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A unified derivation of the off-equilibrium fluctuation dissipation relations �FDRs� is given for Ising and
continuous spins to arbitrary order, within the framework of Markovian stochastic dynamics. Knowledge of the
FDRs allows one to develop zero field algorithms for the efficient numerical computation of the response
functions. Two applications are presented. In the first one, the problem of probing for the existence of a
growing cooperative length scale is considered in those cases, like in glassy systems, where the linear FDR is
of no use. The effectiveness of an appropriate second order FDR is illustrated in the test case of the Edwards-
Anderson spin glass in one and two dimensions. In the second application, the important problem of the
definition of an off-equilibrium effective temperature through the nonlinear FDR is considered. It is shown
that, in the case of coarsening systems, the effective temperature derived from the second order FDR is
consistent with the one obtained from the linear FDR.
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I. INTRODUCTION

The statistical mechanics of systems out of equilibrium is
a rapidly evolving subject, due to the intensive research in
the slow relaxation phenomena arising in several different
contexts, such as coarsening systems, glassy and granular
materials, colloidal systems, etc. Understanding the basic
mechanism underlying the slow relaxation is an issue of ma-
jor importance. In particular, a key question is whether the
large time scales are due to cooperative effects on large
length scales. For nondisordered coarsening systems this is
certainly the case, since the observed power-law relaxation
can be directly related to the growth of the time-dependent
correlation length, or domain size �1�. In the case of disor-
dered or glassy systems the establishment of such a connec-
tion is much more problematic, due to the difficulty of pin-
pointing the observables fit to the task.

The use of the nonlinear susceptibilities has been advo-
cated �2–4� as an experimental or numerical probe apt to
detect the heterogeneous character of the glassy relaxation
and, possibly, to uncover the existence of the growing length
scale responsible of the slowing down of the relaxation.
However, this requires one to establish clearly the relation-
ship between nonlinear susceptibilities and correlation func-
tions in order to make sure what actually do the nonlinear
susceptibilities probe. In other words, the problem of the
derivation of the nonlinear fluctuation dissipation relations
�FDRs� in the out of equilibrium regime needs to be ad-
dressed. As a matter of fact, this has been one of the most
fruitful lines of investigation in the field of slow relaxation,
although mostly limited to the domain of linear response
�5,6�.

In this paper we approach the problem on fairly general
grounds. Within the framework of Markovian stochastic evo-
lution, we bring to the fore the structural elements which are
common to discrete and continuous spins. We develop the
formal apparatus necessary for a unified derivation of the
FDRs in the two cases and to arbitrary order. We also show,
expanding on the work of Semerjian et al. �7�, how the non-
linear FDR of arbitrary order can be derived from a fluctua-
tion principle �8� also in the off-equilibrium regime. This
allows one to regard the FDR as a manifestation of the con-
straint imposed on the dynamics by the requirement of mi-
croscopic reversibility.

The immediate application of the FDR is in the develop-
ment of algorithms for the computation of the response func-
tions without the imposition of an external perturbation, the
so-called zero field algorithms. The numerical advantages of
a zero field algorithm are remarkable. These have been illus-
trated and discussed in detail, in the linear case, in a recent
paper �9�. In the present paper we apply the zero field algo-
rithm to the computation of the nonlinear response functions.
We consider two cases, where knowledge of a nonlinear re-
sponse function is required. The first one arises in the search
for a growing length scale in the context of glassy systems,
as mentioned above. The presence of quenched or self-
induced disorder makes the linear response function short
ranged, compelling one to resort to the nonlinear ones. The
second one deals with the extension of the effective tempera-
ture concept �10� to nonlinear order. This is an important and
difficult problem. Here, we consider it in the context of non-
disordered coarsening systems, showing the consistency of
the effective temperatures derived from the linear and the
second order FDR.

The paper is organized as follows: the formal develop-
ments concerning the time evolution, the response functions,
the FDR, and the fluctuation principle are presented in Secs.
II–V, respectively. In Sec. VI the problem of the detection of
a cooperative length through a nonlinear susceptibility is ad-
dressed, while the effective temperature to nonlinear order is
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treated in Sec. VII. Concluding remarks are presented in Sec.
VIII.

II. FORMALISM AND TIME EVOLUTION

Let us consider a system in contact with a thermal reser-
voir, whose microscopic states are the configurations �
= ��i� of the N degrees of freedom, discrete or continuous,
placed on the discrete set of sites i=1, . . . ,N. Assuming a
Markovian stochastic dynamics, the time evolution of the
system is fully specified once the probability distribution
P�� , t0� at some initial time t0 is given, together with the
transition probability P�� , t ��� , t�� for any pair of times t0
� t�� t. Observables, or random variables, are functions
A��� defined over the phase space of the microscopic states,
whose expectations are given by

�A�t�� = �
�

A���P��,t� , �1�

where P�� , t�=���P�� , t ��� , t0�P��� , t0�.
In order to keep the notation compact, it is convenient to

switch to the operator formalism �11�, whereby the micro-
scopic states introduced above are the set of labels of the
basis vectors

��� = � ��i�, i = 1, . . . ,N �2�

of a vector space. The single site states obey the orthonor-
mality relation ��i �� j��=��i,�j�

�i,j. With this notation, the
probability distributions P�� , t� become the time-dependent
vectors �P�t�� such that

P��,t� = ���P�t�� �3�

and the transition probability is associated to the propagator

of the process P̂�t � t��, which is the operator whose matrix
elements are given by

P��,t���,t�� = ���P̂�t�t������ . �4�

For stochastically continuous processes, through the first or-
der expansion

P̂�t + �t�t� = Î + Ŵ�t��t + O��t2� , �5�

where Î is the identity operator, there remains defined the

generator of the process Ŵ�t�. Then, the pair �P�t0��, Ŵ�t�
contains all the information on the process, since the propa-
gator can be written as

P̂�t�t�� = T�e	
t�
t

dsŴ�s�� , �6�

where T is the time ordering operator. In differential form
this is equivalent to the equations

�

�t
P̂�t�t�� = Ŵ�t�P̂�t�t�� , �7�

�

�t�
P̂�t�t�� = − P̂�t�t��Ŵ�t�� , �8�

from the first one of which follows the equation of motion of
the state vector

�

�t
�P�t�� = Ŵ�t��P�t�� . �9�

Notice that the normalization of probabilities imposes on the
generator the condition

�− �Ŵ�t� = 0, �10�

where �−�=����� is called the flat vector. We shall assume
that at each instant of time the generator satisfies the detailed
balance condition

e�Ĥ�t�Ŵ�t�e−�Ĥ�t� = Ŵ†�t� , �11�

where Ĥ�t� denotes the Hamiltonian of the system, with a
possible time dependence. This implies that the instanta-
neous Gibbs state

�P�t��� =
1

Z�t�
e−�Ĥ�t��− � �12�

is an invariant state in the sense that

Ŵ�t��P�t��� = 0. �13�

The time-dependent partition function is given by Z�t�
= �−�e−�Ĥ�t��−�, as it follows from the normalization of the
state ��−�P�t���=1. From now on we shall adopt the notation
� · �� for the Gibbs states.

Notice that Eq. �1� requires that observables correspond to
diagonal operators. Each random function A��� is mapped

into the operator Â=A��̂�, where the operators �̂i are defined
by

�̂i��� = �i��� �14�

in such a way that the expectation �1� can be written as

�Â�t�� = �− �Â�P�t�� . �15�

If Ŵ and �P�� are time independent, one can show that the
multitime expectations of observables in the stationary state

obey the Onsager relation �12�. Namely, if Â1 , Â2 , . . . , Ân is a
set of observables and tn� tn−1¯ � t1 an ordered sequence
of instants of time, then

�Ân�tn�Ân−1�tn−1� ¯ Â2�t2�Â1�t1���

= �Â1�tn�Â2�tn − �t2 − t1�� ¯

�Ân−1�t1 + �tn − tn−1��Ân�t1���, �16�

where

�Ân�tn�Ân−1�tn−1� ¯ Â2�t2�Â1�t1���

= �− �ÂnP̂�tn�tn−1�Ân−1 ¯ Â2P̂�t2�t1�Â1�P��. �17�

Finally, using Eqs. �7� and �8�, it is straightforward to show
that the time derivative of a multitime expectation is given
by
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�

�tk
�Ân�tn� ¯ Âk�tk� ¯ Â1�t1��

= �Ân�tn� ¯ �Âk,Ŵ�tk���tk� ¯ Â1�t1�� , �18�

namely, the time derivative in front of the expectation
amounts to the insertion, at the time tk, of the commutator

�Âk ,Ŵ�tk�� inside the expectation. This applies for all k
=1, . . . ,n. In particular, in the case of a single observable

�

�t
�Â�t�� = �− �ÂŴ�t��P�t�� = �− ��Â,Ŵ�t���P�t�� , �19�

where the second equality is a consequence of Eq. �10�. It

should be noticed that, in general, �Â ,Ŵ�t�� is not an
observable.

III. RESPONSE FUNCTIONS

Let us assume that the generator Ŵ�t� depends on time
through an external field hi�t�. Then, upon varying hi�t�,
there remains defined a family of stochastic processes and
one may ask whether these stochastic processes are related
one to the other. In particular, one would like to know
whether the process with the generic hi�t� can be recon-
structed from the properties of the unperturbed process, the
one with the particular choice hi�t�
0. In order to answer
the question, let us start from the statement that all the infor-
mation in the process, with a given hi�t�, is contained in the
full hierarchy of the time-dependent moments

Mi1,. . .,in
„t1, . . . ,tn,�hi�t���… = ��̂i1

�t1� ¯ �̂in
�tn�� , �20�

each of which is a functional of hi�t�. Assuming analyticity,
one can write the formal expansion

Mi1¯in
�t1, . . . ,tn,�hi�t����

= Mi1¯in
�t1, . . . ,tn� + �

m=1

	
1

m! �
j1¯jm

�
tw

t

dt1� ¯

��
tw

t

dtm� Ri1¯in;j1¯jm
�n,m� �t1, . . . ,tn;t1�, . . . ,tm� �

�hj1
�t1�� ¯ hjm

�tm� � , �21�

where Mi1¯in
�t1 , . . . , tn� is the unperturbed moment, �tw , t� is

the time interval over which the action of the external field is
considered, and

Ri1¯in;j1¯jm
�n,m� �t1, . . . ,tn;t1�, . . . ,tm� �

= ��mMi1¯in
„t1, . . . ,tn,�hi�t���…

�hj1
�t1�� ¯ �hjm

�tm� � �
h=0

�22�

is the mth order response function of the nth moment. There-
fore the question asked above can be positively answered if
the response functions can be expressed in terms of quanti-
ties computable in the unperturbed process, namely, if the
FDR of arbitrary order can be obtained.

Without loss of generality, we limit ourselves to work out
the response functions for the first moment. For the re-

sponses of the higher moments there is nothing conceptually
different, just the formalism gets more involved. As a matter
of fact, in Sec. VI we shall deal with the second order re-
sponse of the second moment. Coming back to the first mo-
ment, from

Mi„t,�hj�t���… = �− ��̂iP̂h�t�tw��P�tw�� , �23�

where P̂h�t � tw� is the propagator in the presence of the field,
follows

Ri;j1¯jm
�1,m� �t,t1, . . . ,tm�

= �− ��̂i� �mP̂h�t�tw�
�hj1

�t1� ¯ �hjm
�tm��

h=0

�P�tw�� �24�

which obviously vanishes if tj � �tw , t� for any j=1, . . . ,m.
Let us write explicitly the first two derivatives

�P̂h�t�tw�
�hj1

�t1�
= T
e	tw

t dsŴ�s� �Ŵ�t1�
�hj1

�t1�� = P̂h�t�t1�
�Ŵ�t1�
�hj1

�t1�
P̂h�t1�tw�

�25�

and

�2P̂h�t�tw�
�hj1

�t1��hj2
�t2�

= T�e	tw
t dsŴ�s�
 �Ŵ�t1�

�hj1
�t1�

�Ŵ�t2�
�hj2

�t2�
+

�2Ŵ�t1�
�hj1

2 �t1�
��12���

= P̂h�t�tM�
�Ŵ�tM�
�hjM

�tM�
P̂h�tM�tm�

�Ŵ�tm�
�hjm

�tm�
P̂h�tm�tw�

+ P̂h�t�t1�
�2Ŵ�t1�
�hj1

2 �t1�
P̂h�t1�tw���12� , �26�

where tM =max�tj�, tm=min�tj�, jM, jm are the sites where the
field acts at the times tM or tm, respectively, and ��np�
=� jn,jp

��tn− tp�. The third order derivative is written down in
Appendix A.

In order to go further, we must specify how Ŵ�t� depends
on the field hi�t� and that is where the distinction between
discrete spins and continuous spins comes in. In the follow-
ing, in order to keep the derivation as simple as possible we
shall specialize to the case of Ising spins with single spin-flip
dynamics. The generalization to q-state spins �e.g., clock
models� and to dynamical rules with conservation laws, such
as Kawasaki spin-exchange, turns out to be straightforward.

A. Ising spins

For Ising spins the state vectors ��i= 
1� are represented
by the column vectors

��i = 1� = �1

0
�, ��i = − 1� = �0

1
� .

A generator of single spin flip dynamics is of the type
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Ŵ =
1

N
�
i=1

N

Ŵi, �27�

where Ŵi has nonvanishing matrix elements only between

states which differ for the value of �i. The form of Ŵi is
obtained imposing the detailed balance condition �11�. Sin-
gling out the site i, the Hamiltonian can be written in the
form

Ĥ�t� = H���̂z�i,t� + �hW���̂z�i� − hi�t���̂i
z, �28�

where �̂i
z is the z Pauli matrix

�̂i
z = �1 0

0 − 1
� ,

��̂z�i stands for the set of all spins except for the one on the

ith site and ĥi
W=hW���̂z�i� is the Weiss field on the site i.

Inserting into the detailed balance condition �11�, one finds
the generator of the Glauber type �13�

Ŵi�t� = ��̂i
x − Î�e��ĥi

W−hi�t���̂i
z
, �29�

where �̂i
x is the x Pauli matrix

�̂i
x = �0 1

1 0
� .

Hence the derivatives are given by

�nŴ�t1�
�hj1

n �t1�
= �− ��nŴj1

�t1���̂ j1
z �n �30�

with

��̂ j1
z �n =� Î for n even,

�̂ j1
z for n odd.

� �31�

For later reference, let us write here the identity

Ŵi�̂i
z =

1

2
�Ŵi,�̂i

z� +
1

2
�Ŵi,�̂i

z� �32�

obtained by adding the commutator and the anticommutator.
It is straightforward to verify that the anticommutator is a
diagonal operator and, therefore, is an observable which we
will denote by

B̂i�t� = ��̂i
z,Ŵ�t�� . �33�

Due to Eq. �10�, the average of the left-hand side of Eq. �32�
vanishes and Eq. �19� for �̂i

z can be rewritten as

�

�t
��̂i

z�t�� = �B̂i�t�� . �34�

B. Continuous spins

In order to avoid confusion, here we shall denote by �
= ��i� the set of the N continuous variables. Let us assume an
equation of motion of the Langevin type

�

�t
�i�t� = Bi�t� + �i�t� , �35�

where the drift Bi is related to the Hamiltonian, or free en-
ergy functional H���, by

Bi�t� = −
�H���t��

��i
, �36�

�i�t� is a Gaussian white noise with expectations

��i�t�� = 0, ��i�t�� j�t��� = 2T�i,j��t − t�� �37�

and T is the temperature of the thermal reservoir. The gen-
erator of the corresponding Markov process is the Fokker-
Planck operator

ŴFP = �
i

Ŵi
FP, �38�

where

Ŵi
FP = − �Tp̂i

2 + iBi��̂�p̂i + Di��̂�� , �39�

Bi��̂� is defined through Eq. �36� and

Di��̂� = − � �2H���

��i
2 �

�=�̂

. �40�

The conjugated operators �̂i and p̂i, defined by

�����̂i��� = �i������ , �41�

����p̂i��� = − i
�

��i
������ , �42�

obey the commutation relation

��̂i, p̂j� = i�i,j �43�

and satisfy the equalities

�− �p̂i = 0, �44�

�− �Ŵi
FP = 0. �45�

The external field enters the free energy functional linearly,

Hh��,t� = H��� − �
i

hi�t��i �46�

yielding

Bh,i��,t� = Bi��� + hi�t� , �47�

while Di��� remains unaltered. Therefore the generator is
changed into

Ŵh,i
FP = Ŵi

FP − ihi�t�p̂i �48�

and the derivatives are given by

�nŴh,i
FP

�hi
n�t�

= �− ip̂i for n = 1,

0 for n 
 1.
� �49�

Obviously, the identity �32� holds also in this case,
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Ŵi
FP�̂i =

1

2
�Ŵi

FP,�̂i� +
1

2
�Ŵi

FP,�̂i� �50�

and, using the definition �39� together with the commutation
relation �43�, it is not difficult to rewrite it in the more con-
venient form

ip̂i =
�

2
��Ŵi

FP,�̂i� + Bi��̂�� . �51�

Again, since the average of the left-hand side vanishes, we
get the analog of Eq. �34�

�

�t
��̂i�t�� = �Bi��̂��t�� �52�

showing that the anticommutator �33� for Ising spins and the
drift �36� for continuous spins play the same role in the evo-
lution, thus justifying the choice of the same notation.

IV. FLUCTUATION-DISSIPATION RELATIONS

Let us now return to the general treatment, valid for dis-
crete and continuous spins alike, with the operator �̂ stand-
ing either for �̂z or for �̂, depending on the context. Which is
the case will be specified whenever necessary.

Comparing the left-hand sides of Eqs. �32� and �51� with
the first derivatives �30� and �49�, we can write the basic
equation in this paper as

�Ŵ

�hi
=

− �

2
���Ŵi,�̂i�� + Bi��̂�� �53�

where, in the case of continuous spins, the superscript FP on
the Fokker-Planck operator has been dropped and, as speci-

fied above, B̂i stands for

B̂i = ���̂i,Ŵi� for Ising spins,

Bi��̂� for continuous spins.
� �54�

We are now in the position to derive the FDR by going
through the following steps.

�1� According to Eq. �24�, the response function is ob-
tained by appropriate insertions of derivatives of the genera-
tor in between propagators, as exemplified in Eqs. �25� and
�26�.

�2� According to Eq. �53�, each first derivative of Ŵ can
be replaced by the sum of the commutator and the drift op-

erator B̂i.
�3� According to Eq. �18�, the insertion of the commutator

amounts to a time derivative acting in front of the average.
The above steps exhaust all there is to do in the continu-

ous spin case, since there are no derivatives of the generator
of order higher than the first. Higher derivatives do, instead,
appear in the Ising case producing singular terms. In order to
see how the procedure works in practice, let us carry out the
computation up to second order. The explicit result for the
third order response function is presented in Appendix A.

A. Linear FDR

Let us begin with the simplest case of the linear response
function. From Eqs. �24� and �25� follows

Ri;j1
�1,1��t,t1� = �− ��̂iP̂�t�t1���Ŵ�t1�

�hj1
�t1��

h=0

P̂�t1�tw��P�tw��

�55�

and, using Eqs. �53� and �18�, this becomes the linear FDR

Ri;j1
�1,1��t,t1� =

�

2

 �

�t1
Mij1

�t,t1� − ��̂i�t�B̂j1
�t1��� �56�

due to the appearance of unperturbed correlation functions of
observables in the right-hand side. This result has been
known for some time for continuous spins, see, e.g., Ref. �6�,
while for Ising spins it has been derived for the first time in
Ref. �9�, where it has been exploited to develop the zero field
algorithm for the computation of Ri;j1

�1,1��t , t1�, mentioned in
the Introduction.

If the system is in equilibrium, the averages in the right-
hand side are equilibrium averages and, invoking the On-
sager relation �16�, one gets

��̂i
z�t�B̂j1

�t1��� = �− ���̂ j1
,Ŵ�P̂�t�t1��̂i�P�� = −

�

�t1
Mij1

�t,t1�

�57�

after using space and time translation invariance in the last

equality, Eqs. �32� or �51� to eliminate B̂j1
, together with the

normalization conditions �10� or �44�. Inserting this into Eq.
�56�, the equilibrium fluctuation dissipation theorem �FDT�
is recovered,

Rij1
�1,1��t,t1� = �

�

�t1
Cij1

�t,t1� , �58�

where we have introduced the pair correlation function

Cij1
�t,t1� = Mij1

�t,t1� − Mi�t�Mj1
�t1� �59�

since it is clear that in equilibrium the one time quantities are
time independent and the time derivative of Cij1

�t , t1� coin-
cides with that of Mij1

�t , t1�.

B. Second order FDR

From Eqs. �24� and �26�, the second order, or two kicks
nonlinear response function, is given by

Ri;j1j2
�1,2� �t,t1,t2� = �− ��̂iP̂�t�tM���Ŵ�tM�

�hjM
�tM��

h=0

P̂�tM�tm�

���Ŵ�tm�
�hjm

�tm��
h=0

P̂h�tm�tw��P�tw��

+ �− ��̂iP̂�t�t1���2Ŵ�t1�
�hj1

2 �t1� �
h=0

P̂�t1�tw�

��P�tw����12� . �60�
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Substituting, next, Eq. �53� for the first derivatives and the
identity

Ŵi =
1

2
�̂i

zB̂i +
1

2
�̂i

z��̂i
z,Ŵi� �61�

for the manipulation of the singular term, eventually one
finds the second order FDR

Ri;j1j2
�1,2� �t,t1,t2� = ��/2�2� �

�tM

�

�tm
MijMjm

�t,tM,tm�

−
�

�tM
��̂i�t��̂ jM

�tM�B̂jm
�tm��

−
�

�tm
��̂i�t�B̂jM

�tM��̂ jm
�tm��

+ ��̂i�t�B̂jM
�tM�B̂jm

�tm���
+ ��2/2����̂i

z�t��̂ jm
z �tM�B̂jm

�tm��

+
�

�tm
Mijmjm

�t,tM,tm��� jM,jm
��tM − tm� ,

�62�

where, it is worth recalling, the last singular contribution in
the braces is present only for Ising spins.

Again, at stationarity the Onsager relation can be used to

eliminate the B̂’s entering with the shortest time in favor of
time derivatives. In so doing, the second and the fourth con-
tribution in the right-hand side become identical to the first
and the third one, respectively. Furthermore, in the stationary
state the last contribution in the right-hand side vanishes,
eventually yielding what we may call the second order FDT,

Ri;j1j2
�1,2� �t,t1,t2� = ��2/2�� �

�tM

�

�tm
CijMjm

�t,tM,tm�

−
�

�tm
��̂i�t�B̂jM

�tM��̂ jm
�tm���� , �63�

where we have substituted the time derivative of the moment
with that of the correlation function. Notice that there re-

mains an ineliminable presence of B̂ in the second term in
the right-hand side, which carries the information on the spe-
cific rule governing the time evolution. This is a distinctive
feature of all FDRs of order higher than linear, making them

less universal than the linear one, which is B̂ dependent only
off equilibrium.

V. FLUCTUATION PRINCIPLE

In the following we show that the FDRs obtained in the
previous section arise as a consequence of a fluctuation prin-
ciple �8�. For convenience, the derivation is presented for the
continuous spin case, but it can be worked out along the
same lines also for Ising spins. The idea of a derivation from
the fluctuation principle was implemented by Semerjian et

al. �7� in the stationary case. Here we extend the derivation
to the more general off-equilibrium case.

Let us call experimental protocol the assigned time depen-
dence of the external field h�t� in some time interval �t0 , tF�.
Then, from the detailed balance condition follows that the
probability P�(���t�� ��0 , �h�t��) of a path ���t��, taking place
under the protocol �h�t�� and conditioned to the initial value
��t0�=�0, is related to the probability of the reverse path

�̃�t� = ��t̃�, t̃ = tF − t + t0 �64�

under the reverse protocol �h̃�t�� and conditioned to �̃�t0�
=�F by

P�„���t����0,�h�t��…exp�− ��
t0

tF

dth�t��̇�t��
= P�„��̃�t����F,�h̃�t��…exp���H0��0� − H0��F��� ,

�65�

where the subscript � is there to remind one that the evolu-
tion takes place while the system is in contact with a single
thermal reservoir at the inverse temperature �. Multiplying
both sides by �i,FPI��0�, where PI��0� is an arbitrary prob-
ability distribution, and summing over the set C�t0 , tF� of all
paths in the interval �t0 , tF� one finds

�
C�t0,tF�

d���t���i,FP�„���t����0,�h�t��…

�exp�− ��
t0

tF

dth�t��̇�t��PI��0�

= Z�,0�
C�t0,tF�

d���t��PI��0�e�H0��0�P�„��̃�t����F,�h̃�t��…

��i,FP�,0��F� , �66�

where P�,0 and Z�,0 denote the equilibrium distribution and
the corresponding partition function, in absence of the exter-
nal field. Hence the above result can be rewritten more com-
pactly as

��i�tF�exp�− ��
t0

tF

dth�t��̇�t���
I→�,�h�t��

= Z�,0�PI„��tF�…e�H0„��tF�…�i�t0���,0→�,�h̃�t��, �67�

where �·�I→�,�h�t�� stands for the average in the process start-
ing with the initial condition PI, thereafter in contact with the
thermal reservoir � and evolving with the protocol �h�t��,
while �·��,0→�,�h̃�t�� stands for the process in contact with the
thermal reservoir �, starting with the unperturbed equilib-
rium distribution P�,0 and evolving with the reverse protocol

�h̃�t��.
The next step is to expand both sides in powers of �h�t��
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about h�t�
0 and to compare terms of the same order. This
is done in Appendix B, obtaining to zero order

Z�,0�PI„��tF�…e�H0„��tF�…�i�t0���,0 = ��i�tF��I→�,0, �68�

where �·�I→�,0 stands for the average in the off-equilibrium
process starting with PI and evolving in contact with the
thermal reservoir in absence of the external field. At higher
orders one gets

Z�,0��n�PI„��tF�…e�H0„��tF�…�i�t0���,0→�,�h̃�t��

�h̃j1
�t̃1� ¯ �h̃jn

�t̃n�
�

h̃=0

= �
p=0

n

�− ��n−p �
P�j1,. . .,jn−p�jn−p+1,. . .,jn�

��p��i�tF��̇ j1
�t1� ¯ �̇ jn−p

�tn−p��I→�,�h�t��

�hjn−p+1
�tn−p+1� ¯ �hjn

�tn� �
h=0

,

�69�

where the second summation is over all the distinct permu-
tations P�j1 , . . . , jn−p � jn−p+1 , . . . , jn� between the two sets of
indices �j1 , . . . , jn−p� and �jn−p+1 , . . . , jn�. For instance, at the
first two orders the above formula reads

Z�,0���PI„��tF�…e�H0„��tF�…�i�t0���,0→�,�h̃�t��

�h̃j1
�t̃1�

�
h̃=0

= − �
�

�t1
��i�tF�� j1

�t1��I→�,0 + ����i�tF��I→�,�h�t��

�hj1
�t1� �

h=0

�70�

and

Z�,0��2�PI„��tF�…e�H0„��tF�…�i�t0���,0→�,�h̃�t��

�h̃j1
�t̃1��h̃j2

�t̃2�
�

h̃=0

= �2 �

�t1

�

�t2
��i�tF�� j1

�t1�� j2
�t2��I→�,0

− �
�

�t1
����i�tF�� j1

�t1��I→�,�h�t��

�hj2
�t2� �

h=0

− �
�

�t2
����i�tF�� j2

�t2��I→�,�h�t��

�hj1
�t1� �

h=0

+ ��2��i�tF��I→�,�h�t��

�hj1
�t1��hj2

�t2� �
h=0

. �71�

From these two equations the off-equilibrium FDRs �56� and
�62� can be recovered. Here we show this explicitly in the
linear case, the extension to higher orders being straightfor-
ward.

Recalling the definition �22� of the response functions and
making the replacements tF→ t and t0→ tw, Eq. �70� can be
rewritten as

Ri;j1
�1,1��t,t1� = �

�

�t1
��i�t�� j1

�t1��I→�,0

+ Z�,0���PI„��t�…e�H0„��t�…�i�tw���,0→�,�h̃�t��

�h̃j1
�t̃1�

�
h̃=0

.

�72�

According to Eq. �49�, the derivative with respect to h̃j1
�t̃1�

can be replaced by the insertion of −ip̂j1
�t̃1� and, using Eq.

�51�, the second term in the right-hand side can be rewritten
as

Z�,0���PI„��t�…e�H0„��t�…�i�tw���,0→�,�h̃�t��

�h̃j1
�t̃1�

�
h̃=0

= Z�,0
�

2

�

�t̃1

�PI„��t�…e�H0„��t�…� j1
�t̃1��i�tw���,0

− Z�,0
�

2
�PI„��t�…e�H0„��t�…Bj1

�t̃1��i�tw���,0. �73�

Furthermore, since after setting to zero the external field the
averages become equilibrium averages, using the Onsager
relation we get

Z�,0���PI„��tF�…e�H0„��tF�…�i�t0���,0→�,�h̃�t��

�h̃j1
�t̃1�

�
h̃=0

= − Z�,0
�

2

�

�t1
��i�t�� j1

�t1�PI„��tw�…e�H0„��tw�…��,0

− Z�,0
�

2
��i�t�Bj1

�t1�PI„��tw�…e�H0„��tw�…��,0. �74�

The next step consists in the recognition that for an arbitrary
observable A

Z�,0�A�t�PI„��tw�…e�H0„��tw�…��,0 = �A�t��I→�,0, �75�

since the factor Z�,0PI(��tw�)e�H0(��tw�) in the left-hand side
has the effect of undoing the equilibrium initial condition
and replacing it with PI. Hence Eq. �74� can be rewritten as
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Z�,0���PI„��tF�…e�H0„��tF�…�i�t0���,0→�,�h̃�t��

�h̃j1
�t̃1�

�
h̃=0

= −
�

2

�

�t1
��i�t�� j1

�t1��I→�,0 −
�

2
��i�t�Bj1

�t1��I→�,0

�76�

and inserting it into Eq. �72�, eventually one finds

Ri;j1
�1,1��t,t1� =

�

2

�

�t1
��i�t�� j1

�t1��I→�,0 −
�

2
��i�t�Bj1

�t1��I→�,0,

�77�

thus recovering Eq. �56�.

VI. NONLINEAR SUSCEPTIBILITY AND GROWING
LENGTH SCALE

In this section we consider the use of the response func-
tions in the diagnostics of cooperative effects taking place
over large length scales during the relaxation, referring to the
case of Ising spin systems. A partial and preliminary account
of the material in this section has been presented in Ref. �14�.

In nondisordered coarsening systems, such as a ferromag-
net quenched to or to below the critical point, the existence
of a growing dynamical correlation length is well-captured
through the scaling properties of the equal time correlation
function Cij�t�=Mij�t , t� �1�, recalling that in this kind of
processes Mi�t�
0. In glassy systems, instead, quenched or
self-induced disorder renders the two body correlation func-
tion short ranged, making it necessary to resort to higher
order correlation functions. Attention has been particularly
focused on the four-point correlation function �15�

Cij
�4��t,tw� = Miijj�t,tw,t,tw� − Mii�t,tw�Mjj�t,tw� , �78�

which describes the so-called heterogeneities �16�, namely
the space fluctuations associated to the local time decorrela-
tion. Although quite convenient in the numerical simulations,
Cij

�4��t , tw� has the shortcoming of being hardly accessible in
the experiments. Conversely, susceptibilities are more easily
measurable and this has prompted the investigation of the
nonlinear FDR.

Here, we expand on the proposals �2–4,14� to investigate
dynamic scaling through higher order susceptibilities. Let us
begin by considering the second order response of the second
moment at equal times

Rij;j1j2
�2,2� �t,t;t1,t2� = � �2Mij„t,t,�hi�t���…

�hj1
�t1��hj2

�t2� �
h=0

. �79�

Proceeding exactly as in the derivation of Eq. �62�, the cor-
responding FDR is given by

Rij;j1j2
�2,2� �t,t;t1,t2� = ��/2�2� �

�tM

�

�tm
MijjMjm

�t,t,tM,tm�

−
�

�tM
��̂i

z�t��̂ j
z�t��̂ jM

z �tM�B̂jm
�tm��

−
�

�tm
��̂i

z�t��̂ j
z�t�B̂jM

�tM��̂ jm
z �tm��

+ ��̂i
z�t��̂ j

z�t�B̂jM
�tM�B̂jm

�tm���
+ ��2/2����̂i

z�t��̂ j
z�t��̂ jm

z �tM�B̂jm
�tm��

+
�

�tm
Mijjmjm

�t,t,tM,tm��� jM,jm
��tM − tm� .

�80�

Looking at the above equation, it may seem farfetched to
relate the properties of C�4� to those of R�2,2�, since the fourth
order moment appears explicitly only in the first term in the
right-hand side and in the singular term. Nonetheless, infor-
mation on the existence of a growing correlation length can
be obtained through a scaling argument, as it will be shown
below. Let us consider the more manageable integrated re-
sponse function

− �ij
�2,2��t,tw� = �

tw

t

dt1�
tw

t

dt2Rij;ij
�2,2��t,t;t1,t2�

− �i
�1,1��t,tw�� j

�1,1��t,tw� , �81�

where the �i
�1,1� in the subtraction are the time integrals of the

linear response function �56�, i.e.,

�i
�1,1��t,tw� = �

tw

t

dt1Ri;i
�1,1��t,t1� . �82�

The reason for this subtraction and for the minus sign on the
left-hand side will be clear shortly. Assuming that eventually
an equilibrium state is reached, from equilibrium statistical
mechanics follows

T2 lim
t→	

�ij
�2,2��t,tw� = Cij,eq

2 , �83�

where, for simplicity, we have taken ��̂i
z�eq=0. The scaling

relation Cij,eq=�2−d−�FC,eq��i− j� /��, where ��T� is the equi-
librium correlation length, suggests a finite time scaling be-
havior of the form

T2�ij
�2,2��t,tw� = �xF� �i − j�

�
,
t1/z

�
,
tw

t
� , �84�

where x=4−2d−2� and z is the dynamical exponent.
Another quantity, which has been recently �3� considered

in relation to C�4�, is the third order integrated response of the
first moment
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�ij
�1,3��t,tw� = −

1

2
�

tw

t

dt1dt2dt3Ri;ij j
�1,3��t;t1,t2,t3� , �85�

where Ri;ij j
�1,3� is given by Eq. �A2� of Appendix A. Again,

from the large time result

T3 lim
t→	

�ij
�1,3��t,tw� = Cij,eq

2 �86�

we may infer the scaling behavior

T3�ij
�1,3��t,tw� = �xG� �i − j�

�
,
t1/z

�
,
tw

t
� . �87�

Notice that the prefactor in the definition �85� has been ar-
ranged in such a way that the large time limits of T2��2,2� and
T3��1,3� are the same.

These patterns of behavior have been checked numeri-
cally in the one-dimensional Ising model. The simulation
has been carried out through standard Monte Carlo tech-

niques with Glauber transition rates, where B̂i= �̂i
z

−tanh����j�i
Jij�̂ j

z� and the sum runs over the nearest neigh-
bors �j�i of i. Taking Jij =1, we have prepared the system in a
high temperature uncorrelated state and then quenched it to
the final temperature T at time t=0. In this case z=2 �1�, and
��T�=−1 / ln�tanh�1 /T�� �13�. The integrated response func-
tions �ij

�2,2��t ,0� and �ij
�1,3��t ,0� have been computed using the

FDRs �80� and �A2�, following the zero field method of Ref.
�9�. It must be stressed that, due to the extremely noisy na-
ture of the response functions, the numerical computation of
these quantities through the FDRs is by far more convenient
than the computation based on the application of a small
external field. In fact, in addition to the incomparably better
signal-to-noise ratio, the h→0 limit is built in the FDRs.

In order to verify the scaling relations �84� and �87�, first
of all we have taken tw=0 in order to reduce the variables
from three to two in the right-hand sides. Then, recalling that
for the 1D Ising model �=1 implies x=0 and varying the
temperature and the distance in such a way to keep �i− j� /�
fixed, it is matter of showing that T2�ij

�2,2��t ,0� and
T3�ij

�1,3��t ,0� are functions only of t1/z /�. This is shown, with
good accuracy, in Fig. 1 for the quenches to the three final
temperatures T1=0.6, T2=0.7572, and T3=1.0239 and with
six different values of �i− j� /�. Both T2�ij

�2,2��t ,0� and
T3�ij

�1,3��t ,0� grow from zero to the same asymptotic value
Cij,eq

2 =exp�−2�i− j� /�� on the same time scale, as expected.
Note that the data for ��1,3� are much more noisy than those
for ��2,2�. Since the same numerical resources have been al-
located in the computation of each of these two quantities,
we conclude that investigations based on ��2,2� are more ef-
ficient, at least numerically.

We now discuss how ��2,2� can be effectively used for the
measurement of a cooperative length in disordered systems.
In order to improve the statistics further, it is convenient to
consider the k� =0 component of the space Fourier transform

�k�=0
�2,2��t,tw� = �1/N2��

i,j
�ij

�2,2��t,tw� , �88�

which, using Eq. �84�, scales as

�k�=0
�2,2��t,tw� = �4−d−2�F� t1/z

�
,
tw

t
� . �89�

In Ref. �14� we have computed numerically this quantity,
with tw=0, in the Edwards-Anderson �EA� model with

Hamiltonian Ĥ=�ijJij�̂i
z�̂ j

z and d=1,2. The data have been
analyzed as follows: for large t the curves saturate to the
equilibrium value �k�=0,eq

�2,2� ��4−d−2�. Using the known values
of �, one can extract �. In the off-equilibrium regime t1/z

�� the growing correlation length L�t�� t1/z is expected not
to depend on �. Enforcing this condition from Eq. �89� one
must have F�t1/z /� ,0���� /L�t��2�+d−4, which yields

�k�=0
�2,2��t,0� � L�t�4−d−2�. �90�

This allows one to determine L�t�. After doing this, we
checked for the data collapse by plotting �−4+d+2��k=0

�2,2��t ,0�
vs L�t� /� for all the temperatures considered �see Figs. 2 and
3�.

Let us consider first the d=1 EA model with bimodal
distribution of the coupling constants Jij = 
1. This system is
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FIG. 1. �Color online� Upper panel: The quantity T2�ij
�2,2��t ,0� is

plotted against t1/z /� �z=2� for six fixed values of r= �i− j� /� �r=0,
0.2855, 0.5711, 0.8566, 1.1421, and 1.4277 from top to bottom� and
three temperatures T1=0.6, T2=0.7572, and T3=1.0239 such that
��T1� /��T2�=2 and ��T1� /��T3�=4. Lower panel: Same for
T3�ij

�1,3��t ,0�.
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considered in order to test the method, since it can be
mapped onto the ferromagnetic system, just considered
above. Moreover, in this simple case, in addition to
�k=0

�2,2��t ,0�, one can check the scaling of the equal time struc-
ture factor Ck=0�t�, obtaining independent determinations of
L�t� and � to compare with. This shows that the sets of data
for L�t� and �, obtained in both ways, are in agreement with
each other and with the analytical behaviors up to the nu-
merical uncertainty. The data collapse of �k=0

�2,2��t ,0� and of
Ck=0�t� are shown in Fig. 2. Here, one clearly observes the
off-equilibrium regime, characterized by the power-law be-
havior of �k=0

�2,2��t ,0� and Ck=0�t� with exponents 4−d−2� and
2−�, respectively. In the large time regime equilibration
takes place with the convergence of �k=0

�2,2��t ,0� and Ck=0�t� to
�k=0,eq

�2,2� and to Ck=0,eq�t�.
After this explicit verification, we have turned to the d

=2 case, where the independent information on the structure
factor is not available. Both with bimodal and Gaussian dis-

tributions of Jij, the behavior of � extracted from �k�=0,eq
�2,2� ,

using �=0 �17�, has been found consistent with previous
results �17,18�. The nonequilibrium behavior is compatible
with a power law L�t�� t1/z�T� with a temperature-dependent
exponent in agreement with z�T��4 /T, as reported in Ref.
�19�. The data collapse of �k=0

�2,2��t ,0� is shown in Fig. 3. No-
tice also the additional collapse of the curves with bimodal
and Gaussian bond distribution, further suggesting that the
two models may share the same universality class at finite
temperatures �17�.

VII. EFFECTIVE TEMPERATURE

One of the most interesting developments in the study of
the linear FDR out of equilibrium has been the introduction
of the concept of effective temperature Tef f �10�. The idea is
that the off-equilibrium behavior observed during slow relax-
ation can be accounted for by the separation of the time
scales for different subsets of degrees of freedom. Each of
these is regarded as in equilibrium with a different virtual
thermostat at some appropriate effective temperature, which
depends on the time scale and is different from the physical
temperature of the real thermostat driving the relaxation. The
value of Tef f can be inferred by forcing the off-equilibrium
linear FDR in the form of the equilibrium FDT. Although
appealing, this idea has turned out not to be applicable tout
court, since Tef f might turn out to be observable dependent
�20�. Nonetheless, with the proper caveats, the concept re-
mains quite useful and suggestive. In this section we make a
preliminary exploration of another open end in the important
question of how general Tef f can be, investigating whether it
is possible to extend to the nonlinear FDR the effective tem-
perature concept, consistently with what it has done in the
linear case.

Let us first recall how Tef f is defined from the linear FDR.
For definiteness, the Ising spin case will be considered. Writ-
ing explicitly the time integral in Eq. �82�, one has

�i
�1,1��t,tw� =

�

2
�

tw

t

dt1
 �

�t1
Mii�t,t1� − ��i

z�t�B̂i�t1��� .

�91�

Assuming Mi�t�
0 throughout the dynamical evolution, and
replacing Mii�t , t1� with the autocorrelation function C�t , t1�,
the quantity

��1��t,tw� = �
tw

t

dt1
�

�t1
C�t,t1� = 1 − C�t,tw� �92�

for fixed tw is a monotonously increasing function of time,
which allows one to reparametrize t in terms of ��1� and to
write �i

�1,1��t , tw� in the form

�i
�1,1��t,tw� = �i

�1,1����1�,tw� . �93�

In equilibrium, where time translation invariance holds, the
dependence on tw disappears and the parametric representa-
tion becomes linear,

�i
�1,1����1�� = ���1� �94�

with the obvious consequence
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FIG. 2. �Color online� Data collapse of �k=0
�2,2� �Ck=0 in the inset�

for several temperatures in the d=1 EA model ��=1, z=2�. The
dashed lines are the expected power laws in the nonequilibrium
regime.
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� =
d�i

�1,1����1��
d��1� . �95�

Off equilibrium, the parametric representation will not be
linear and an effective temperature can be defined by the
generalization of the above relation,

�ef f���1�,tw� =
��i

�1,1����1�,tw�
���1� �96�

with �ef f =1 /Tef f.
In order to see how Tef f �T arises in a simple context, let

us consider the relaxation to a low temperature phase char-
acterized by ergodicity breaking and, therefore, by a nonva-
nishing Edwards-Anderson order parameter qEA. In particu-
lar, let us think of the already mentioned coarsening process,
like in a ferromagnet quenched to below the critical point
and relaxing via domain growth. In that case qEA coincides
with the spontaneous magnetization squared Meq

2 .
As tw→	, the separation of time scales takes place. The

short, or quasiequilibrium, time regime holds for C
Meq
2 ,

that is ��1��1−Meq
2 , while the large time scale sets in when

C�Meq
2 , or ��1�
1−Meq

2 . The existence of this latter regime
makes evident the failure of equilibration, even in the tw
→	 limit, since the autocorrelation function falls below the
Edwards-Anderson plateau. The behavior of ��1�, obtained
from numerical simulations of the Ising model in d=2, is
shown in the inset of Fig. 4. Starting from zero, there is a fast
growth in the short time regime, followed by a plateau, more
evident for large tw, and finally there is convergence, with the
power-law behavior 1−��1��t , tw�� t−�/z, toward the
asymptotic value ��1�=1. Notice that � is the Fisher-Huse
exponent �21� and that the plateau flattens over the
asymptotic value 1−qEA as tw→	.

Correspondingly, the integrated response function can be
written as the sum of two pieces �22�

�i
�1,1����1�,tw� = �st

�1,1����1�� + �ag
�1,1����1�,tw� , �97�

where �st
�1,1� is the stationary contribution arising from the

equilibrated bulk of domains, while �ag
�1,1� is the aging contri-

bution due to the off-equilibrium domain walls. The station-
ary contribution obeys Eq. �94� in the short time regime,
saturates to its equilibrium value, and remains constant in the
large time regime, while the aging contribution vanishes as
tw→	 according to

�ag
�1,1����1�,tw� = tw

−aF���1�� , �98�

where a
0 �23�. Hence the full response function obeys the
asymptotic form

lim
tw→	

�i
�1,1����1�,tw� = ����1� for 0 � ��1� � 1 − Meq

2 ,

��1 − Meq
2 � for 1 − Meq

2 � ��1� � 1,
�

�99�

which, on account of Eq. �96�, leads to

lim
tw→	

�ef f���1�,tw� = �� for 0 � ��1� � 1 − Meq
2 ,

0 for 1 − Meq
2 � ��1� � 1.

�
�100�

Namely, the effective temperature coincides with the physi-
cal temperature in the short time regime, where the system
appears equilibrated, while it is drastically different from it
in the off-equilibrium large time regime.

Let us now carry out the parallel analysis on the k� =0
component of the second order integrated response function

�k�=0
�2,2��t,tw� =

1

N2�
i,j
�

tw

t

dt1�
tw

t

dt2Rij;ij
�2,2��t,t;t1,t2� . �101�

Notice that, although we use the same notation, this quantity
differs from the one in Eq. �88� because of the overall sign
and of the absence of the subtraction. Let us introduce the
quantity

��2��t,tw� =
1

2

1

N2�
i,j
�

tw

t

dt1�
tw

t

dt2
 �2

�tM�tm
Mijij�t,t,tM,tm�

+ ��i
z�t�� j

z�t�B̂i�tM�B̂j�tm��� �102�

with properties similar to those of ��1��t , tw�, as shown in Fig.
4. The main feature is the monotonous increase from zero to
an asymptotic value well above the limiting value �1−qEA�2

that one would get from the equilibrium calculation. This is
the value at which a plateau develops as tw gets large, sig-
naling the separation of time scales. Using ��2� to reparam-
etrize the time t, from Eq. �63� it follows that at equilibrium
the FDR becomes linear,

�k�=0
�2,2����2�� = �2��2�. �103�
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FIG. 4. �Color online� The quantity ��2� is plotted against t− tw

for tw=100, 500, 1000, 2000, 3000, 4000, and 5000 from top to
bottom. Data refer to a 2D Ising system of size 18002 quenched to
T=2 �Tc�2.269�. The dashed horizontal line is the large-tw height
of the plateau �y= �1−qEA�2�. In the inset the quantity ��1� is shown
�same tw of the main figure�.
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Hence by following the same reasoning as in the linear case,
in the off-equilibrium regime an effective temperature can be
introduced by the analog of Eq. �96�,

�ef f
2 ���2�,tw� =

��k�=0
�2,2����2�,tw�

���2� . �104�

The question, now, is whether the two �ef f defined by Eqs.
�96� and �104� are consistent or not, that is whether the
equality

lim
tw→	

�ef f���2�,tw� = lim
tw→	

�ef f���1�,tw� �105�

holds or not. This is a difficult question to answer in general,
we shall limit ourselves to the consideration of the particular
coarsening process analyzed above in the linear case.

The short and the large time scales, in terms of ��2�, cor-
respond to ��2� smaller or larger than �1−Meq

2 �2, respectively.
Writing �k�=0

�2,2� as the sum of two pieces, as in Eq. �97�,

�k�=0
�2,2����2�,tw� = �st

�2,2����2�� + �ag
�2,2����2�,tw� , �106�

the same considerations made on �st
�1,1� apply exactly to �st

�2,2�,
since this is an equilibrium contribution. Namely, after obey-
ing Eq. �103� in the short time regime, it saturates to the
equilibrium value �1−Meq

2 �2 and then remains constant in the
large time regime. For �ag

�2,2����2� , tw� there are no previous
results to rely on. We have, then, measured �ag

�2,2����2� , tw�
numerically in the quench of a two-dimensional Ising model
below TC evolving with Glauber dynamics. The aging con-
tribution �ag

�2,2� has been isolated using the method based on
the no-bulk-flip dynamics discussed in �23,25–27�.

In order to check if a scaling form of the type �98� is
obeyed,

�ag
�2,2����2�,tw� = tw

−a2F2�t/tw� , �107�

we have plotted �ag
�2,2��t , tw� for a fixed value of t / tw against

tw, as shown in the inset of the upper panel of Fig. 5. From
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FIG. 5. �Color online� tw
a2�ag

�2,2��t , tw� is plotted against t / tw for
tw=100, 200, 500, 1000, 2000, 3000, 4000, and 5000 �from bottom
to top� and three temperatures T=1, 1.5, and 2 �upper, central, and
lower panel�. The exponent a2 is extracted as discussed in the text,
finding a2=0.61 for T=1, and a2=0.62 for T=1.5 and 2.
The dashed lines represent the asymptotic behavior
�ag

�2,2��t , tw���t / tw�−a2 for large t / tw. In the inset the quantity
�ag

�2,2��t , tw� is plotted against tw with t / tw fixed.
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the observed power-law behavior we have extracted the ex-
ponent a2, finding values in the range �0.59–0.62�. We have,
then, carried out the data collapse by plotting tw

a2�ag
�2��t , tw�

against t / tw. For large tw the collapse �Fig. 5� is quite good,
confirming that the scaling form �107� is obeyed with an
exponent a2�0.61−0.62. For small values of tw and t / tw
deviations are observed due to preasymptotic effects, simi-
larly to what was already observed in the linear case �23,27�.
Notice, also, that for large t / tw one has a power-law decay of
the scaling function F2�t / tw���t / tw�−a2 with the same expo-
nent a2 entering Eq. �107�, exactly as it was observed in the
linear case �27�.

In conclusion, like in the linear case, the existence of the
scaling behavior �107� with a2
0 implies that the aging
contribution vanishes asymptotically, yielding the analog of
Eq. �99�,

lim
tw→	

�k�=0
�2,2����2�,tw� = ��2��2� for ��2� � �1 − Meq

2 �2,

�2�1 − Meq
2 �2 for �1 − Meq

2 �2 � ��2�.
�

�108�

The approach to this asymptotic behavior is shown in Fig. 6.
Hence, using the definition �104�, we find

lim
tw→	

�ef f���2�,tw� = �� for ��2� � �1 − Meq
2 �2,

0 for �1 − Meq
2 �2 � ��2�.

�
�109�

The comparison with Eq. �100� suggests that the consistency
condition �105� is satisfied.

VIII. CONCLUSIONS

In this paper we have derived the off-equilibrium FDRs of
arbitrary order for systems evolving with Markovian stochas-
tic dynamics. The main effort has been to put the FDRs in
the same form for both continuous and discrete spins. In
order to stress the generality of the result, we have also

shown how the whole hierarchy of FDRs can be made to
descend from the fluctuation principle. Once the FDRs are
available, response functions of arbitrary order are expressed
in terms of unperturbed correlation functions of observables.
The payoff is in the development of simple and efficient zero
field algorithms for the numerical simulations.

As an application, we have considered the problem of
detecting the existence of a growing length in those cases,
like in glassy systems, where standard methods based on
two-point correlation functions and the corresponding linear
response functions are of no use. In these cases the simplest
object carrying useful information, in principle, would be a
four-point correlation function which, however, is not di-
rectly accessible to experiment. Instead, experimentally ac-
cessible are the nonlinear response functions involving the
four-point correlation function through the nonlinear FDRs.
The choice of which response function and, therefore, of
which FDR to use is not univocal, once the realm of the
nonlinear response functions is entered. Then the choice is
matter of convenience. We have made the proposal to use the
second order response of a two-point correlation function,
rather than the third order response of the magnetization, as
advocated elsewhere in the literature. We have, then, demon-
strated the numerical advantage of our choice through the
implementation of the zero field algorithm.

Finally, we have made a first step into the important but
difficult problem of the definition of the effective tempera-
ture through the nonlinear FDR. We have considered the do-
main coarsening process ensuing the quench of a ferromag-
net below its critical point. Indeed, in that case we have
found that it is possible to extract from the nonlinear FDR an
effective temperature which is consistent with the effective
temperature obtained from the much studied linear FDR.

APPENDIX A

Proceeding like in the derivation of Eq. �26�, the third
order derivative of the propagator is given by

�3P̂h�t�tw�
�hj1

�t1��hj2
�t2��hj3

�t3�
= P̂h�t�tM�

�Ŵ�tM�
�hjM

�tM�
P̂h�tM�tI�

�Ŵ�tI�
�hjI

�tI�
P̂h�tI�tm�

�Ŵ�tm�
�hjm

�tm�
P̂h�tm�tw�

+ P̂h�t�tM�
�2Ŵ�tI�
�hjI

2 �tI�
P̂h�tI�tm�

�Ŵ�tm�
�hjm

�tm�
P̂h�tm�tw�� jM,jI

��tM − tI�

+ P̂h�t�tM�
�Ŵ�tM�
�hjM

�tM�
P̂h�tM�tI�

�2Ŵ�tI�
�hjI

2 �tI�
P̂h�tI�tw�� jI,jm

��tI − tm� + P̂h�t�t1�
�3Ŵ�t1�
�hj1

3 �t1�
P̂h�t1�tw���12���23� ,

�A1�

where tM =max�tj�, tm=min�tj�, tm� tI� tM, jM, jI, and jm are the sites where the field acts at the times tM, tI, or tm, respectively,
and ��np�=� jn,jp

��tn− tp�. Inserting this into Eq. �24� and using Eq. �53�, we get the third order response of the first moment:
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Ri;j1j2j3
�1,3� �t,t1,t2,t3� = ��

2
�3� �3

�tM�tI�tm
MijMjIjm

�t,tM,tI,tm� −
�2

�tM�tI
��̂i�t��̂ jM

�tM��̂ jI
�tI�B̂jm

�tm��

−
�2

�tM�tm
��̂i�t��̂ jM

�tM�B̂jI
�tI��̂ jm

�tm�� −
�2

�tI�tm
��̂i�t�B̂jM

�tM��̂ jI
�tI��̂ jm

�tm�� +
�

�tm
��̂i�t�B̂jM

�tM�B̂jI
�tI��̂ jm

�tm��

+
�

�tI
��̂i�t�B̂jM

�tM��̂ jI
�tI�B̂jm

�tm�� +
�

�tM
��̂i�t��̂ jM

�tM�B̂jI
�tI�B̂jm

�tm�� − ��i�t�BjM
�tM�BjI

�tI�Bjm
�tm���

+
�3

4
�� �

�tm
��̂i�t��̂ jI

�tI�B̂jI
�tI��̂ jm

�tm�� +
�

�tm

�

�tI
MijMjIjm

�t,tM,tI,tm� − ��̂i�t��̂ jI
�tI�B̂jI

�tI�B̂jm
�tm��

−
�

�tI
��̂i�t��̂ jM

�tM��̂ jI
�tI�B̂jm

�tm���� jMjI
��tM − tI� + � �

�tM
��̂i�t��̂ jM

�tM��̂ jI
�tI�B̂jI

�tI��

+
�

�tM

�

�tm
MijMjIjm

�t,tM,tI,tm� − ��̂i�t�B̂jM
�tM��̂ jI

�tI�B̂jI
�tI�� −

�

�tm
��̂i�t�B̂jM

�tM��̂ jI
�tI��̂ jm

�tm���� jIjm
��tI − tm��

+
�3

2
� �

�t1
Mij1

�t,t1� − ��̂i�t�B̂j1
�t1���� j1j2

� j2j3
��t1 − t2���t2 − t3� . �A2�

At stationarity this becomes

Rij1j2j3
�1,3� �t,t1,t2,t3� =

�3

4
� �3

�tM�tI�tm
MijMjIjm

�t,tM,tI,tm� −
�2

�tM�tm
��̂i�t��̂ jM

�tM�B̂jI
�tI��̂ jm

�tm�� −
�2

�tI�tm
��̂i�t�B̂jM

�tM��̂ jI
�tI��̂ jm

�tm��

+
�

�tm
��̂i�t�B̂jM

�tM�B̂jI
�tI��̂ jm

�tm��� +
�3

2
� �

�tm
��̂i�t��̂ jI

�tI�B̂jI
�tI��̂ jm

�tm��

+
�

�tm

�

�tI
MijMjIjm

�t,tM,tI,tm��� jMjI
��tM − tI� + �3 �

�t1
Mij1

�t,t1�� j1j2
� j2j3

��t1 − t2���t2 − t3� . �A3�

It should be recalled that the singular terms in the last two equations are present only in the Ising spin case.

APPENDIX B

The expansion of the left-hand side of Eq. �67� can be done in two steps. Expanding first the exponential we get

��i�tF�exp�− ��
t0

tF

dth�t��̇�t���
I→�,�h�t��

= �
m=0

	
�− ��m

m! �
j1¯jm

�
t0

tF

dt1 ¯ dtm��i�tF��̇ j1
�t1� ¯ �̇ jm

�tm��I→�,�h�t��

� hj1
�t1� ¯ hjm

�tm� �B1�

and expanding the individual averages

��i�tF��̇ j1
�t1� ¯ �̇ jm

�tm��I→�,�h�t�� = �
p=0

	
1

p! �
q1¯qp

�
t0

tF

dt1� ¯ dtp�� �p��i�tF��̇ j1
�t1� ¯ �̇ jm

�tm��I→�,�h�t��

�hq1
�t1�� ¯ �hqp

�tp��
�

h=0

hq1
�t1�� ¯ hqp

�tp�� ,

�B2�

all together these two contributions give

��i�tF�exp�− ��
t0

tF

dth�t��̇�t���
I→�,�h�t��

= �
m=0

	

�
p=0

	
�− ��m

m!p! �
j1¯jm

�
q1¯qp

�
t0

tF

dt1 ¯ dtmdt1� ¯ dtp�

���p��i�tF��̇ j1
�t1� ¯ �̇ jm

�tm��I→�,�h�t��

�hq1
�t1�� ¯ �hqp

�tp��
�

h=0

hj1
�t1� ¯ hjm

�tm�hq1
�t1�� ¯ hqp

�tp�� .

�B3�

Reorganizing the double sum
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�
m=0

	

�
p=0

	
�− ��m

m!p! �
j1¯jm

�
q1¯qp

= �
n=0

	

�
p=0

n
�− ��n−p

�n − p�!p! �
j1¯jn−p

�
q1¯qp

�B4�

the above result can be rewritten as

��i�tF�exp�− ��
t0

tF

dth�t��̇�t���
I→�,�h�t��

= ��i�tF��I→�,0 � �
n=1

	
1

n! �p=0

n

�− ��n−p
 n!

�n − p�!p!
�

� �
j1¯jn−p

�
q1¯qp

�
t0

tF

dt1 ¯ dtn−pdt1� ¯ dtp�

� ��p��i�tF��̇ j1
�t1� ¯ �̇ jn−p

�tn−p��I→�,�h�t��

�hq1
�t1�� ¯ �hqp

�tp��
�

h=0

hj1
�t1� ¯ hjn−p

�tn−p�hq1
�t1�� ¯ hqp

�tp�� .

�B5�

Notice that the combinatorial factor in the square bracket
gives the number of the distinct permutations among the two
sets of indices �j1 , . . . , jn−p� and �q1 , . . . ,qp�.

Going over to the right-hand side of Eq. �67� and intro-
ducing the shorthand

�PI„��tF�…e�H0„��tF�…�i�t0���,0→�,�h̃�t�� = �RHS��,0→�,�h̃�t��

�B6�

one gets

�RHS��,0→�,�h̃�t��

= �RHS��,0 + �
n=1

	
1

n! �
j1¯jn

�
t0

tF

dt1 ¯ dtn�
�

�n�RHS��,0→�,�h̃�t��

�hj1
�t1� ¯ �hjn

�tn��
h=0

hj1
�t1� ¯ hjn

�tn� �B7�

and, since h̃j�t̃�=hj�t�, this can be rewritten as

�RHS��,0→�,�h̃�t��

= �RHS��,0 + �
n=1

	
1

n! �
j1¯jn

�
t0

tF

dt1 ¯ dtn�
�

�n�RHS��,0→�,�h̃�t��

�h̃j1
�t̃1� ¯ �h̃jn

�t̃n�
�

h=0

hj1
�t1� ¯ hjn

�tn� , �B8�

where �·��,0 stands for the equilibrium average at the tem-
perature � and without external field. Therefore comparing
with Eq. �B5�, one arrives at Eqs. �68� and �69�.
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