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We derive the exact beyond-linear fluctuation-dissipation relation, connecting the response of a generic
observable to the appropriate correlation functions, for Markov systems. The relation, which takes a similar
form for systems governed by a master equation or by a Langevin equation, can be derived to every order in
large generality with respect to the considered model in equilibrium and out of equilibrium, as well. On the
basis of the fluctuation-dissipation relation, we propose a particular response function, namely the second-order
susceptibility of the two-particle correlation function, as an effective quantity to detect and quantify coopera-
tive effects in glasses and disordered systems. We test this idea by numerical simulations of the Edwards–
Anderson model in one and two dimensions.
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A central phenomenon in the statistical mechanics of in-
teracting systems is the onset of long-range order when ap-
proaching phase transitions, specifically second-order ones
such as the paraferromagnetic or gas-liquid transition. The
coherence length � expressing the range of correlations is
disclosed by the knowledge of an appropriate �two point�
correlation function Cij, as is Cij = ��i� j�− ��i��� j� for the
prototypical Ising model. The divergence of � induces the
scaling symmetry when the critical point is neared. In this
framework, equilibrium linear-response theory, relating Cij
to its conjugate susceptibility �ij �and more generally two-
time correlations Cij�t1 , t2�= ��i�t1�� j�t2��− ��i�t1���� j�t2��
and susceptibilities �ij�t1 , t2�� through the fluctuation-
dissipation theorem �FDT�, has proved to be of the upper-
most importance both theoretically and experimentally, al-
lowing the alternative determination of correlations and,
hence, of � through linear-response functions.

These concepts are not restricted only to equilibrium
states but inform nonequilibrium statistical mechanics, as
well. For example, in a broad class of aging systems, the
kinetics is characterized by the growth of a characteristic
length L�t�, determining a dynamical scaling symmetry in
close analogy to what happens in static phase transitions. In
view of these and related issues, increasing interest has been
recently devoted to the generalization of linear-response
theory to out of equilibrium systems: a research subject
originating from the recognition that the relation between
�ij�t1 , t2� and Cij�t1 , t2� may be used to define an effective
temperature,1 and to be a bridge between equilibrium and
nonequilibrium properties.2 Although a theorem of such a
generality as the FDT cannot be derived off equilibrium, in
the case of Markov processes, a natural generalization in the
form of a fluctuation–dissipation relation �FDR� between
�ij�t1 , t2�, Cij�t1 , t2�, and a correlator Dij�t1 , t2� involving the
generator of the stochastic process has been obtained.3,4 This
result could open the way, in principle, to measurements of
Cij�t1 , t2� and, hence, of L�t� from nonequilibrium suscepti-
bilities, provided the properties of Dij are known.

This whole approach cannot be straightforwardly applied
to the case of glasses, of spin glasses, and, in several in-
stances, of disordered systems because their unusual type of

long-range order is not captured by linear-response functions
or even by two point correlators. These quantities remain
short ranged, even when some long-range order appears in
the system. This is because ordered patterns are randomized
by the quenched disorder so that, for instance, ��i� j� �where
the overbar denotes the average over the disorder� vanishes
even when ��i� j��0. To circumvent this problem, one has
to consider higher-order �nonlinear� response functions or
equivalently, n-spin �n�2� correlation functions C�n�. Along
this line, recently, a measure of cooperativity has been
proposed,5 relying on a four-point correlation function as

Cij
�4��t,tw� = ��i�t��i�tw�� j�t�� j�tw��

− ��i�t��i�tw���� j�t�� j�tw�� . �1�

The idea is that, while Cij is annihilated by the disorder
average, the variance of �i� j survives, possibly providing
information on cooperativity. Cij

�4� has been proved to be ef-
fective in numerical simulations6,7 but its direct experimental
investigation remains a challenge,7 as in general multipoint
correlators. A natural way out of this deadlock is to measure
responses to external perturbations, namely susceptibilities,
as suggested by Bouchaud and Biroli8 and done experimen-
tally in �Ref. 9�. In order to make sure what actually do the
nonlinear susceptibilities probe, however, it is crucial to es-
tablish their relationship with multipoint correlators. Some
specific aspects of this issue have been considered
recently,8,10 limited to the case of systems governed by a
Langevin equation but a general formulation is presently
lacking.

In this Brief Report, we present the exact derivation of the
FDR beyond-linear order for spin models evolving with Mar-
kovian dynamics. The systematic approach we use is quite
general, allowing one to derive the response function of an
arbitrary observable to every order in the external perturba-
tion and to relate it to correlation functions of the unper-
turbed system in equilibrium and out of equilibrium as well,
for generic spin models �e.g., Ising, clock, Heisenberg mod-
els, etc…� in full generality with respect to the Hamiltonian
and the evolution rules. We show that the FDR takes the
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same form for hard spins, whose kinetics is ruled by a master
equation, and for soft spins systems governed by a Langevin
equation, further supporting the generality of our result. This
relation shows that, already in equilibrium and beyond-linear
order, the susceptibility is related not only to multispin cor-
relations C�n� but also to the D correlators, much like in
linear theory out of equilibrium. This feature loosens the
relation between response and multispin correlations, raising
the question of which response function is best suited to
detect cooperative effects. We argue that a particular suscep-
tibility ��c,2�, basically the second-order response of the cor-
relation function C is well fit to this task and bears informa-
tion on the correlation length. We complement this idea by
numerical simulations of disordered spin models, showing
how the existence of a growing length can be detected using
��c,2�.

Let us sketch the derivation of the FDR for hard spins.11

Using the operator formalism, we consider for simplicity a
system of Ising spins �but the result holds more generally�
whose state is described by the vector ���= � ��i� �i=1,N�
on a lattice. The stochastic evolution is characterized by the
propagator,

P̂��t�tw� = T exp��
tw

t

dsŴ�s�� , �2�

where Ŵ�t� is the time dependent generator of the process,
which is assumed to obey detailed balance, and T is the
time-ordering operator. The expectation �O�t�� of a generic
observable O on the time dependent state �P�t�� is given by

�−�Ô�P�t��, where �−�=	���� is the flat vector. Using the

propagation �P�t��= P̂��t�tw��P�tw�� of the states, this can be

written as �−�ÔP̂��t�tw��P�tw��. Switching on an external field

h �perturbation� at time tw, changing P̂ to P̂h, the expectation

�O�t��h= �−�ÔP̂h��t�tw��P�tw�� can be expanded as �O�t��h

= �O�t��0+	n=1
� �1 /n!�	 j1. . .jn


tw
t dt1. . .
tw

t dtnRj1. . .jn
�O,n� �t , t1 , . . . , tn�

hj1
�t1� . . .hjn

�tn�, where

Rj1¯jn
�O,n� �t,t1, . . . ,tn� = � �n�O�t��h

�hj1
�t1� ¯ �hjn

�tn��
h=0

= �

− �O� �nP̂h��t�tw�
�hj1

�t1� ¯ �hjn
�tn��

h=0

�P�tw�� ,

�3�

is the nth order response function �t� t1 , . . . , tn�. Let us
workout R�O,2� as an illustration, the generalization to arbi-
trary n being straightforward.11 From Eq. �2�, one has

�2P̂h��t�tw�
�hj1

�t1��hj2
�t2�

= P̂h��t�t1�
�Ŵ�t1�
�hj1

�t1�
P̂h��t1�t2�

�Ŵ�t2�
�hj2

�t2�
P̂h��t2�tw�

+ P̂h��t�t1�
�2Ŵ�t1�
�hj1

2 �t1�
P̂h��t1�tw��12, �4�

where t1� t2 and �12=� j1,j2
��t1− t2�. We choose a perturba-

tion entering the Hamiltonian as −	ihi�t��̂i
z, where �̂z is the z

Pauli matrix. Assuming single spin-flip dynamics for sim-
plicity, the generalization to multiple spin flips being
straightforward, the derivative of the generator is

�nŴ�t1� /�hj1
n �t1�= �−	�nŴj1

�t1���̂ j1
z �n. Then

Rj1j2
�O,2��t,t1,t2� = 	2�− �ÔP̂��t�t1�Ŵj1

�̂ j1
z P̂��t1�t2�Ŵj2

�̂ j2
z �P�t2��

+ 	2�− �ÔP̂��t�t2�Ŵj2
�P�t2���12. �5�

In order to obtain an expression involving only observable

quantities �i.e., diagonal operators�, we write Ŵj1
�̂ j1

z

= 1
2 �Ŵj1

, �̂ j1
z + 1

2 �Ŵj1
, �̂ j1

z �, where �· or �·� denote the commu-
tator or the anticommutator. It can be easily shown that

B̂i�t�= ��̂i
z ,Ŵi�t�� is a diagonal operator with the property

�
�t ��i

z�t��= �Bi�t��. Since the term with the commutator acts
like a time derivative, the second-order FDR is obtained,

Rj1j2
�O,2��t,t1,t2� =

	2

4
� �

�t1

�

�t2
�O�t�� j1

�t1�� j2
�t2��

−
�

�t1
�O�t�� j1

�t1�Bj2
�t2��

−
�

�t2
�O�t�Bj1

�t1�� j2
�t2��

+ �O�t�Bj1
�t1�Bj2

�t2���
+

	2

2
�O�t�� j1

�t1�Bj1
�t2�� 
 � j2,j1

��t1 − t2� .

�6�

Care must be used for t2→ t1 since the product of the com-
mutators generates a singular term.11 In a stationary state,
using Onsager reciprocity, the above result simplifies to

Rj1j2
�O,2��t,t1,t2� =

	2

2
� �

�t1

�

�t2
�O�t�� j1

�t1�� j2
�t2��

−
�

�t2
�O�t�Bj1

�t1�� j2
�t2���

+
	2

2
�O�t�� j1

�t1�Bj1
�t2�� 
 � j2,j1

��t1 − t2� .

�7�

Let us mention that for continuous variables �soft spins� gov-
erned by a Langevin equation ��i�t� /�t=Bi�t�+�i�t�; by tak-

ing Ŵ as the Fokker–Planck generator, we obtain12 the same
FDR Eq. �6� �and hence Eq. �7�, without the last term con-
taining the � functions. Since on the r.h.s. do only appear
correlation functions of the unperturbed system, Eq. �7�
qualifies as the beyond linear FDT while Eq. �6� as its non-
equilibrium generalization. This relation can be derived for
the response of an arbitrary observable to every order in the
external perturbation, for hard and soft spins alike, without
reference to a particular Hamiltonian or transition rates. Ex-
actly like in the linear case,4 the above FDR serves as the
basis for the development of a no field algorithm for the fast
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computation of the nonlinear-response function, as it will be
shown below.

The peculiar feature of the nonlinear FDR Eqs. �6� and �7�
is the ubiquitous �even in equilibrium� presence of the corr-

elators D containing the operator B̂, which introduces a spe-
cific reference to the particular dynamical process through
the generator. This hinders a direct relation between response
and multispin-correlation functions, hampering the proce-
dure to associate � to a susceptibility, as in the equilibrium
linear theory. Despite this, we argue that a quantity related to

the second-order response of the composite operator Ô= ĉij
= �̂i

z�̂ j
z,

− Rij
�c,2��t,t1,t2� = ��2��i�t�� j�t��

�hi�t1��hj�t2�
�

h=0
− Rii

��,1��t,t1�Rjj
��,1��t,t2� ,

�8�

where Rij
��,1��t , t1� is the linear-response function of the spin

�i�Ref. 4� or alternatively, the susceptibility

�ij
�c,2��t,tw� = �

tw

t

dt1�
tw

t

dt2Rij
�c,2��t,t1,t2� , �9�

is well suited to detect cooperative effects �for disordered
systems, a disorder average is implicitly assumed� and may
be used to determine �. In equilibrium systems, this is readily
seen since a simple statistical mechanical calculation yields

�ij,eq
�c,2� = lim

t→�
�ij

�c,2��t,tw� = 	2lim
t→�

�Cij�t,t�2 = 	2Cij,eq
2 , �10�

namely the counterpart of the standard static equilibrium re-
lation between correlations and susceptibilities. Taking the
k=0 component �k=0,eq

�c,2� = �1 /N�	i,j�ij,eq
�c,2���4−d−2�, therefore,

one has direct access to the coherence length. Concerning the
full two-time dependence of ��c,2� in a system characterized
by dynamical scaling, by virtue of Eq. �10�, one expects the
same scaling form, with the same exponents of C2; hence,

�k=0
�c,2��t,tw� = �4−d−2�f� �

L�t�
,
L�tw�
L�t� � . �11�

On physical grounds, one may understand why cooperativity
effects are revealed by ��c,2� as follows: writing the suscep-
tibility �ij

��,1��t , tw�=
tw
t dt1Rij

��,1��t , t1� as �ij
��,1��t , tw�

= �xij�t , tw��, where4 xij�t , tw�= 	
2 ��i�t�� j�t�−�i�t�� j�tw�

−�i�t�
tw
t dt1Bj�t1�, in view of Eq. �5�, ��c,2� can be cast as

−�ij
�c,2��t , tw�= �xii

��,1��t , tw�xjj
��,1��t , tw��

− �xii
��,1��t , tw���xjj

��,1��t , tw��. Namely, ��c,2� is the correlation of
the variable whose average yields ���,1�, much in the same
way as Cij

�4��t , tw� is the correlation of the variable �i�t��i�tw�,
whose average gives C. Since ���,1� is the response function
conjugated to C by the FDT, this suggests that ��c,2� may be
suitable �as will be further shown numerically below� to
study cooperativity analogously, and for the same mecha-
nism of C�4�. Despite this, ��c,2� and C�4� can hardly be re-
lated. Actually, although C�4� appears in the first term on the
r.h.s. of the FDR Eqs. �6� and �7� for R�c,2�, the terms con-
taining B spoil the relation between R�c,2� and C�4�. It can be
shown, in fact, that in most cases these terms are comparable
with the first. For example, the static relation in Eq. �10�

depends crucially on the contributions of the terms contain-
ing B.

An important advantage of ��c,2� with respect to multispin
correlations is its fitting to experimental measurements. In
fact, switching on a field hi from tw onwards, one has
��i�t�� j�t��h= ��i�t�� j�t��h=0
+	l,mhlhm
tw

t dt1
tw
t dt2�2��i�t�� j�t�� / ��hl�t1��hm�t2��+O�h4�.

In disordered systems, the first term on the r.h.s. vanishes
and the only nonvanishing terms in the sum are those with
l= i and m= j �or l= j and m= i�. Hence, using the definitions
in Eqs. �9�, �8�, and �3�, ��i�t�� j�t��h− ��i�t��h

2=
−hihj�ij

�c,2��t , tw�+O�h4�. Therefore, the study of a coopera-
tive length can be reduced to the measurement of a correla-
tion function in an external field �for instance a uniform one�,
as proposed by Huse.13

In order to check these ideas and to test the efficiency of
the method to measure the cooperative length, we have com-
puted numerically �k=0

�c,2��t ,0� in the Edwards–Anderson �EA�
model with Hamiltonian H=	ijJij�i� j in d2, simulated by
means of standard Monte Carlo techniques with Glauber
transition rates, where Bi=�i−tanh�		 jJij� j�. The system is
quenched from a disordered state at t=0 to different final
temperature T�0. �k=0

�c,2��t ,0� is computed using Eq. �6�. It
must be stressed that due to the noisy nature of response
functions, the advantage provided by the FDR �Eq. �6�, in-
stead of applying an infinitesimal perturbation, is numeri-
cally unrenounceable. In fact, besides providing an incompa-
rably better signal/noise ratio, the h→0 limit is built in the
FDR. The analysis of the data proceeds as follows: from the
large t value �k=0,eq

�c,2� of ��c,2�, knowing �, � can be extracted
for each temperature. Regarding L�t� in the nonequilibrium
regime L�t���, ��c,2� must be independent from �. Using Eq.
�11� this implies f�� /L�t� ,0���L�t� /��4−d−2�. Hence, the
nonequilibrium behavior of L�t� can also be determined.
With these results, one can control that the data collapse is
obtained by plotting �−4+d+2��k=0

�c,2��t ,0� vs L�t� /� for all the
temperatures considered �see Figs. 1 and 2�. We have studied
first the model in d=1 with bimodal distribution of the cou-
pling constants Jij = �1. This system can be considered as a
laboratory since it can be mapped onto a ferromagnetic sys-
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FIG. 1. �Color online� Data collapse of ��c,2� �C in the inset� for
several temperatures in the d=1 EA model. The dashed lines are the
expected power laws in the nonequilibrium regime.
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tem where �=1 and L�t�� t1/z, with z=2, are known analyti-
cally. Moreover, besides ��c,2�, one can also check the scaling
of the usual correlation Ck=0�t , t� after the mapping, and ob-
tain another determination of L�t� and �. In doing so, we find
that the two methods to extract L�t� and � agree within the
numerical uncertainty between them, and with the analytical
behaviors. The data collapse of ��c,2� and C is shown in Fig.
1. Here, one clearly observes the nonequilibrium kinetics in
the early regime, characterized by a power-law behavior of

��c,2� with exponent 4−d−2�, as expected, and the late
equilibration with the convergence of �k=0

�c,2��0, t� to �k=0,eq
�c,2� . C

behaves similarly. After this explicit verification, we turn to
the d=2 case where the reference to C is not available. In
this case, with both bimodal and Gaussian distributions of Jij
using �=0 �Ref. 14�, we find a behavior of � consistent with
previous results.14,15 The nonequilibrium behavior is compat-
ible with a power law L�t�� t1/z�T� with a temperature-
dependent exponent in agreement with z�T��4 /T, as re-
ported in.16 The data collapse of ��c,2� is shown in Fig. 2.
Notice also the additional collapse of the curves with bimo-
dal and Gaussian bond distribution, further suggesting that
the two models may share the same universality class at fi-
nite temperatures.14

In this Brief Report, we have derived the exact beyond-
linear FDR. The result, which can be straightforwardly ex-
tended to every order, provides a rather general relation be-
tween the response and the correlation functions. It is
satisfied by systems described by a master equation or by a
Langevin equation, without reference to specific aspects of
the considered model. On the basis of the FDR we argued
that, providing numerical evidence, the second-order suscep-
tibility ��c,2� is well fitted to uncover cooperative effects and
to measure the coherence length in disordered and glassy
systems. Importantly, this susceptibility has a simple opera-
tive definition, which might be fitted to experimental
investigations.13 Finally, we mention that the relevance of the
beyond linear FDR is not restricted to the issue of cooperat-
ivity but is related to a number of open questions, among
which the extension of the concept of effective temperatures
beyond-linear order.
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symbols� bond distribution, with z�T�=4 /T. The dashed line is the
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