ∼ exp(−c3/2)

• when γ > 0 one apparently finds f̃ ∼ exp(−c2) but in this case the approximations (in particular
having neglected the gain term in the collisional integral) are no guaranteed.
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Lecture 5

Granular kinetic theory

Fluids are, in general, in spatially non-homogeneous situations: this can be an effect of non-equilibrium
initial conditions (the experimentalist sets up the system far from the final situations, and then observes
the system relaxing toward it), or an effect of forcing boundary conditions which keep the system in
a non-equilibrium stationary state (“ness”). For granular fluids, there always exists an intrinsic energy
“sink” which keeps the system out of equilibrium and one can - eventyally - apply an external forcing
in order to keep the fluid in a stationary state. An example of homogeneous forcing has been discussed
in the previous lecture. In this lesson we study non-homogeneous situations. An example - due to
non-homogeneous forcing (coming from only one boundary) - is shown in Figure 5.1. The theory
sketched in this lecture is however valid independently of the origin of non-homogeneity, as long as
it satisfies the criterion of “small gradients”. It will be useful, for example, to describe the departure
from homogeneity in the cooling regime (where no external driving is present).

θ

Vibratio
n

g

Figure 5.1: A sketch of an experiment where the granular assembly is driven by gravity plus a
(periodically or stochastic) vibrating wall

5.1 A sketch of the program of Chapman-Enskog kinetic
theory

The Chapman-Enskog procedure is a way of construct a non-homogeneous solution, for weak gradients,
of the Boltzmann equation.

• define densities and fluxes for “slow” variables

• write continuity equations (always valid) for the “slow” quantities

• first assumption: P (v, r, t) depends on r and t only through the above “slow” quantities; this
means that the Boltzmann equation is replaced by a local boltzmann equation plus equations for
the slow parameters
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• second assumption: mean free path λ is small with respect to linear size of gradients L (which is
of comparable order to linear size of the experiment); ǫ = λ/L ≪ 1 is called “Knudsen” number

• for small ǫ expand fluxes and take only up to linear order in the gradients: “transport coefficients”
remain to be determined

• for consistency P → f (0)+ǫf (1)+ǫ2f (2)+ ... and all spatial and time derivatives are “expanded”
in growing powers of ǫ

• these expansions, put into the Boltzmann equation and its supplementary “slow” equations, leads
to families of equations at different order which can be solved separately

• at order 0 one has the homogeneous solution (Euler equation for elastic fluids) and find f (0)

• at order 1 one can find f (1) through its coefficients of the linear expansion in gradients; the
transport coefficients are functions of these coefficients

• hydro equations at order 2 are closed now (if solved, they could be used to find f (2))

5.2 Densities and fluxes

We assume that a phase space distribution function can be defined:

N(t, r,v) = P (t, r,v)d3rd3v (5.1)

where N(t, r,v) is the number of particles found at time t near the point r,v of the phase space.
P is assumed to be the solution of the Boltzmann Equation (3.29).

The particle number density is defined as

n(t, r) =

∫∫∫

∞

d3vP (t, r,v) (5.2)

The average molecular velocity is defined as

u(t, r) =
1

n(t, r)

∫∫∫

∞

d3vvP (t, r,v) (5.3)

and this allows to introduce the random velocity vector

V(t, r) = v − u(t, r) (5.4)

which depends on time and position (while v is independent of t and r) and has zero average:

∫∫∫

∞

d3cViP (t, r,V) = 0 (5.5)

The average fluxes of the molecular quantity W (v) can be expressed as velocity moments of the
phase space distribution function:

ji
W (t, r) =

∫∫∫

∞

d3vviW (v)P (t, r,v) (5.6)

When W = m one has the mass flux:

ji
m = mn(t, r)ui(t, r). (5.7)

When W = mvj one has the momentum flux:
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ji
mvj

= mn(t, r)〈vivj〉 = mnuiuj + mn〈ViVj〉 (5.8)

which is a 3 × 3 symmetric matrix. In the last form two contributions can be recognized, that is
the flux due to the bulk (organized) motion and the flux resulting from the random (thermal) motion
of the gas particles. This second term is usually called the pressure tensor Pij = mn〈ViVj〉. One can
define, from this discussion, two quantities that are the scalar pressure p and the vector temperature
Ti:

p =
1

3
(Pxx + Pyy + Pzz) (5.9)

1

2
kBTi =

1

2
m〈V 2

i 〉 =
1

2

Pii

n
(5.10)

and in the isotropic case Ti = T so that p = nkBT . It can be also defined the stress tensor T as:

Tij = δijp − Pij (5.11)

which expresses the deviation of the pressure tensor from the equilibrium Maxwellian case (for which
Pij = pδij).

Finally, the flux of the quantity W = mvjvk is given by:

ji
mvjvk

= mnuiujuk + uiPjk + ujPik + ukPij + Qijk (5.12)

where Qijk = mn〈ViVjVk〉 is the generalized heat flow tensor and describes the transport of random
energy VjVk due to thermal motion Vi of the molecules (for all the permutations of i, j, k).

In equation (5.12) three contributions can be recognized: the first term describes the bulk transport
of the bulk flux of momentum; the second, third and fourth terms describe the a combination of bulk
and random momentum fluxes; the last term is the transport of random energy component due to
the random motion itself. Often a “classical” heat flow vector is introduced, more intuitive than the
generalized heat flow tensor:

qi =
Qikk

2
= n

〈

Vi
mc2

2

〉

. (5.13)

5.3 Equations for the densities

Multiplying the Boltzmann equation by 1, v and v2 and integrating over v, one gets equations for the
slow variables:

∂n

∂t
+ ∇ · (n~u) = 0 (5.14)

∂~u

∂t
+ ~u · ∇~u + (nm)−1∇ · P = 0 (5.15)

∂T

∂t
+ ~u · ∇T +

2

3n
[P : (∇~u) + ∇~q] + ζT = 0 (5.16)

(5.17)

These are the continuity equations and are always valid. The only term which does not appear in the
continuity equation for elastic gases is, obviously, the ζT term (indeed ζ ≡ 0 for elatic collisions).

5.4 Chapman-Enskog closure

The purpose is to close the continuity equations for small gradients. It consists in
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1. change spatial scale r → ǫr where ǫ = λ/L, i.e. if old positions where measured in terms of
mean free path λ, now the new ones are measured in terms of the characteristic length L which is
the macroscopic scale (macroscopic boundary conditions impose spatial variations at this scale);
all gradients are transformed as ∇ → ǫ∇;

2. for small ǫ the fluxes can be approximated as linear in the gradients

Pij = pδij − ηǫ

(

∇iuj + ∇jui −
2

3
δij∇ · ~u

)

(5.18)

~q = −κǫ∇T − µǫ∇n (5.19)

the main missing ingredients are, therefore, the coefficients η, κ and µ

3. we get the “linear” continuity equations

∂n

∂t
= −ǫ∇ · (n~u) (5.20)

∂~u

∂t
= −ǫ

(

~u · ∇~u − 1

nm
∇p

)

+ ǫ2
η

mn

(

∇2~u +
1

3
∇(∇ · ~u)

)

(5.21)

∂T

∂t
= −ζT − ǫ

(

~u · ∇T +
2

3n
p(∇ · ~u)

)

+ ǫ2G (5.22)

(5.23)

with

G =
2η

3n

[

(∇iuj)(∇jui) + (∇jui)(∇jui) −
2

3
(∇ · ~u)2

]

+
2

3n
(κ∇2T + µ∇2n) (5.24)

4. a “normal form” is assumed for the distribution P (v, r, t) → f [V |n(r, t), u(r, t), T (r, t)], (we
recall that V = v − u), so that derivatives read

∂f

∂t
=

∂f

∂n

∂n

∂t
+

∂f

∂~u
· ∂~u

∂t
+

∂f

∂T

∂T

∂t
. (5.25)

5. for consistency with the above expansions (and the assumption of “normal” form) we can in-
troduce time-scales which measure the time-variations associated to growing powers of ǫ (i.e.
happening at different spatial scales):

∂

∂t
=

∂(0)

∂t
+ ǫ

∂(1)

∂t
+ ǫ2

∂(2)

∂t
+ ... (5.26)

6. for the same reason, a spatially non-uniform f can be expanded as

f = f (0) + ǫf (1) + ǫ2f (2) + ... (5.27)

7. all these expansions are put into the original Boltzmann equation which (because of the assumed
“normal” form) must be supplemented by Eqs. (5.20) for the slow variables; terms at the same
order in ǫ can be solved separately: this must be executed in order of growing powers of ǫ since
at each order the solution at smaller order is needed.



5.4. CHAPMAN-ENSKOG CLOSURE 55

5.4.1 Zero order

At the smallest (zero) order in ǫ, the Boltzmann equation with its supplementary equations for slow
parameters read:

∂(0)f (0)

∂t
= Q(f (0), f (0)) (5.28)

∂(0)n

∂t
= 0 (5.29)

∂(0)~u

∂t
= 0 (5.30)

∂(0)T

∂t
= −ζ(0)T (5.31)

It describes of course a spatially homogeneous situation. The solution of these equations has been
already discussed in the previous lesson, it is the Homogeneous Cooling State, i.e. f (()0) = f̃HC :

f (0) =
n

v3
T

f̃ (0)

(

~V

vT

)

(5.32)

with

ζ(0) = − m

3nT

∫

d~v1v
2
1Q(f (0), f (0)) =

2

3
nσ2

√

2T

m
µ2. (5.33)

5.4.2 First order

∂(0)f (1)

∂t
+

(

∂(1)

∂t
+ ~v · ∇

)

f (0) = Q(f (0), f (1)) + Q(f (1), f (0)) (5.34)

∂(1)n

∂t
= −∇(n~u) (5.35)

∂(1)~u

∂t
= −~u · ∇~u − 1

nm
∇p (5.36)

∂(1)T

∂t
= −~u · ∇T − 2

3
T∇ · ~u − ζ(1)T (5.37)

Putting f (0) + f (1) in the expression for ζ and keeping the first order in ǫ one has

ζ(1) = 2
(1 − r2)mπσ2

24nT

∫

d~v1d~v2v
3
12f

(0)f (1) (5.38)

The above equations are the Euler equations if r = 1 (elastic collisions). In elastic case, they describe
transport without dissipation (i.e. no viscosity or heat conductivity).

Knowledge (even formal) of f (0) allows to write an equation for f (1) only. It is necessary to express
∂(1)f(0)

∂t as

∂(1)f (0)

∂t
=

∂f (0)

∂n

∂(1)n

∂t
+

∂f (0)

∂~u
· ∂(1)~u

∂t
+

∂f (0)

∂T

∂(1)T

∂t
(5.39)

The terms in ∂(1)

∂t are taken from the continuity equations at 1st order. Prefactors are known: ∂f(0)

∂n =

f (0)/n, ∂f(0)

∂~u = −∂f(0)

∂~V
, ∂f(0)

∂T = − 1
2T

∂(~V f(0))

∂~V
; analogously one can also write down the “streaming”

term ~v · ∇, recalling that p = nT , getting to

∂(0)f (1)

∂t
+ J(f (0), f (1)) − ζ(1)T

∂f (0)

∂T
= ~A · ∇ lnT + ~B · ∇ lnn + Cij∇jui (5.40)
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with J = −Q(0, 1)− Q(1, 0).
R.h.s. depends upon three coefficients which depend only on f (0) and on “slow” fields

~A = ~V

[

T

m

(

mV 2

2T
− 1

)

1

V

∂

∂V
+

3

2

]

f (0) (5.41)

~B = −~V

(

T

m

1

V

∂

∂V
+ 1

)

f (0) (5.42)

Cij =

(

ViVj −
1

3
δijV

2

)

1

V

∂f (0)

∂V
(5.43)

The most general scalar function depending linearly on vectorial and tensorial gradients is

f (1) = ~α · ∇ lnT + ~β · ∇ lnn + γij∇jui (5.44)

with coefficients that depend only on V and on space-time through the slow fields.
Putting this form into the Boltzmann equation and comparing terms with same gradients, one

obtaines equations for the coefficients of f (1) ~α, ~β and γij .
The missing transport coefficient η, κ e µ can be expressed as functions of the above coefficents

of f (1)

η = − 1

10

∫

Dijγjid~V (5.45)

κ = − 1

3T

∫

~S · αd~V (5.46)

µ = − 1

3n

∫

~S · βd~V (5.47)

where we have used ~S(V ) =
(

mV 2/2 − 5/2T
)

~V e Dij = m
(

ViVj − 1
3δijV

2
)

.

5.4.3 Elastic case

In the elastic case f (0) is the Maxwellian fM or φ when rescaled to have unitary variance. In this case
it is found that ~B = 0 and therefore ~β = 0, leading finally to µ = 0 (Fourier’s law).

One finally gets

η = − 5

2σ2

√

mT/2
1

Ωη[φ(c1), φ(c2)]
(5.48)

κ = − 75

16σ2

√

2T/(m)
1

Ωκ[φ(c1), φ(c2)]
(5.49)

with the following “pure” numbers

Ωη =

∫

d~c1

∫

d~C2

∫

dn̂Θ(−~c12 · n̂)|~c12 · n̂|φ1(c1)φ2(c2)

×
[

(~c′1 · ~c2)
2 + (~c′2 · ~c2)

2 − (~c1 · ~c2)
2 − (~c2 · ~c2)

2 − 1

3
c2
2∆(c2

1 + c2
2)

]

(5.50)

and

Ωκ =

∫

d~c1

∫

d~C2

∫

dn̂Θ(−~c12 · n̂)|~c12 · n̂|φ1(c1)φ2(c2)

×
(

c2
2 −

5

2

)

[

(~c′1 · ~c2)(c
′
1)

2 + (~c′2 · ~c2)(c
′
2)

2 − (~c1 · ~c2)c
2
1 − (~c2 · ~c2)c

2
2

]

(5.51)
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obtaining finally:

η =
5

16σ2

√

mT/π (5.52)

κ =
75

64σ2

√

T/(mπ) (5.53)

f(V ) = fM (V )

(

1 − 2mκ

5nT 3
~S · ∇T − η

nT 2
Dij∇jui

)

(5.54)

5.4.4 Inelastic case

In the inelastic case f (0) is not known analytically, but can be expressed as an expansion in Sonine
polynomials, and the coefficients can always be calculated (at any order), for instance stopping at the

2nd order, recalling that ~c = ~V /vT :

f (0) =

(

n

v3
T

)

φ(c)[1 + a2S2(c
2)] (5.55)

with

S2(x) =
1

2
x2 − 5

2
x +

15

8
. (5.56)

For consistency, in the coefficients Ω now one must insert Ω[(1 + a2S2)φ(c1), φ(c2)]. One finally gets
to

η =
15

2(1 + r)(13 − r)σ2

(

1 +
3

8

4 − 3r

13 − r
a2

)

√

mT/π (5.57)

κ =
75

2(1 + r)(9 + 7r)σ2

(

1 +
1

32

797 + 211r

9 + 7r

)

√

T/(πm) (5.58)

µ =
750(1 − r)

(1 + r)(9 + 7r)(19 − 3r)nσ2
(1 + q(r)a2)

√

T 3/(πm) (5.59)

(5.60)

with q(r) a quite lengthy function of the restitution coefficient r.
It is therefore obtained the solution of the Boltzmann equation at first order in the gradients: e per

finire

f (1)(V ) = − 1

nT 2
[
2m

5T
~S · (κ∇T + µ∇n) + ηDij∇jui]fM (5.61)

We conclude this lecture noting that the above procedure (sketched in great generality) leads to a
“solution” for the f (i)(V ) at order i in the gradients, as well as to closed equations for the slow fields
n(r, t),u(r, t),T(r, t), which include fluxes at order i in the gradients, and therefore (since continuity
is given by divergence of fluxes), are at order i + 1 in the gradients.
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Lecture 6

Failures and successes of
hydrodynamics

6.1 Linear stability analysis of the homogeneous cooling
state

A granular gas prepared with a homogeneous density and no macroscopic flow, at a given temperature
T (0), reaches the Homogeneous Cooling State in a few free times t0. To study the behavior of small
(macroscopic, i.e. for wave vectors of low magnitude k ≪ min{2π/l0, 2π/σ}) fluctuations around
this state, a linear stability study of hydrodynamics equations has been performed by several authors
(Goldhirsch and Zanetti [71], Deltour and Barrat [50], van Noije et al. [165]). We follow the detailed
discussion of [163], reviewing their result for the linearized hydrodynamics of rescaled fields. The
rescaled fluctuation fields are defined as

δñ(r, τ) = δn(r, t)/n (6.1a)

ũ(r, τ) = u(r, t)/v0(t) (6.1b)

δT̃ (r, τ) = δT (r, t)/T (t) (6.1c)

Their Fourier transforms are given by δã(k, τ) =
∫

dr exp(−ik · r)δã(r, τ), where a is one of
(n,u, T ).

The vector ũ(k, τ) can be decomposed in (d − 1) vectors perpendicular to k, called indistinctly
ũ⊥, and one vector parallel to k, called ũ‖.

The linearized hydrodynamics for these fluctuations is given (in Fourier space) by the following
equation:

∂

∂τ
δã(k, τ) = M̃(k)δã(k, τ) (6.2)

where

ã =

{

(n, u⊥, u‖, T ) (d = 2)

(n, u⊥, u′
⊥, u‖, T ) (d = 3)

(6.3)

The matrix M̃ is given (in d = 2) by:

M̃ =











0 0 −ikl0 0
0 γ0(1 − k2ξ2

⊥) 0 0

−ikl0

(

1
2nTχT

)

0 γ0(1 − k2ξ2
‖) −ikl0

(

p
2nT

)

−γ0g(n) 0 −ikl0
(

2p
dnT

)

−γ0(1 + k2ξ2
T )











(6.4)
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Figure 6.1: Growth rates ζλ/γ0 for shear (λ =⊥), heat (λ = H) and sound (λ = ±) modes versus
kσ for inelastic hard disks with r = 0.9 at a packing fraction φ = 0.4. The dashed line indicate
the imaginary parts of the sound modes that vanish for k ≪ γ0/l0. (From Orza et al. [136])

with γ0 = 1−r2

2d

Here we have introduced the correlation lengths ξ⊥, ξ‖ and ξT that depend on the transport
coefficients (shear and bulk viscosity and heat conductivity), on the isothermal compressibility χT =
(∂n/∂p)T /n and on the pair distribution function g(n) already mentioned. We refer to [163] for
detailed calculations of these correlation lengths.

We report in Fig. 6.1 a plot published in several articles from van Noije and co-workers [136], that
displays the linear dispersion relations, i.e. the exponential growth rates of the modes as functions of
the wave number.

Several facts must be noted. The first is that (in this linear analysis) the evolution of fluctuations of
normal velocity components (shear modes, ũ⊥) are not coupled with any other fluctuating component.
At the same time, all the other components are coupled together. The study of eigenvalues and
eigenvectors confirms the fact that the shear modes are not coupled with the other modes. The
eigenvectors of the matrix define, beyond the shear modes, three other modes: one heat mode and two
sound modes, denoted in the following with the subscripts H and + or − respectively. The associated
eigenvalues are ζ⊥(k), ζH(k), ζ+(k) and ζ−(k). It is immediate to see that ζ⊥(k) = γ0(1−k2ξ2

⊥). At
low values of k (in the dissipative range defined below) also the heat mode is “pure”, as it is given by
the longitudinal velocity mode ũ‖ only, with eigenvalue ζH(k) ≃ γ0(1− ξ2

‖k
2); in this range the sound

modes are combination of density and temperature fluctuations.
The most important result of this analysis is that ζ⊥(k) and ζH(k) are positive below the threshold

values k∗
⊥ = 1/ξ⊥ ∼ √

ǫ and k∗
H ≃ 1/ξ‖ ∼ ǫ respectively, indicating two linearly unstable modes with

exponential (in τ) growth rates. Here ǫ = 1 − r2.
The shear and heat instabilities are well separated at low inelasticity, as k∗

⊥ ∼ √
ǫ while k∗

H ∼ ǫ, so
that k∗

⊥ ≫ k∗
H . It is also important to note that the linear total size L of the system can suppress the

various instability, as the minimum wave number kmin = 2π/L can be larger than k∗
H or even than

k∗
⊥.

Moreover, the study of the eigenvalues of the linear stability matrix, shows that several regimes in
the k-space are present:

• for 2π/L ≪ k ≪ γ0/l0 (dissipative range), all the eigenvalues are real, so that propagating
modes are absent;

• for γ0/l0 ≪ k ≪ √
γ0/l0 (standard range), the eigenvalues corresponding to sound modes are

complex conjugates, so that the sound modes propagate;

• for
√

γ0/l0 ≪ k ≪ min{2π/l0, 2π/σ} (elastic range) the heat conduction become dominant; in
this range the dispersion relations resemble those of an elastic fluid.
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The above picture, of course, requires the scale separation γ0 ≪ √
γ0 (valid at low inelasticity).

6.2 Hydrodynamic of the inclined plane model

We follow Brey et al. [23] and write down the hydrodynamics for the Inclined Plane Model presented in
this paper (gravity in one direction and vibrating bottom wall, i.e. g = (0, ge) and ge < 0 ), with the
following assumptions: the fields do not depend upon x (the coordinate parallel to the bottom wall),
i.e. ∂/∂x = 0, and the system is in a steady state, i.e. ∂/∂t = 0. The continuity equation then reads
∂
∂y (n(y)uy(y)) = 0 and this can be compatible with the bottom and top walls (where nvy = 0) only if

n(y)vy(y) = 0, that is in the absence of macroscopic vertical flow. The equations are written for the

dimensionless fields T̃ (ỹ) = kBT (y)/(−gemσ)|y=σỹ and ñ(ỹ) = n(y)σ2|y=σỹ, while the position y is
made dimensionless using ỹ = y/σ. Finally for the pressure we put p(y) = P22 = n(y)kBT (y). With
the assumption discussed above the equations of Brey et al read:

d

dỹ
(ñ(ỹ)T̃ (ỹ)) = −ñ(ỹ) (6.5)

1

ñ(ỹ)

d

dỹ
Qr(ỹ) − C(r)ñ(ỹ)T̃ (ỹ)3/2 = 0 (6.6)

where Qr(ỹ) is the granular heat flux expressed by

Qr(ỹ) = A(r)T̃ (ỹ)1/2 d

dỹ
T̃ (ỹ) + B(r)

T̃ (ỹ)3/2

ñ(ỹ)

d

dỹ
ñ(ỹ) (6.7)

In the above equations A(r), B(r) and C(r) are dimensionless monotone coefficients, all with the
same sign (positive), explicitly given in the Appendix B. In particular B(1) = 0 and C(1) = 0, i.e. in
the elastic limit there is no dissipation and the heat transport is due only to the temperature gradients,
while when r < 1 a term dependent upon d

dỹ ln(ñ(ỹ)) appears in Qr(ỹ). The use of dimensionless
fields eliminates the explicit g dependence from the equations, that remains hidden in their structure
(the right hand term of equation 6.5, that is due to the gravitational pressure gradient, disappears in
the equation for g = 0).

6.2.1 The solution of the equations

A change of coordinate can be applied to Eqs. (6.5),(6.6) in order to obtain a simpler form:

ỹ → l(ỹ) =

∫ ỹ

0

ñ(y′)dy′ (6.8)

It follows that when y spans the range [0, Ly], the coordinate l spans the range [0, σ/Lx]. With
this change of coordinate it happens that

d

dỹ
→ ñ(l)

d

dl
(6.9)

and the first equation (6.5) reads:

d

dl
(ñ(l)T̃ (l)) = −1 (6.10)

from which is immediate to see that

H = ñ(l)T̃ (l) + l (6.11)

is a constant, i.e. d
dlH = 0. This is equivalent to observe that
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p(y) − g

∫ y

0

n(y′)dy′ (6.12)

is constant which is nothing more than the Bernoulli theorem for a fluid in the gravitational field
with the density depending upon the height.

The relation (6.11) is verified by the model simulated in this work for almost all the height of the
container, apart of the boundary layer near the bottom driving wall.

Using the coordinate l introduced in (6.8) and the elimination of ñ(l) using the recognized constant,
that is

ñ(l) =
H − l

T̃ (l)
(6.13)

the second equation (6.6), after some simplifications, and after a second change of coordinate
l → s(l) = H − l, becomes:

α(r)s

T̃ (s)1/2

d2

ds2
T̃ (s) − α(r)s

2T̃ (s)3/2

(

d

ds
T̃ (s)

)2

+
β(r)

T̃ (s)1/2

d

ds
T̃ (s) − sT̃ (s)1/2 = 0 (6.14)

where α(r) = (A(r) −B(r))/C(r), β(r) = (A(r)− 1
2B(r))/(C(r)) are numerically checked to be

positive (α is positive for values of r not too low, about r > 0.3) and are divergent in the limit r → 1.
The correspondence with the solution of Brey et al. [26] is given by:

k∗ → A (6.15a)

µ∗ → B (6.15b)

ζ∗ → C

π
(6.15c)

l → 2
√

2s − p∗L (6.15d)

C → 2
√

2 (6.15e)

a(r) → 1

4
√

2α
(6.15f)

b(r) → β

α
(6.15g)

ξ → s√
2α

(6.15h)

ν → 1

2

β − α

α
(6.15i)

The equation (6.14) become a linear equation in T̃ (s) as soon as the change of variable z(s) =
T̃ (s)1/2 is performed:

2α(r)s
d2

ds2
z(s) + 2β(r)

d

ds
z(s) − sz(s) = 0 (6.16)

giving the solution:

z(s) = As−ν(r)Iν(r)(s/
√

2α) + Bs−ν(r)Kν(r)(s/
√

2α) (6.17)

where Iν and Kν are the modified Bessel functions of the first kind and the second kind respectively,
ν(r) = B(r)/(4(A(r) − B(r))) is real and positive for all the values of r greater than the zero of the
function A(r) − B(r) (about r ≃ 0.3), with ν(1) = 0, while A and B are constants that must be
determined with assigning the boundary conditions.

Then we can derive the expressions for T̃ (l) and ñ(l):
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T̃ (l) = (H − l)−2ν(r)(AIν(r)((H − l)/
√

2α(r)) + BKν(r)((H − l)/
√

2α(r)))2 (6.18)

ñ(l) =
(H − l)1+2ν(r)

(AJν(r)((H − l)/
√

2α(r)) + BNν(r)((H − l)/
√

2α(r)))2
(6.19)

To calculate the expressions of T̃ and ñ as a function of the original coordinate ỹ one needs to
solve the equation

d

dl
ỹ(l) =

1

ñ(l)
(6.20)

putting in it the solution (6.19). However one can obtain a comparison with the numerical simula-
tions using the new coordinate l. For a discussion of the boundary conditions needed to eliminate the
constants H , A and B we refer the reader to the paper of Brey et al.[26]. In this paper the authors
show that the solution fit very well a large region in the bulk but cannot work on the boundary regions
near the vibrating bottom and near the open surface. The authors show also that a minimum of the
temperature is compatible with the proposed equations.

6.3 The problem of scale separation

I. Goldhirsch [71, 70, 69, 67, 68] takes in consideration all the recent literature on rapid granular
flows, putting in evidence the points where the hydrodynamics description is at risk. The limits of
hydrodynamics have been intensively probed by means of simulations and experiments, and it seems
that a range of good validity can be found (perhaps it is more difficult to predict it!). However
Goldhirsch points out that even these successes are somehow lacking a rigorous foundation, or using
is words that “the notion of a hydrodynamic,or macroscopic description of granular materials is based
on unsafe grounds and it requires further study”. He addresses two fundamental issues:

1. in granular materials a reference equilibrium state is missing;

2. in granular materials the spatial and temporal scales of the dynamics of the particles are not well
separated from the relevant macroscopic scales;

The first problem is more evident than the second. If a molecular gas is left to itself it comes to
an equilibrium state given by the stationary solution of the corresponding kinetic equation (rarefied
gases follow the Boltzmann equation, dense gases follow the Enskog-Boltzmann equation or better
the ring kinetic equations). If such an equilibrium state is well defined, perturbations around it can
be used as solutions of non-equilibrium problems. Moreover, if external time scales are much larger
than the microscopic time scale of relaxation to equilibrium, most of the degrees of freedom of the gas
are rapidly averaged and only a few variables are needed for the description of the out of equilibrium
dynamics, which obey to macroscopic equations such as Euler or Navier-Stokes equations. If a granular
gas is left to itself, instead, the only equilibrium state is an asymptotic death of the motion of all the
particles, but before it different kinds of correlations arise leading to strong inhomogeneities (clustering,
vortices, shocks, collapse, and so on). In this sense the relaxation to equilibrium has a characteristic
time which is infinite and many other characteristic times given by different instabilities, due to the
non-conservative nature of the collisions. What reference state can be used in a perturbative method
like the Chapman-Enskog expansion? In the first derivations of granular hydrodynamics the Maxwell-
Boltzmann equilibrium was used, in the latest derivations a more rigorous Chapman-Enskog expansion
has been followed using solutions of the Enskog-Boltzmann equation by means of a Sonine expansion
(which again must be performed around a Maxwell distribution). Goldhirsch has observed however that
the limit (1 − r) → 0 and Kn → 0 (the Knudsen number, indicating the intensity of the gradients) is
smooth and non singular for the granular Boltzmann equation, since the relaxation to local equilibrium
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takes place in a few collisions per particle, while the effect of (low) inelasticity is relevant on the order
of hundreds or thousands of collisions. This means that a perturbative (in 1 − r2 and Kn) expansion
may be applied to the Boltzmann equation around a well suited “elastic” equilibrium, but it is expected
to breakdown as (1 − r) or Kn are of order ∼ 1.

In a stationary state the only hope is that the system fluctuates around a well defined “most
probable state” (described by a well defined n-particles distribution function, hopefully n = 1) and
again an expansion around it can be performed. This program has not yet been realized: till now all
hydrodynamic theories assume that the equilibrium reference state does not depend on the boundary
conditions (e.g. the form of the external driving) and that both cooling and driven regimes can be
described by the same set of equations.

The second issue raised by Goldhirsch stems from a more quantitative discussion. He stresses the
fact that the lack of scales separation is not only a mere experimental problem: one can in principle
think of experiments with an Avogadro number of grains and very large containers. Instead the lack of
separation of scales is of fundamental nature in the framework of granular materials. This problem has
been already recognized in molecular gases: indeed, when molecular gases are subject to large shear rates
or large thermal gradients (i.e. when the velocity field or the temperature field changes significantly
over the scale of a mean free path or the time defined by the mean free time) there is no scale
separation between the microscopic and macroscopic scales and the gas can be considered mesoscopic.
In this case the Burnett and super-Burnett corrections (and perhaps beyond) are of importance and
the gas exhibits differences of the normal stress (e.g. Pxx 6= Pyy) and other properties characteristic of
granular gases. Even if clusters are not expected in molecular gases, strongly sheared gases do exhibit
ordering which violates the molecular-chaos assumption. In granular gases this kind of mesoscopicity is
generic and not limited to strong forcing. Moreover, phenomena like clustering, collapse (and of course
avalanches or oscillon excitations) pertain only to granular gases. In mesoscopic systems fluctuations
are expected to be stronger and the ensemble averages need not to be representative of their typical
values. Furthermore, like in turbulent systems or systems close to second-order phase transitions, in
which scale separation is non-existent, one expects constitutive relations to be scale dependent, as it
happens in granular gases.

The quantitative demonstration of the intrinsic mesoscopic nature of (cooling) granular gases follows
from the relation [71]

T = C
γ2l20

1 − r2
(6.21)

that relates the local granular temperature with the local shear rate γ and the mean free path l0.
The above relation holds until γ can be considered a slow varying (decaying) quantity in respect to the
much more rapid decay of the temperature fluctuations (this can be observed by a linear stability analysis
and also by the fact that shear modes decay slowly for small wave-numbers - a result of momentum
conservation). From the Eq. (6.21) follows that the ratio between the change of macroscopic velocity
over a distance of a mean free path l0γ and the thermal speed

√
T is

√
1 − r2/

√
C, e.g. ≃ 0.44 for

r = 0.9, that is not small. Thus, except for very low values of 1 − r2, the shear rate is always large
and the Chapman-Enskog expansion should therefore carried out beyond the Navier-Stokes order. The
above consideration is a simple consequence of the supersonic nature of granular gases [68]. It is clear
that a collision between two particles moving in (almost) the same direction reduces the relative velocity,
i.e. velocity fluctuations, but not the sum of their momenta, so that in a number of these collisions
the magnitude of the velocity fluctuations may become very small with respect to the macroscopic
velocities and their differences over the distance of a mean free path. Also the notion of mean free
path may become useless: l0 is defined as a Galilean invariant, i.e. as the product between the thermal
speed

√
T and the mean free time τ ; but in a shear experiment the average squared velocity of a

particle is given by γ2y2 + T (y is the direction of the increasing velocity field), so when y ≫
√

T/γ,
the distance covered by the particle in the mean free time τ is l(y) = yl0γ/

√
T = y

√
1 − r2/

√
C and

therefore can become much larger that the “equilibrium” mean free path l0 and even of the length of
the system in the streamwise direction.

Furtherly, the ratio between the mean free time τ = l0/
√

T and the macroscopic characteristic
time of the problem 1/γ , using expression (6.21), reads again

√
1 − r2/

√
C. This means that also the
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separation between microscopic and macroscopic time scales is guaranteed only for r → 1. And this
result is irrespective of the size of the system or the size of the grains. This lack of separation of time
scales poses two serious problem: (a) the fast local equilibration that allows to use local equilibrium
as zeroth order distribution function is not obvious; (b) the stability studies are usually performed
linearizing hydrodynamic equations, but the characteristic times related to the (stable and unstable)
eigenvalues must be of the order of the characteristic “external” time (e.g. 1/γ) which, in this case,
is of the order of the mean free time (as just derived), leading to the paradoxical conclusion that the
hydrodynamic equations predict instabilities on time scales which they are not supposed to resolve.

Goldhirsch [68] has also shown that the lack of separation of space and time scales leads to scale
dependence of fields and fluxes. In particular he has shown that the pressure tensor depends on
the scale of the coarse graining used to take space-time averages. This is similar to what happens,
for example, in turbulence, where the “eddy viscosity is scale dependent. Pursuing this analogy,
Goldhirsch has noted that an intermittent behavior can be observed in the time series of experimental
and numerical measures of the components pressure tensor: single collisions, which are usually averaged
over in molecular systems, appear as “intermittent events” in granular systems as they are separated
by macroscopic times.
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Lecture 7

Granular mixtures

Important note: in chapters 7, 8 and 9 I have replaced the symbol r with the symbol α to denote
the restitution coefficient

7.1 Two possible driven models

We shall consider a dilute inelastic gas constituted of N1 particles of mass m1 and N2 particles of mass
m2 subject to some kind of external driving (this will be specified in the following). We suppose that
the interactions between the grains can be described by the smooth inelastic hard sphere model, thus
we specify only the radius of the spheres, their masses and the fraction of the kinetic energy dissipated
at each collision. This can be done by defining three different restitution coefficients αij , i.e. α11, α22,
and α12 = α21, which account for normal dissipation in collisions among particles of type i and j. No
internal degrees of freedom (e.g. rotations) are included.

One can describe the velocity changes induced by the instantaneous inelastic collisions of smooth
disks labeled 1 and 2 of diameter σ1 and σ2 by the following equations:

v′
1 = v1 −

1 + ακ1κ2

2

mκ2

mκ1 + mκ2

((v1 − v2) · n̂)n̂ (7.1a)

v′
2 = v2 +

1 + ακ1κ2

2

mκ1

mκ1 + mκ2

((v1 − v2) · n̂)n̂ (7.1b)

where n̂ = 2(x1 − x2)/(σκ1 + σκ2) is the unit vector along the line of centers x1 and x2 of
the colliding disks at contact and κ1, κ2 are the species (1 or 2) to whom particles 1 and 2 belong.
An elementary collision conserves the total momentum and reduces the relative kinetic energy by an
amount proportional to (1 − α2

κ1κ2
)/4. The collision rule we have adopted excludes the presence of

tangential forces, and hence the rotational degrees of freedom do not contribute to the description of
the dynamics.

Since the particles suffer mutual collisions and loose kinetic energy, in order to achieve a steady
state, one needs to supply from the exterior some energy. Here we assume that the particles experience
a uniform stochastic force and a viscous damping (see Lecture 4). The presence of the velocity-
dependent term in addition to the random forcing, not only is motivated by the idea of preventing the
energy of a driven elastic system (ακ1κ2 → 1), to increase indefinitely, but also mimics the presence
of friction of the particles with the container. A fluctuation dissipation relation is assumed between
the viscous force and the intensity of the noise. Even in extended systems with small inelasticity the
absence of friction may cause some problems of stability.

Since we consider throughout only sufficiently low density systems successive binary collisions are
effectively uncorrelated and Boltzmann equation can be used to describe the non equilibrium dynamics.

In order to see the effect of the heat bath let us consider the system in the absence of collisions. In
this case, the evolution of the velocity of each particle is described by an Ornstein-Uhlenbeck process. If

67
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we require that the two components must reach the same granular temperature in the limit of vanishing
inelasticity we have two different possibilities to fix the heat bath parameters:

∂txi(t) = vi(t) (7.2)

mi∂tvi(t) = −γvi(t) +
√

2γTb ξi(t) (7.3a)

mi∂tvi(t) = −miηvi(t) +
√

2miηTb ξi(t) (7.3b)

where i = 1, 2 and Tb is the heat bath temperature and ξ(t) is a Gaussian noise with the following
properties:

< ξi(t) > = 0 (7.4a)

< ξi(t1)ξj(t2) > = δ(t1 − t2)δij (7.4b)

The associated Fokker-Planck equations for the two cases are respectively:

∂tfi(r,v, t) =
γ

mi
∇v(vfi(r,v, t)) +

γTb

m2
i

∇2
vfi(r,v, t)v∇rfi(r,v, t) (7.5a)

∂tfi(r,v, t) = η∇v(vfi(r,v, t)) +
ηTb

mi
∇2

vfi(r,v, t) + v∇rfi(r,v, t) (7.5b)

7.1.1 Spatially Uniform solutions

When we take into account collisions among particles equations (7.5) become two coupled Boltzmann
equations modified by the presence of a diffusion term due to the thermal noise. In order to derive
the temperature of each species in the homogeneous stationary state, we shall first neglect the spatial
dependence of the distribution functions fi. This can be regarded as a mean field approximation to
the Boltzmann equation. In other words we let collisions to occur regardless their spatial separation.
First, indicating by ni = Ni/V the partial density of species i, we notice that both eqs. (7.5) possess
the same equilibrium solution:

fi(v) = ni

(

mi

2πTb

)
d
2

e
−

miv2

2Tb (7.6)

but their relaxation properties are different. Only upon adding the inelastic collision term the two
species display different temperatures. The resulting Boltzmann equation for a granular mixture is:

∂tfi(v1; t) =
∑

j

Jij [v1|fi, fj ] +
ξ2
0i

2
∇2

vfi + ηi∇v · (v1fi) (7.7)

where we have used a compact notation to represent the two different choices of heat bath:

• Case 1

ξ2
0i → 2γTb

m2
i

ηi → γ
mi

(7.8)

• Case 2

ξ2
0i → 2ηTb

mi

ηi → η
(7.9)



7.1. TWO POSSIBLE DRIVEN MODELS 69

and Jij [v1|fi, fj] is the collision integral:

Jij [v1|fi, fj] ≡ σ2
ij

∫

dv2

∫

dσ̂Θ(σ̂ · g12)(σ̂ · g12)[α
−2
ij fi(v

′
1)fj(v

′
2) − fi(v1)fj(v2)] (7.10)

The primed velocities are pre-collisional states, which can be obtained by inverting eqs. (7.1)
Due to the presence of the heat bath terms the system reaches asymptotically a steady state,

characterized by time independent pdf’s. By requiring stationarity and integrating over v1 the eq. for
v2

i fi we obtain:

∑

j

∫

dv1v
2
1Jij [v1|fi, fj ] +

ξ2
0i

2

∫

dv1v
2
1∇2

vfi + ηi

∫

dv1v
2
1∇v · (v1fi) = 0 (7.11)

After simplifying the second and the third integral by integration by parts and using the normalization
property

∫

fidvi = ni we find:

∑

j

∫

dv1v2
1Jij [v1|fi, fj ] + nidξ2

0i − 2ηi

∫

dv1v
2
1fi(v1) = 0 (7.12)

The partial temperature is defined as:

niTi ≡
1

d

∫

dv1miv
2
1fi (7.13)

so that eq. (7.12) can be recast as:

Ti =
mi

2dηi





1

ni

∑

j

∫

dv1v2
1Jij [v1|fi, fj ] + dξ2

0i



 (7.14)

Eq. (7.14) determines the partial temperatures once the fi are known. In practice one can obtain an
estimate of Ti by substituting two Maxwell distributions:

fi(v) = ni

(

mi

2πTi

)
d
2

e
−

miv2
1

2Ti .

After performing the remaining integrals one gets:

dΓ(d/2)

miπ(d−1)/2
2ηi(Tb − Ti) = σd−1

ii ni
2(1 − α2

ii)

m
3/2
i

T
3/2
i

+ σd−1
ij njµji

[

µji(1 − α2
ij)

(

2Ti

mi
+

2Tj

mj

)

+ 4(1 + αij)
Ti − Tj

m1 + m2

](

2Ti

mi
+

2Tj

mj

)1/2
(7.15)

where µij = mi/(mi + mj). One obtains the steady values of the partial temperatures in the spatially
homogeneous situation, by solving numerically the nonlinear system of eqs. (7.15).

7.1.2 Comparison between the two heat-baths

In figs. 7.1 and 7.2 we report the temperature ratio T1

T2
as a function of a common restitution coefficient

α, having chosen equal coefficients α11 = α22 = α12 = α. Assuming identical concentrations, and
varying the mass ratio m1

m2
, we considered cases 1 and 2.

In the first case the species with the largest mass is “colder”. In fact both components receive the
same energy from the heat-bath, but the heavier species dissipates more energy due to collisions.

We notice that, on the contrary, with the second recipe (case 2) the temperature ratio is, on the
contrary, an increasing function of the mass ratio m1/m2. The experimental observation [64] suggest
that the trend of case 2 is physically more relevant. In case 2 both the friction term and the power
supplied are proportional to the mass of the two species.
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Figure 7.1: Homogeneous driving. Granular temperature ratio T1/T2 vs. α obtained with the
heat bath of case 1 using Tb = 1, γ = 0.1 and different mass ratios.
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Figure 7.2: Homogeneous driving of case 2. Granular temperature ratio T1/T2 vs. α with Tb = 1,
η = 0.1 and various mass ratios.
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7.2 Tracer limit: the Markovian case

Here we consider the case of two species 1 and 2, with the species 1 constituted by N particles and
the species 2 by only one particle: they are also called the “gas” and the “intruder” respectively. The
gas particles have mass m and diameter 2r, while the intruder has mass M and diameter R. We also
define the following quantities which will be useful: ǫ =

√

m/M and χ = n(r + R)d−1 (with n the
gas density).

Let us start by writing the coupled Boltzmann equations for the probability distributions P (V, t)
(for the intruder) and p(v, t) (for the gas), denoting - for simplicity - with V and v the intruder velocity
and the gas velocity, respectively

∂P (V, t)

∂t
=

∫

dV′[Wtr(V|V′)P (V′, t) − Wtr(V
′|V)P (V, t)] + BtrP (V, t)

∂p(v, t)

∂t
=

∫

dv′[Wg(v|v′)p(v′, t) − Wg(v
′|v)p(v, t)] + Bgp(v, t)

+ χQ[v|p, p], (7.16)

where Btr and Bg take into account the interactions with the thermal bath. In these equations the
collision operators appear, for the tracer and the gas particles, respectively

Wtr(V|V′) = χ

∫

dv′

∫

dσ̂p(v′, t)Θ [− (V′ − v′) · σ̂] (V′ − v′) · σ̂

× δ(d)

{

V − V′ +
ǫ2

1 + ǫ2
(1 + α) [(V′ − v′) · σ̂] σ̂

}

(7.17)

and

Wg(v|v′) =
χ

N

∫

dV′

∫

dσ̂P (V′, t)Θ [− (V′ − v′) · σ̂] (V′ − v′) · σ̂

× δ(d)

{

v − v′ +
1

1 + ǫ2
(1 + α) [(v′ − V′) · σ̂] σ̂

}

, (7.18)

where Θ(x) is the Heaviside step function and δ(d)(x) is the Dirac delta function in d; in the expres-
sions (7.17) and (7.18) we have assumed that the probability P2(V,v, t) that a collision between the
intruder and a gas particle occurs, when they have velocities V and v respectively, is given by the
Molecular-Chaos approximation

P2(V,v, t) = P (V, t)p(v, t); (7.19)

the terms describing the action of the termal bath read

BtrP (V, t) =
γb

M

∂

∂V
[VP (V, t)] +

γbTb

M
∆V [P (V, t)] (7.20)

Bgp(v, t) =
γb

m

∂

∂v
[vp(v, t)] +

γbTb

m
∆v[p(v, t)], (7.21)

where ∆v is the Laplacian operator with respect to the velocity; finally, the Boltzmann collision operator
for the particle-particle interactions Q[v|p, p] is discussed in Lecture 3. In view of the fact that it is
not relevant for the rest of the paper, we omit its explicit expression.

7.2.1 Decoupling the gas from the tracer: Gaussian case

The system of Boltzmann equations (7.16) is simplified when the quantities P (V, t) and p(v, t) sig-
nificantly change on well-separated characteristic time scales, which happens if N ≫ 1. Then one
assumes that the probability distribution function p(v) is constant and, following numerical evidence
(verified below) it is approximated with a Gaussian function with variance Tg/m:

p(v) =
1

√

(2πTg/m)d
exp

[

−mv2

2Tg

]

. (7.22)
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or by its first Sonine non-trivial correction (the second polynomial), when necessary.
The assumption of constant p(v) implies that the first equation of the mixture (the evolution of the

intruder probability) is decoupled from the second one and it is linear in P (V): it becomes a Master
Equation for a Markov process with transition rate Wtr.

7.2.2 The transition rate

When p(v) is constant, one can calculate the transition rate for the intruder.
We first discuss in detail what happens in a collision (assume for simplicity equal masses) and then

give a rigorous derivation of the master equation. The collision rule for inelastic hard spheres reads:

v′
1 = v1 −

1 + α

2
(v12 · σ̂)σ̂ (7.23)

where σ̂ is the direction joining the centers of the two colliding particles. There are some consequences
of the collision rules which have to be remarked. For simplicity we assume to be in dimension d = 2.

• ∆v1 = v′
1 − v1 is parallel to σ̂, i.e. θ = arctan

∆v1y

∆v1x
where σ̂x = cos θ and σ̂y = sin θ. This is

equivalent to recognize that the velocity v1 changes only in the direction σ̂. The fact that v12σ

must be negative determines completely the angle θ, i.e. the unitary vector σ̂. From here on, we
call ∆v1 ≡ ∆v1σ ≡ ∆v1 · σ̂.

• v2σ ≡ v2 · σ̂ = 2
1+α∆v1 + v1σ = 2

1+αv′1σ − 1−α
1+αv1σ.

• From the previous two remarks, it is clear that ∆v1 determines univocally σ̂ and v2σ. The
component of v2 which is not determined by ∆v1 is the one orthogonal to σ̂. We call τ̂ the
direction perpendicular to σ̂, i.e. the vector of component (− sin θ, cos θ). We define v2τ = v2 ·τ̂ .

From the above discussion, it is easy to understand that the transition probability for the particle
1 to change velocity during a collision, going from v1 to v′

1 must be

Wtr(v1 → v′
1) = C(v1,v

′
1)

∫

dv2τP (v2) (7.24a)

v2 = v2σσ̂ + v2τ τ̂ (7.24b)

σ̂ = (cos θ, sin θ) (7.24c)

τ̂ = (− sin θ, cos θ) (7.24d)

θ = arctan
∆v1y

∆v1x
(7.24e)

σ̂ ‖ v′
1 − v1 (7.24f)

v2σ =
2

1 + α
∆v1 + v1σ (7.24g)

where P (v) is the 1-particle probability density function for the velocity in the bulk gas. The constant
of proportionality C must be of dimensions 1/length so that Wtr has dimensions 1/(velocitydtime)
which is expected because Wtr is a rate of change of the velocity pdf (in d dimensions).

Now, we want to obtain the complete result, that is rigorously compare the usual linear Boltzmann
equation for inelastic models to a Master Equation for a single-particle Markov process. The comparison
immediately leads to

Wtr(v1 → v′
1) = χ

∫

dv2

∫

dω̂Θ(v12 · ω̂)|v12 · ω̂|p(v2)δ {v′
1 − v1 + k(ǫ, α)[v12 · ω̂]ω̂} . (7.25)

where p(v) is the velocity pdf of the bulk gas and k(ǫ, α) = (1+α)ǫ2/(1+ǫ2). Using that for a generic
d-dimensional vector r = rr̂ one has δ(r − r0) = 1

rd−1
0

δ(r − r0)δ(r̂ − r̂0), the previous expression can
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be rewritten as:

Wtr(v1 → v′
1) = χ

∫

dv2

∫

dω̂Θ(v12 ·ω̂)
|v12 · ω̂|
∆vd−1

p(v2)δ(σ̂+ω̂)δ (∆v + k(ǫ, α)|v12 · ω̂|) , (7.26)

where ∆v and σ̂ are defined by v′
1 − v1 = ∆v σ̂. Then, performing the angular integration over ω̂,

one obtains:

Wtr(v1 → v′
1) = χ

∫

dv2Θ(v12 · σ̂)
|v12 · σ̂|
∆vd−1

p(v2)δ (∆v + k(ǫ, α)|v12 · σ̂|) . (7.27)

Denoting by v2σ the component of v2 parallel to σ̂, and by v2τ the (d − 1)-dimensional vector in the
hyper-plane perpendicular to σ̂, the above equation is rewritten as;

Wtr(v1 → v′
1) = χ

∫

dv2σdv2τΘ(v12 · σ̂)
|v12 · σ̂|
∆vd−1

p(v2σ,v2τ )δ (∆v + k(ǫ, α)|v12 · σ̂|) . (7.28)

Finally, integrating over dv2σ, one gets the following formula:

Wtr(v,v′) =
1

k(ǫ, α)2
χ|∆v|2−d

∫

dv2τP [v2(v,v′,v2τ )], (7.29)

where ∆v = v′ − v denotes the change of velocity of the test particle after a collision. The vectorial
function v2 is defined as

v2(v,v′,v2τ ) = v2σ(v,v′)σ̂(v,v′) + v2τ , (7.30)

where σ̂(v,v′) is the unitary vector parallel to ∆v, while v2τ is entirely contained in the (d − 1)-
dimensional space perpendicular to ∆v (i.e. v2τ · ∆v = 0). This implies that the integral in expres-
sion (7.29) is (d− 1)-dimensional. Finally, to fully determine the transition rate (7.29), the expression
of v2σ is needed:

v2σ(v,v′) =
1

k(ǫ, α)
|∆v| + v · σ̂ . (7.31)

If P (v) = 1
(2πTg)d/2 exp

(

− v2

2Tg

)

, it then immediately follows that the transition rate Wtr(v,v′)

reads:

Wtr(v,v′) =

(

1

k(ǫ, α)

)2

χ |∆v|2−d 1
√

2πTg

e
−

v2
2σ

2Tg . (7.32)

From now on we specialize to the two dimensional case, where the above equation simplifies to

Wtr(V
′|V) = χ

1
√

2πTg/mk(ǫ, α)2

× exp
{

−m [V ′
σ − Vσ + k(ǫ, α)Vσ]

2
/(2Tgk(ǫ, α)2)

}

. (7.33)

As discussed in details below, with the assumption of well-separated characteristic time scales, the
dynamics of the tracer alone is Markovian, and it is known that such transition rates (which do not
take into account the external driving) satisfy detailed balance with respect to a Gaussian invariant
probability P (V) [145, 121].

For Tg (see Lecture 4), given density, radii of particles, restitution coefficient and the parameters
of the external bath, one has the implicit equation

Tg = Tb − χ

√
πm(1 − α2)

2γb
T 3/2

g , (7.34)

which can be solved to obtain Tg.
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7.2.3 Sonine correction to the rates

In kinetic theory, one of the most used corrections to the Gaussian is the first non-zero Sonine polyno-

mial approximation. This means assuming that p(v) = 1
(2πT )d/2 exp

(

− v2

2T

)

(1 + a2S
d
2 (v2/2T )) with

Sd
2 (x) = 1

2x2 − d+2
2 x + d(d+2)

8 . The calculation of the integral needed to have an explicit expression
of the transition rate is straightforward:

∫

dv2τp(v2) =
e−

v2
2σ
2T√

2πT

(

1 + a2S
d=1
2 (v2

2σ/2T )
)

. (7.35)

This leads to

Wtr(v,v′) =

(

1

k(ǫ, α)

)2

χ |∆v|2−d 1
√

2πTg

e
−

v2
2σ

2Tg

(

1 + a2S
d=1
2

(

v2
2σ

2Tg

))

. (7.36)
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Granular diffusion and ratchets

8.1 Kramers-Moyal expansion for the tracer-gas collision
operator

With the assumption of separation of time-scales discussed above, the system of equations (7.16) is
decoupled. That allows us to write the following Master Equation for the tracer

∂P (V, t)

∂t
= Lgas[P (V, t)] + Lbath[P (V, t)], (8.1)

and the Markovian linear operator Lgas can be expanded as

Lgas[P (V, t)] =

∞
∑

n=1

(−1)n∂n

∂Vj1 . . . ∂Vjn

D
(n)
j1...jn

(V)P (V, t), (8.2)

(the sum over repeated indices is meant) with

D
(n)
j1...jn

(V) =
1

n!

∫

dV′(V ′
j1 − Vj1) . . . (V ′

jn
− Vjn)Wtr(V

′|V), (8.3)

and

Lbath[P (V, t)] = BtrP (V, t). (8.4)

In the limit of large mass M , i.e. small ǫ, we expect that the interaction between the granular gas and
the tracer can be described by means of an effective Langevin equation. In this case, we keep only the
first two terms of the expansion [148]

Lgas[P (V, t)] = − ∂

∂Vi
[D

(1)
i (V)P (V, t)] +

∂2

∂Vi∂Vj
[D

(2)
ij (V)P (V, t)]. (8.5)

A justification of this truncation, in the limit of small ǫ, comes from observing that terms D
(n)
j1...jn

are

of order ǫ2n: this can be obtained by plugging the collision rule (for the case of the tracer, i.e. V ≡ v1)
into (8.3).

It is useful at this point to introduce the velocity-dependent collision rate and the total collision
frequency

r(V) =

∫

dV′Wtr(V
′|V), (8.6)

ω =

∫

dV P (V)r(V). (8.7)

75
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The former quantity can be exactly calculated in the assumption of Gaussian p(v) and P (v), giving

r(V) = χ

√

π

2

(

Tg

m

)1/2

e−ǫ2q2/4

×
[

(ǫ2q2 + 2)I0

(

ǫ2q2

4

)

+ ǫ2q2I1

(

ǫ2q2

4

)]

, (8.8)

where the rescaled variable q = V/
√

Tg/M is introduced in Appendix through Eqs. (8.46) and In(x)
are the modified Bessel functions. To have an approximation of ω, on the other side, one has to make
a position about P (V). Let us take it to be a Gaussian with variance Ttr/M . The consistency of this
choice will be verified in the following section. With this assumption, the collision rate turns out to be

ω = χ
√

2π
√

Tg/m + Ttr/M = χ
√

2π

(

Tg

m

)1/2
√

1 +
Ttr

Tg
ǫ2 = ω0K(ǫ), (8.9)

where ω0 = χ
√

2π
(

Tg

m

)1/2

and K(ǫ) =
√

1 + Ttr

Tg
ǫ2.

8.1.1 Large mass limit

We are then able to compute the terms D
(1)
i and D

(2)
ij appearing in Lgas. The result and the details

of the computation of these coefficients as functions of ǫ are given in Appendix. Here, in order to be
consistent with the approximation in (8.5), from Eqs. (8.47) we report only terms up to O(ǫ4)

D(1)
x = −χ

√
2π

Tg

m
qx(1 + α)ǫ3 + O(ǫ5)

= −χ
√

2π

(

Tg

m

)1/2

(1 + α)ǫ2Vx + O(ǫ5)

= −ω0(1 + α)ǫ2Vx + O(ǫ5) (8.10)

D(1)
y = −ω0(1 + α)ǫ2Vy + O(ǫ5) (8.11)

D(2)
xx = D(2)

yy = χ
√

π/2

(

Tg

m

)3/2

(1 + α)2ǫ4 + O(ǫ5)

=
ω0

2

Tg

m
(1 + α)2ǫ4 + O(ǫ5) (8.12)

D(2)
xy = O(ǫ6). (8.13)

The linear dependence of D
(1)
β upon Vβ (for each component β), allows to define a granular viscosity

ηg = ω0(1 + α)ǫ2. (8.14)

In the elastic limit α → 1, one retrieves the classical results: ηg → 2ω0ǫ
2 and D

(2)
xx = D

(2)
yy → 2ω0ǫ

2 Tg

M .
In this limit the Fluctuation-Dissipation relation of the second kind is satisfied [93, 120], i.e. the ratio
between the noise amplitude and γg, associated to the same source (collision with gas particles), is
exactly Tg/M . When the collisions are inelastic, α < 1, one sees two main effects: 1) the time scale
associated to the drag τg = 1/ηg is modified by a factor 1+α

2 , i.e. it is weakly influenced by inelasticity;
2) the Fluctuation-Dissipation relation of the second kind is violated by the same factor 1+α

2 . This is
only a partial conclusion, which has to be re-considered in the context of the full dynamics, including
the external bath: this is discussed in the next Lecture.

8.1.2 Langevin equation for the tracer

Putting together the results in Eqs. (8.10-8.13) with Eqs. (8.1-8.5), we are finally able to write the
Langevin equation for the tracer

MV̇ = −ΓV + E , (8.15)
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where Γ = γb + γg and E = ξb + ξg, with

γg = Mηg = Mω0(1 + α)ǫ2 = ω0(1 + α)m (8.16)

〈Ei(t)Ej(t
′)〉 = 2

[

γbTb + γg

(

1 + α

2
Tg

)]

δijδ(t − t′), (8.17)

concluding that the stationary velocity distribution of the intruder is Gaussian with temperature

Ttr =
γbTb + γg

(

1+α
2 Tg

)

γb + γg
. (8.18)

Equation (8.15) is consistent with the Gaussian ansatz used in computing ω0. Note that the above
expression for Ttr is consistent with the large mass expansion obtained in Eqs. (8.13) only if it is
dominated by Tg, for instance when γg ≫ γb (see discussion at the end of 8.2.1). In the opposite limit,
the tracer dynamics is dominated by the coupling with the external bath and the typical velocity of the
tracer cannot be taken sufficiently small with respect to the typical velocity of gas particles, making
the expansion unreliable. In this case, however, if the diameter of the intruder is similar to that of the
gas particles, it is reasonable to expect similar collision frequencies: the gas particles will therefore be
dominated by the external bath and the whole system will be very near to equilibrium [111, 139].

8.2 The granular Brownian ratchet

l
2θ

0

Figure 8.1: Sketch of the 2D model. The triangle is constrained to move only in the x̂ (left/right)
direction, while its orientation is fixed, i.e. it cannot rotate. Gas particles collide against it and
occasionally receive energy from an external bath.

The granular ratchet model, sketched in Fig. 8.1, consists of a triangular particle (the ratchet) of
mass M , shaped as an isosceles triangle with base l and angle opposite to the base 2θ0 and surrounded
by a gas of N disks of diameter σ = 1 and mass m = 1. The ratchet can only slide, without rotating,
along the direction x, perpendicular to its base and the whole system is enclosed in a squared box of
side L with periodic boundary conditions. The N + 1 particles undergo binary instantaneous collisions
described by the rule:

vi = v′
i − (1 + αij)cij [(v

′
i − v′

j) · n̂]n̂, (8.19)

where v and v′ are the post-collisional and pre-collisional velocities respectively. The quantity αij ≤ 1
is the coefficient of restitution for that particular collision, taking value αd if both objects are disks or
value αr if the ratchet is involved, n̂ is the outward-pointing unit vector normal, in the contact point,
to the surface of particle i, and cij is a coefficient which takes, in the different collisions, the values

cij =







1/2 if objects are both disks
1/(1 + ǫ2n̂2

x) if j is the triangle
ǫ2/(1 + ǫ2n̂2

x) if i is the triangle
(8.20)
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where ǫ2 = m/M . Because of the constraint the vertical velocity of the ratchet is always 0. The
collision rule (8.19) conserves the total momentum if i and j are disks, and conserves the x-component
of the momentum only, when the triangle is involved. If αij = 1 the total kinetic energy is also
conserved. Three possible cases may be considered: (i) a pure elastic gas where αd = αr = 1, (ii) a
mixed gas where αd = 1 and αr < 1, (iii) a pure inelastic gas where αd < 1 and αr < 1. In both cases
(ii) and (iii) an external driving mechanism is needed to attain a stationary state and avoid indefinite
cooling of the system. Here, we do not enter into the details of the external driving mechanism: we
only assume that the system is large enough to decouple the Boltzmann equation of the intruder from
that of the gas. In this case it will suffice to know the stationary velocity distribution of the gas and
plug it into the transition rate expression for the intruder.

8.2.1 Diffusional limit

In the dilute gas limit, it is reasonable to study the ratchet dynamics by means of a linearized Boltzmann
equation for its velocity pdf, P (V, t), which can be written as a Master Equation (ME) for a Markov
process [43]:

∂P (V, t)

∂t
=

∫

dV ′ [W (V |V ′)P (V ′, t) − W (V ′|V )P (V, t)] (8.21)

where the transition rate is:

W (V |V ′) = n

∫ 2π

0

dθSF (θ)

∫ ∞

−∞

dv′x

∫ ∞

−∞

dv′yp(v′x, v′y)

(~V ′ − ~v′) · n̂Θ
[

(~V ′ − ~v′) · n̂
]

· δ[V − Vpost(V
′, ~v′, αr, ǫ)] (8.22)

with p(v) the gas particle distribution, Vpost the post-collisional ratchet velocity (see eq. (8.19)), Θ
the Heaviside step function, S the perimeter length, n̂ = (sin θ,− cos θ) and for the triangle

SF (θ) =
l

2 sin θ0

{

2 sin θ0δ(θ − 3π/2) + δ(θ − θ0) + δ[θ − (π − θ0)]
}

. (8.23)

Following numerical evidence we approximate the velocity pdf of the gas, p(v), by a Maxwellian with
zero mean and variance Tg. Expression (8.22) is equivalent to a Master Equation (ME) describing a
Markov process. It is straightforward to verify that detailed balance, in the form

P (V )W (V ′|V ) = P (−V ′)W (−V | − V ′), (8.24)

holds if αr = 1.
As numerical results suggest, the ME describes a driven-diffusive process. In order to gain a deeper

insight it is convenient to approximate the ME by a Fokker-Planck equation (FPE), from which we can
extract the analytical expression of the drift and diffusion terms. This is achieved by expressing the
r.h.s. of eq. (8.21) by means of the Kramers-Moyal (KM) expansion

∂P (V, t)

∂t
=

∞
∑

n=1

(−1)n

n!

(

d

dV

)n

[jn(V )P (V, t)] (8.25)

where jn(V ) =
∫

dV ′(V ′ − V )nW (V ′|V ). By retaining only the first two terms we obtain the sought
FPE, which can be still simplified by expanding these terms in the small parameter ǫ. The resulting
expressions suggest a simple physical picture, which can be illustrated with the help of the Langevin
equation associated with the FPE:

V̇ (t) = −γV (t) +
F

M
+ Γ(t) (8.26)

with noise

〈Γ(t)Γ(t′)〉 =
2γTr

M
δ(t − t′) 〈Γ(t)〉 = 0 (8.27)
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The quantities γ and F are effective parameters related to the original parameters by

γ = 4ηnlǫ

√

Tg

2πM
(1 + sin θ0) (8.28)

F

M
= −nl

Tg

M
ǫ2(1 − sin2 θ0)η(1 − η) (8.29)

1 − η = 1 − Tr

Tg
=

1 − αr

2
(8.30)

Hence, for αr < 1 the ratchet drifts with an average negative velocity

〈V (t)〉 =
F

Mγ
= −1 − αr

8

√

2πTg

M
ǫ(1 − sin θ0) (8.31)

Indeed, the net velocity vanishes linearly with ǫ → 0 and is very tiny for massive ratchets. It is of
interest to observe that in virtue of eq. (8.30) the net driving force is proportional to the temperature
difference Tg − Tr, so that the tracer and the gas temperatures play role analogous the two reservoir
temperatures of the Brownian ratchet model. In principle it is possible that for a purely inelastic system
(case iii), for some choice of inelasticity and masses, the difference Tg − Tr can change sign, implying
a change of sign of the average ratchet velocity.

From eqs. (8.26)- (8.30) it is also possible to estimate the signal to noise ratio:

√

〈V (t)〉2
〈V 2(t)〉 − 〈V (t)〉2 ≃

√
2π

1 − αr

8
ǫ(1 − sin θ0). (8.32)

The measure of 〈V 〉 can be blurred by thermal noise in the limit of large M/m, a fact that can be
avoided with a large number of independent trajectories.

Appendix. Calculation of first two coefficients of the Kramers-
Moyal expansion for the symmetric intruder

For larger generality (whose motiviation is discussed in the Conclusions), in this Appendix we discuss
the case where the gas surrounding the intruder may have a non-zero average u 1:

p(v) =
1

√

(2πTg/m)d
exp

[

−m(v − u)2

2Tg

]

(8.33)

which is a simple task involving only the definition of new shifted variables

c = V − u (8.34)

c′ = V′ − u. (8.35)

We are interested in computing

D
(1)
i (V) =

∫

dV′(V ′
i − Vi)Wtr(V

′|V)

=

∫

dc′(c′i − ci)χ
1

√

2πTg/mk(ǫ)2

× exp
{

−m [c′σ + (k(ǫ) − 1)cσ]
2
/(2Tgk(ǫ)2)

}

. (8.36)

1note that in all the cases discussed in the main text, we have always taken u = 0.
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c’

c

c’

c

c

c’

σ

σ

Figure 8.2: An example for the change of variables (c′x, c′y) → (cσ, c′σ), introduced in Eq. (8.37).
Such change of variable, when inverted, has two possible determinations: in this example both
represented vectors c′ yield the same (cσ, c′σ).

In order to perform the integral, we make the following change of variables (see Fig. 8.2 for an
example)

cσ = cx
c′x − cx

√

(c′x − cx)2 + (c′y − cy)2
+ cy

c′y − cy
√

(c′x − cx)2 + (c′y − cy)2

c′σ = c′x
c′x − cx

√

(c′x − cx)2 + (c′y − cy)2
+ c′y

c′y − cy
√

(c′x − cx)2 + (c′y − cy)2
(8.37)

which implies

dc′ = dc′xdc′y → dcσdc′σ|J |, (8.38)

where

|J | =
|c′σ − cσ|

√

c2
x + c2

y − c2
σ

Θ(c2
x + c2

y − c2
σ) (8.39)

is the Jacobian of the transformation. The collision rate is then

r(V) = χ

√

π

2Tg/m
e
−mc2

4Tg

[

(c2 + 2Tg/m)I0

(

mc2

4Tg

)

+ c2I1

(

mc2

4Tg

)]

, (8.40)

where In(x) are the modified Bessel functions. For D
(1)
i we can write

D
(1)
i (V) = χ

∫ +∞

−∞

dcσ

∫ ∞

cσ

dc′σ(c′i − ci)|J |
1

√

2πTg/mk(ǫ)2

× exp
{

−m [c′σ + (k(ǫ) − 1)cσ]
2
/(2Tgk(ǫ)2)

}

= χ

∫ +c

−c

dcσ

∫ ∞

cσ

dc′σ(c′i − ci)
c′σ − cσ
√

c2 − c2
σ

× 1
√

2πTg/mk(ǫ)2
exp

{

−m [c′σ + (k(ǫ) − 1)cσ]
2
/(2Tgk(ǫ)2)

}

(8.41)
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where we have enforced the constraint of the theta function, namely cσ ∈ (−c, +c), with c =
√

c2
x + c2

y.

Notice that the integral in dc′σ is lower bounded by the condition c′σ ≥ cσ which follows from the
definition of cσ. In order to compute the integral, we have to invert the transformation (8.37). That
yields two determinations for the variables c′x and c′y (see Fig. 8.2)

(A)







c′x − cx =
c′σ−cσ

c2

(

cσcx + cySign(cx)
√

c2 − c2
σ

)

c′y − cy =
c′σ−cσ

c2

(

cσcy − cxSign(cx)
√

c2 − c2
σ

)

(B)







c′x − cx =
c′σ−cσ

c2

(

cσcx − cySign(cx)
√

c2 − c2
σ

)

c′y − cy =
c′σ−cσ

c2

(

cσcy + cxSign(cx)
√

c2 − c2
σ

)

Then the integral (8.41) can be written as

D(1)
x (V) =

1

l0

∫ c

−c

dcσ

∫ ∞

cσ

dc′σ

[

(c′x − cx)(A) + (c′x − cx)(B)
]

|J |

× 1
√

2πTg/mk(ǫ)2
exp

{

−m [c′σ + (k(ǫ) − 1)cσ]
2
/(2Tgk(ǫ)2)

}

,

(8.42)

yielding

D(1)
x = −2

3

1

l0
k(ǫ)

√

mπ

2Tg
cxe

−mc2

4Tg

[

(c2 + 3Tg/m)I0(
mc2

4Tg
) + (c2 + Tg/m)I1(

mc2

4Tg
)

]

,

D(1)
y = −2

3

1

l0
k(ǫ)

√

mπ

2Tg
cye

−mc2

4Tg

[

(c2 + 3Tg/m)I0(
mc2

4Tg
) + (c2 + Tg/m)I1(

mc2

4Tg
)

]

.

(8.43)

Analogously, for the coefficients D
(2)
ij one obtains

D(2)
xx (V) =

1

2

1

l0

∫ c

−c

dcσ

∫ ∞

cσ

dc′σ

[

(

(c′x − cx)(A)
)2

+
(

(c′x − cx)(B)
)2
]

|J |

× 1
√

2πTg/mk(ǫ)2
exp

{

−m [c′σ + (k(ǫ) − 1)cσ]
2
/(2Tgk(ǫ)2)

}

=
1

2

1

l0

k(ǫ)2

15

√

2mπ

Tg
e
−mc2

4Tg

×
{[

c2(4c2
x + c2

y) + 3Tg(7c2
x + 3c2

y)/m + 15T 2
g /m2

]

I0

(

mc2

4Tg

)

+
[

c2(4c2
x + c2

y) + Tg(13c2
x + 7c2

y)/m + 3T 2
g /m2

−c2
x + c2

y

c2

]

I1

(

mc2

4Tg

)

}

,

(8.44)
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D(2)
xy (V) =

1

2

1

l0

∫ c

−c

dcσ

∫ ∞

cσ

dc′σ

[

(c′x − cx)(A)(c′y − cy)(A) + (c′x − cx)(B)(c′y − cy)(B)
]

|J |

× 1
√

2πTg/mk(ǫ)2
exp

{

−m [c′σ + (k(ǫ) − 1)cσ]
2
/(2Tgk(ǫ)2)

}

=
1

2

1

l0

k(ǫ)2

5

√

2mπ

Tg
e
−mc2

4Tg cxcy

×
[

(c2 + 4Tg/m)I0

(

mc2

4Tg

)

+
c4 + 2c2Tg/m − 2T 2

g /m2

c2
I1

(

mc2

4Tg

)

]

.

(8.45)

Then we introduce the rescaled variables

qx =
cx

√

Tg/m
ǫ−1 qy =

cy
√

Tg/m
ǫ−1, (8.46)

obtaining

D(1)
x (V) = −2

3

1

l0

√

π

2

Tg

m
qxk(ǫ)ǫe−

ǫ2q2

4

[

(

ǫ2q2 + 3
)

I0(
ǫ2q2

4
) +

(

ǫ2q2 + 1
)

I1(
ǫ2q2

4
)

]

,

D(2)
xx (V) =

1

2

1

l0

1

15

√
2π

(

Tg

m

)3/2

k(ǫ)2e−
ǫ2q2

4

×
{

[

ǫ4q2(4q2
x + q2

y) + 3ǫ2(7q2
x + 3q2

y) + 15
]

I0

(

ǫ2q2

4

)

+

[

ǫ4q2(4q2
x + q2

y) + ǫ2(13q2
x + 7q2

y) + 3
−q2

x + q2
y

q2

]

I1

(

ǫ2q2

4

)

}

D(2)
xy (V) =

1

2

1

l0

1

5

√
2π

(

Tg

m

)3/2

qxqyk(ǫ)2ǫ2e−
ǫ2q2

4

×
[

(

ǫ2q2 + 4
)

I0

(

ǫ2q2

4

)

+

(

ǫ4q4 + 2ǫ2q2 − 2

ǫ2q2

)

I1

(

ǫ2q2

4

)]

. (8.47)

Up to this last results we have not introduced any small ǫ approximation. The next step consists
in assuming that q ∼ O(1) with respect to ǫ, which is equivalent to assume that c2 ∼ Tg/M : this
assumption must be compared to its consequences, in particular to Eq. (8.18); the assumption is good
for not too small values of α and for γg ≫ γb, i.e. when Ttr ∼ Tg. When this is the case, expanding
in ǫ and using that I0(x) ∼ 1 + x2/4 and I1(x) ∼ x/2 for small x, one finds Eqs. (8.13).



Lecture 9

Non-equilibrium fluctuations

9.1 Diffusion of the symmetric intruder: an equilibrium-
like process

In the previous lecture we have seen that the granular intruder, in the limit of large mass, follows
a Langevin equation with white noise and linear drag. Only the parameters of the equation (drag
coefficient Γ and noise amplitude 〈E2〉 are “special” in the sense they represent the joint effect of
two different baths, which is peculiar of granular systems. Anyway the linear Langevin equation in
itself is not special at all, but represents a standard example of stochastic motion. It was proposed
- roughly a century ago - to describe the so-called Brownian motion, i.e. the erratic trajectory of a
pollen grain suspended in water. In that case the “bath” is unique (just water) and the system is at
equilibrium. If one looks at the motion of the granular intruder any measurement would give the same
results as for the pollen grain: in summary, it is not possible to realize that non-equilibrium processes
occur, if the intruder position and velocity are the only observables available. We resume here the main
consequences of Eq. (8.15), specializing for simplicity to the one-dimensional case:

MV̇ = −ΓV + E (9.1)

with 〈E〉 = 0 and 〈E(t)E(t′)〉 = 2TtrΓδ(t − t′).
The solution of this stochastic equation is

V (t) = e−tΓ/M

[

V (0) +

∫ t

0

dsesΓ/ME(s)

]

(9.2)

which implies, in the stationary state, that

C(t) = 〈V (t)V (0)〉 = 〈V 2〉e−tΓ/M . (9.3)

The position of the intruder follows the diffusion equation which implies

〈(x(t) − x(0))2〉 =

〈∫ t

0

ds

∫ t

0

ds′v(s)v(s′)

〉

→t→∞ 2Dt (9.4)

with

D =

∫ ∞

0

dtC(t). (9.5)

For the granular intruder it is immediately obtained

Dtr =

∫ ∞

0

dt〈Vx(t)Vx(0)〉 =
Ttr

Γ
=

γbTb + γg

(

1+α
2 Tg

)

(γb + γg)2
. (9.6)
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Solving numerically the equation (7.34) and substituting the result into the above equation, one can
study Dtr as a function of the restitution coefficient α (this is done numerically in the next section).
When all other parameters are kept constant and α is reduced from 1, the behavior of Dtr is non-
monotonic, it decreases, has a minimum and then increases for lower values of α. Anyway, this minimum
is expected for quite low values of α or high values of the packing fraction φ, where the approximations
involved in this theory are not good. For this reason, at the values of parameters chosen to have a
good comparison with simulations, this non-monotonic behavior is not observed.

It should be also noticed that, in the Homogeneous Cooling State, the self-diffusion coefficient at
a given granular temperature increases as α is reduced from 1, i.e. it has an opposite behavior with
respect to the present case [24, 28]. Other studies on different models of driven granular gases have
found expressions very close to Eq. (8.16), which is not surprising considering the universality of the
main ingredient for this quantity, i.e. the collision integral [138, 32].

9.1.1 Linear response

Moreover, if one applies an external time-dependent external force F (t), it appears that

〈δV (t)〉 = 〈V (t)〉F (t) − 〈V (t)〉F≡0 =

∫ t

−∞

dsR(t − s)F (s) (9.7)

with R(s) the so-called “response”. Equation (9.7) is a direct consequence of the linearity of the
Langevin equation. In general, for non-linear equations, one may still use (9.7) to define the response
function, assuming to have neglected terms of higher order in F (t), which makes sense if F (t) is small
enough. Obviously, in the impulsive case F (t) = F0δ(t) one immediately has

R(t) =
〈δV (t)〉

F0
. (9.8)

It is straigthforward to realize that, in our case:

R(t) =
C(t)

Ttr
, (9.9)

which integrated on time gives

µ ≡
∫ ∞

0

R(t) =
1

Ttr
D (9.10)

which is known as Einstein relation. The integral on the left hand side, µ, is the so-called mobility: it
corresponds to the ratio µ = V∞/F0, when V∞ is the asymptotic velocity reached by the intruder if a
constant force F0 is applied from time 0 (i.e. F (t) = F0θ(t)).

The Einstein relation is a particular case of a more general theorem which is valid for small per-
turbations of a system at equilibrium, i.e. a system with stationary probability in phase space given
by ∼ exp(−βH(r,v)). In such a system, when the perturbation appears as an additive contribution
−h(t)A(r,v) to the Hamiltonian, it is found for the linear response [93, 120]

ROh =
〈O(t)〉h(t) − 〈O(t)〉h≡0

δh
= −〈O(t)Ȧ(0)〉h≡0. (9.11)

This is a fundamental result expressing a deep relation between linear response to a perturbation
and correlations measured in the absence of the perturbation. In the last decade a large amount of
scientific literature has been devoted to the study of generalization of this relation to non-equilibrium
situations [120].

9.2 Time reversibility

The condition of thermodynamic equilibrium, which is at the base of Eq. (9.11), can be stated in a
very general way, from the point of view of dynamics. Let us assume that we have a generic evolution
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equation for our system which generates trajectories

Ωt
0 ≡ {r(s),v(s)}t

s=0 (9.12)

starting from an initial condition r(0),v(0). The evolution can be stochastic (as in Eq. (8.15)) or
deterministic with random initial conditions. In both cases we have an ensemble of possible trajectories.
Let us assume that we are somehow able to determine the probability “weight” of each Ωt

0: P (Ωt
0).

Finally, let us assume to have defined a time inversion operator T

T Ωt
0 = {r(t − s),−v(t − s)}t

s=0. (9.13)

Obviously T 2 = I (the identity operator). The condition of time reversibility simply states that

P (Ωt
0) = P (T Ωt

0). (9.14)

9.2.1 The case of Markov processes

For a continuous time Markov process σ(t), a trajectory is described by the sequence of visited states
(σ0, σ1, σ2, ..., σn) and the time of permanence in each state (t0, t1, t2, ..., tn with

∑

ti = t) and its
probability is

P (ΩT
0 ) = p(σ0, 0)pperm(σ0, t0)W (σ0 → σ1)pperm(σ1, t1)...W (σn−1 → σn)pperm(σn, t − tn−1),

(9.15)
where p(σ, t) is the probability of finding the process in state σ at time t, pperm(σ, t) is the probability
of staying for a time t in state σ, and W (σ → σ′) is the conditional probability of changing state from
σ to σ′. In this case, condition (9.14) is satisfied if and only if

1. the system is in the stationary state, i.e. the time is very large and any memory of the initial
condition is lost; at large times one has p(σ, t) → µ(σ) the so-called invariant probability;

2. for any couple of states σ and σ′, the transition rates and the invariant measure must satisfy the
following condition

µ(σ)W (σ → σ′) = µ(σ′)W (σ′ → σ). (9.16)

called “detailed balance condition”.

9.2.2 Detailed balance for the granular intruder

As seen in Lecture 7, when N ≫ 1 the gas evolution is not perturbed by the intruder, which implies
that the granular intruder performs a Markov process. An analysis of the transition rates related to the
collision with the gas [145] shows that these rates satisfy detailed balance with respect to a Gaussian
invariant probability, if p(v) is Gaussian, otherwise they do not satisfy detailed balance. Anyway one
has to consider the combined effect of the two baths, i.e. the collisions with the gas together with
the stochastic force of the external bath. It is not difficult to realize that this total rate cannot satisfy
detailed balance with respect to any invariant probability. The conclusion is that, in general, the
granular intruder - as a Markov process - does not satisfy detailed balance, i.e. does not satisfy time
reversibility, i.e. it is not an equilibrium process. Given in different words, one has always the possibility
- measuring suitable observable (thes worst case is that one has to measure exactly the probability of
all trajectores) - to discriminate between the correct time direction and its inverse. This should not be
possible at equilibrium.

9.3 Entropy production

Whenever condition (9.14) is not satisfied, one may distinguish between the forward and the backward
time direction, measuring some current. Spatially extended systems reveal their non-equilibrium prop-
erties through the appearance of spatially directed currents. For instance, a substance coupled to two
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thermostats at different temperatures T1 > T2, is crossed by a heat current flowing from temperature
T1 to T2. Anyway, the definition of equilibrium based on the probability of trajectories, allows to
construct a more general and abstract “current” which is able to reveal the presence of a time-arrow:

Jt = lim
t→∞

1

t
〈Wt〉 (9.17)

with

Wt = log
P (Ωt

0)

P (T Ωt
0)

. (9.18)

The current defined in (9.17) is called “entropy production rate” and the stochastic variable in (9.18)
is said “fluctuating entropy production”. This latter quantity has been extensively analyzed in [102].

It is immediate to see that - in the stationary state, one has

log
prob(Wt = x)

prob(Wt = −x)
= ex (9.19)

which is called “fluctuation relation” (or sometimes “transient fluctuation relation”). This is a simpler
version of a very general relation which is valid (with appropriate definitions of its object) also for
chaotic deterministic systems [57, 58, 66].

For Markov processes one easily finds

Wt = log
p(σ0, 0)

p(σn, t)
+

n−1
∑

i=0

log
W (σi → σi+1)

W (σi+1 → σi)
≈

n−1
∑

i=0

log
W (σi → σi+1)

W (σi+1 → σi)
(9.20)

where the last approximation is true for large times (and even for large times, when the system is not
bounded, it may be not true, see for instance the discussion in [142]).

9.3.1 Observables related to entropy production

It is clear that the entropy production defined in (9.18) is very difficult to be measured as it is: even in
simulations, one needs an expression for P (Ωt

0) which is not easy to be calculated for a generic process.
This is simplified for Markov processes, but the problem of “experimentally” accessing (9.18) remains
open, when a model (e.g. transition rates) is not available. In many situations, however, it can be
seen that entropy production is strictly related to the power injected by non-conservative forces acting
on the system divided by some kind of temperature, e.g.

Jt ≈ βẇnc (9.21)

where wnc is the work of non-conservative forces: this work often is given as product of a generalized
force and an interal current generated by the force (for instance a difference of potential generating a
charge current). Unfortunately this relation is not as general as hoped: it is sufficient to realize that
there are many non-equilibrium situations where a temperature is not well defined (for instance if two
thermostats are coupled to the system). Relation (9.21) is considered to be valid in all situations near
equilibrium, where - for instance - the so-called “non-equilibrium thermodynamics” fairly describes the
system [49] and entropy production has a definition in terms of thermodynamic currents and generalized
thermodynamic forces.

An instructive example of calculation of the entropy production can be given for a simple process
which is a slight generalization of Eq. (9.1):

v̇ = −Γv + F (t) + E (9.22)

with Gaussian noise 〈E〉 = 0, 〈E(t)E(t′)〉 = 2TΓδ(t − t′), and where F (t) = Fc + Fnc is a sum of a
conservative force Fc = −U ′(x) and a non-conservative force Fnc(t). This is also the equation that
governs the process of pulling a terminal of a macromolecule anchored to a surface and surrounded by
water; this system has been studied in recent experiments [103, 149].
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To compute the probability of a trajectory, it is sufficient to consider discrete times t0 + kτ with τ
arbitrarily small and k ∈ [0, n] with n being the integer part of (t− t0)/τ . Since the noise is Gaussian
and delta-correlated, the sequence of variables ηk = η(t0 + kτ) has the probability density

P [(ηn, t|...|η0, 0)] ∝ exp

(

−1

2

n
∑

k=0

η2
kτ

)

(9.23)

which, in the limit τ → 0, becomes

P [(ηn, t|...|η0, 0)] ∝ exp

(

−1

2

∫ t

0

dsη2(s)

)

. (9.24)

Equation (9.22) tells us that η(t) = (v̇ + Γv − F )/
√

2ΓT , which finally gives us

P [{η(t)}] ∝ exp(−L), (9.25)

where

L =
1

4ΓT

∫ t

0

ds (v̇ + Γv − F )
2

=

∫ t

0

v̇2 + Γv2 + F 2 − 2F v̇

4ΓT
ds +

v2(t) − v2(0) + 2{U [x(t)] − U [x(0)]}
4T

−
∫ t

0 Fnc(s)v(s)ds

2T
(9.26)

is called the thermodynamic action, To find the most probable path from (x0, 0) to (xt, t), it is sufficient
to minimize the action (9.26) while keeping fixed the endpoints.

The entropy production reads:

Wt = log
P (Ωt

0)

P (T Ωt
0)

=
∆H

T
+

∫ t

0 Fnc(s)v(s)ds

T
(9.27)

where ∆H = v2(t)−v2(0)
2 + U [x(t)] − U [x(0)]. Eq. (9.27), for large times, allows one to identify

the work done by non-conservative forces wnc(t) = Fnc(t)v(t) done by the external non-conservative
force (divided by T ) as the entropy produced during the time t. This is an example of the result by
Kurchan [99] and by Lebowitz and Spohn [102] about the Fluctuation Relation for stochastic systems.

9.3.2 The paradox of large mass granular intruder

Equation (9.27) shows that, if non-conservative forces are absent, the entropy production is non-
extensive in time, i.e. its production rate is zero, which is equivalent to say that the system is in
equilibrium, as expected. This result holds, for example, for the granular intruder with very large mass,
described by Eq. (8.15). Could we expect this result? The intruder is coupled to two different baths,
one is the original (external) thermostat, the second is the “gas” surrounding the intruder, which acts
as a bath in the large mass limit. What about energy fluxes in this system?

The energy injection rates of the two termostats [167] are

Qb = 〈V(t) · (ξb − γbV)〉 = 2 γb

M (Tb − Ttr) (9.28)

Qg = 〈V(t) · (ξg − γgV)〉 = 2
γg

M (T ′
g − Ttr) (9.29)

It is easy to see that the balance of fluxes Qb = −Qg is equivalent to formula (8.18) for Ttr. This
balance implies that, if Ttr < Tb, then Ttr > T ′

g. When α < 1, the two fluxes are different from zero,
i.e. energy is flowing from the external driving, through the tracer, into the granular bath.

Apparently, this contradicts the “equilibrium” nature of the Langevin equation (8.15): the tracer
dynamics is Markovian and stationary, and the equation satisfies detailed balance with respect to the
Gaussian invariant distribution. As already discussed in [145], this is not a paradox but only a conse-
quence of Molecular Chaos and the separation of time-scales which allows us to write Equation (8.1)
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without memory terms. The absence of memory terms implies that both ξb and ξg are white noises
and makes them undistinguishable: an observer which can only measure V(t) cannot obtain separate
measures of Qb and Qg, but only a measure of the total energy flow Q = M〈V · V̇〉 = 0 which hides
out the presence of energy currents. A more detailed analysis, e.g. by relaxing the Molecular Chaos
approximation, should put in evidence the different time-correlations of the two baths: eventually, the
observer, by means of some “filter”, should be able to sort out their different contributions Qb and
Qg. This is an example where memory plays a crucial role in the non-equilibrium characterization of a
system [143].

We expect that time reversibility (detailed balance) is a symmetry, for the intruder, which is broken
in the following cases: 1) at small values of M ; 2) when the non-Gaussian behavior of the gas velocities
is taken into account; 3) when Molecular Chaos is violated [138]; 4) when the tracer has asymmetric
properties with respect to some spatial axis (ratchet case) [43]. In the next subsection we discuss this
last case.

9.3.3 Non-equilibrium properties of the granular ratchet

As discussed in Lecture 8, when the intruder is not isotropic and its anisotropy breaks symmetry with
respect to a fixed direction (for instance in the triangle example of Fig. 8.1), a spontaneous constant
force F appears, see for instance Eq. (8.26). This leads to an asymptotic average velocity V = F/Mγ.

The time extensive contribution to the entropy production for this system reads

Wt = log
P (Ωt

0)

P (T Ωt
0)

≈ Tr − Tg

4TrTg

√

2πTgγ[x(t) − x(0)] (9.30)

Note that on average Wt > 0 since Tr < Tg and x(t) < x(0). It is always 〈|x(t) − x(0)|〉 ∼ t since
the ratchet has an average constant velocity V .

In conclusion the asymmetry unveils the non-equilibrium property of the granular intruder even in
the large mass limit. It is interesting at this point, in order to close the circle of this chapter, to verify
that the breakdown of time reversal also breaks the Fluctuation Dissipation relation.

It is immediate to see that, for this system, the linear response reads

R =
〈V (t)V (0)〉 − V

2

Tr
, (9.31)

which is a violation of the Einstein relation R = C(t)/C(0) (e.g. Eq. (9.9)). As expected, in the
absence of detailed balance, the Fluctuation-Dissipation relation breaks down. This example is quite
simple: indeed the equation for the massive ratchet can be recast in an equation for the variable
z(t) = V (t) − V which is an equilibrium Langevin equation, for this variable response and correlation
are proportional as in the Einstein relation. Anyway, such a re-casting hides out the lack of time-reversal
symmetry expressed by relation (9.30): the reason is that the new variable z(t) has not a well defined
symmetry with respect to time-reversal (V (t) − V goes into −V (t) − V when time is inverted). Our
analysis in terms of V (t) (and not z(t)) is therefore the only one consistent and the breakdown of the
Fluctuation-Dissipation relation is real, even if very simple.

More general out-of-equilibrium Fluctuation-Dissipation relations can be found in the very recent
literature, see for instance [47, 104, 157, 120, 7].



Lecture 10

Numerical methods

10.1 General problem

Two protocols of simulation of granular fluids are discussed in this lesson. They may of course be
used also for (elastic) molecular fluids. The first one, the Direct Simulation Monte Carlo (DSMC), in
its “ideal” limit (small enough cells, and many particles per cell), is a numerical procedure to solve
the Boltzmann Equation, in both spatial homogeneour or non-homogeneous situations. The second
method, the Event Driven Molecular Dynamics (EDMD), has the aim of reproducing the exact dynamics
of hard bodies. The two methods differ in the fact that the first assumes (i.e. imposes) the Molecular
Chaos, the second doesn’t, but of course may - in dilute limits - be compatible with it: in conclusion,
the EDMD is more general. The two methods are similar in the fact that both separate the dynamics
in two contributions: the “streaming” (free flight, balistic or under the action of external fields) and
“collisions” (particle-particle and particle-boundaries).

As an example, we consider here a system of N identical hard particles of diameter σ in d dimensions,
in a volume V (say V = Ld), with periodic boundary conditions and under the action of external forces
(deterministic and/or stochastic) such that the dynamics of particle i when it is not in contact with
other particles, obeys the equations

ṙi = vi (10.1)

v̇i = f(ri,vi),

where f is the external force (it may contain stochastic variables, which are identically and independently
distributed for all particles). Collisions are described by the usual collision rule (2.14). Initial conditions
are “equilibrium-like”, i.e. particles are randomly distributed in the whole volume and velocities are
extracted from a Maxwell-Boltzmann distribution with zero average and temperature T0

1. In the
EDMD it is important to exclude initial conditions with overlapping particles.

10.2 The Direct Simulation Monte Carlo (DSMC also called
“BIRD” method)

The volume is divided into mc equal non-overlapping cells of volume Vc = V/mc. A number Ñ = hN
with h ≥ 1 of particles is simulated: the number Ñ is called the fictive number of particles, while
N is the real number of particles: the reason for introducing this fictive number will be clear in the
following. Time is discretized in finite time-steps of length δt. At each time step two updates are
performed

1note that homogeneous random distribution is not the correct “equilibrium” spatial distribution for interacting

particles, i.e. at finite density, but pair correlations should be taken into accounts; if one really needs an exact

“equilibrium” starting point, then an equilibration transient - with elastic collisions - may be performed before

starting the real - granular - dynamics.

89
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1. streaming update: in this part the Eqs. (10.1) are solved to evolve the dynamical variables
{ri(t),vi(t)} (with i ∈ (1, Ñ)) to {ri(t + δt),v′

i(t + dt)}; the solution is usually approximate
(i.e. valid for δt → 0);

2. collision update: in this part the velocities {v′
i(t + dt)} are evolved to {vi(t + dt)} computing

possible collisions through a stochastic (“Monte Carlo” like) recipe repeated in each cell k (k ∈
(1, mc)):

(a) denote by Nc the number of fictive particles in the cell, and by nc = Nc/(hVc) the real

density in the cell; finally, denote by ûc =
PNc

i=1 vi

Nc
the average velocity in the cell and by

Tc =
PNc

i=1 |vi−û|2

dNc
the “temperature” in the cell

(b) compute the average number of collisions ω(nc, Tc)δt for a particle in a homogeneous gas
at density nc and temperature Tc, assuming that the distribution is close to a Maxwellian
(use formula (4.26))

(c) compute the total number of collisions expected in the cell nc = Ncω(nc, Tc)δt/2 (the
factor 2 is due to fact that each collision involves two particles);

(d) consider that nc is a non-integer number, in general, so it must be approximated to an
integer nc′; a reasonable choice is to take nc′ = [nc] (integer part) with probability nc− [nc]
and otherwise nc′ = [nc] + 1; this is equivalent to say that 〈nc′〉 = nc;

(e) perform nc′ collisions in the following way

• denote by vmax a good estimate of maxij |vi − vj | (maximum over all possible pairs
of particles in the cell); finding the real maximum is not efficient; a good compromise
is finding a global maximum (valid for all cells) during an initial transient, and then
keep it fixed and equal for all cells, during the rest of the simulation;

• choose a random pair i, j of particles in the cell;

• choose a random unit vector n̂ (isotropically in space);

• compute vr = (vi − vj )̇̂n

• discard the pair if vr > 0 (and repeat the cycle with a new pair);

• choose a random number x, uniform in [0, 1);

• discard the pair if vr/vmax < x;

• the last three passages are equivalent to accept the pair with probability proportional
to vrΘ(vr)

• perform the collision, updating vi and vj ; update the collision counter.

• repeat until the collision counter reaches nc′

(f) repeat for all mc cells

3. repeat until t reaches the end of the simulation.

The above method solves the inhomogeneous Boltzmann equation when the radius of cells is smaller
than the “expected inhomogeneities” (in principle it should be smaller than the mean free path, but
in hydrodynamic situations it is sufficient for it to be smaller than typical length of gradients) and
the number of fictive particles is large enough to guarantee Molecular Chaos (if particles in a cell are
too few, they may instantly “recollide” in a manner which is not physical in dilute situations). If
expected inhomogeneities are small, cells will be large enough to accomodate enough particles and
make recollisions very unlikely: in these cases it is common to use N = Ñ , i.e. h = 1. When h > 1,
one must - of course - rescale the value of the density field by h.
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10.2.1 Variants

• homogeneous variant: indeed, this is not a variant, but just the case mc = 1; in this case
spatial coordinates are not necessary; this method is useful to study the evolution (or stationarity)
of the velocity distribution function P (v, t)

• time clock: in this method, usually preferred in homogeneous (mc = 1) situations, one does
not compute the number of collisions mc of a cell, but simply evolves an internal clock τ of the
cell - starting from τ = t - and stops doing collisions when τ = t + δt; the clock advances by
fixed amounts δτ = 1/vmax at all tentatives of collisions, even those that are discarded; since
collisions are performed with probability ∝ vrθ(vr)P (vi)P (vj), it is easily checked that the
average number of collisions per particle is ωδt; this methods has the advantage of reproducing
also the fluctuations of the number of collisions.

10.3 Event Driven Molecular Dynamics

In principle, time is not discretized (it will be clear that this is true only in idealized situations), for
this reason the algorithm is called “event-driven”: the simulation time jumps from an event occurred
at time t and the successive events occurred at time t′, provided that no events occur between t and
t′. This algorithm is useful when the interacting potential is piecewise constant, with discontinuities at
given relative positions r∗: for instance, the hardcore potential has such a property (it is V (r) = 0 for
r > r∗ = σ and V (r) = ∞ for r ≤ r∗). Events are all configurations such that a couple of particles
comes at relative position r∗.

10.3.1 Main trick

• after initialization of positions and velocities, the list of future events (collisions) is built; this
requires to solve the streaming dynamics of each pair of particles (ignoring all other particles)
and find the first time t∗ at which they collide; this event is put into the list if t∗ is finite and
larger than t (the actual time);

• since the algorithm requires the streaming dynamics to be solved to determine, with the larger
possible accuracy, the time of occurrence of an event, it may become necessary to introduce a
maximum delay δt: events will be put in the list only if they occur before t + δt; this similar
to introducing a time-discretization in steps of length dt; this is not necessary if the streaming
dynamics only involves free fligths or ballistic fligths with gravity;

• the first event, occurring - say - at time t∗ in the list is the only one to be sure; all particles are
updated with streaming dynamics up to the time of this event; the velocities of the two particles
involved in the event are also updated with the collision rule; time is updated to t∗;

• the list of events is re-built to keep into account the new velocities of the two collided particles
(we will see how to optimize this step);

• the cycle is repeated, finding the new first event, until the list of events is empty (e.g. no more
collision may happen) or the maximum simulation time is reached.

Sometimes, “measurement events” are also introduced at given times, in order to have all particles
updated when some observable must be computed, written on disk, analyzed, etc. The stochastic
dynamics involved in the thermostat described in Eqs. (4.37), is usually simulated adding “bath events”
occurring at times ti = iδt, with δt < 1/ω (with ω the average collision frequency of a particle): at
each of these events, velocities of particles are updated using a discretized version of equations (4.37).
This of course requires to re-build the list of future events.
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10.3.2 Optimizations

Let us analyze the order of magnitude of timescales in the simulation. A simulation - to be meaningful
- must be performed for a given number of collision per particle. Assuming that density and average
energy per particle are stationary, the average collision frequency is stationary too, so the total simu-
lation time will scale as Ntc(N) where tc is the compuation time to perform a collision. A collision
in general requires: bulding the list, finding the first event and performing the collision. The last task
does not depend on N . Building the list requires ∼ N2. The list includes ∼ N2 events. Finding the
first event by browsing the whole list requires a cycle of length ∼ N2. The total simulation time will
scale as ∼ N3.

Two main optimization tricks are used.

• quick sort: to reduce the time needed to find the first even in the list, standard search tricks
are used; they usually involve a smart way of building the list (“tree-sort” or “heap-sort”); the
search task is heavily reduced and its computation time becomes ∼ N log N

• table trick: the volume is divided into mc ∝ N non-overlapping cells; only events occurring
between particles in the same cell are put into the list; this reduces the time to build the list,
from ∼ N2 to ∼ N ×N/mc ∼ N ; events representing a particle crossing the boundary of a box
must also be included, they are ∼ mc ∼ N ; for finite diameter σ, it must be taken into account
the fact that a particle may belong to more (up to 2d) cells

The use of these two trickes reduced the time of a simulation to ∼ N2 log N .
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