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don Melillo, 84084 Fisciano (SA), Italy
E-mail: corberi@sa.infn.it, Lippiello@sa.infn.it, ale.sarracino@gmail.com and
zannetti@sa.infn.it

Received 25 November 2009
Accepted 4 March 2010
Published 1 April 2010

Online at stacks.iop.org/JSTAT/2010/P04003
doi:10.1088/1742-5468/2010/04/P04003

Abstract. We study the fluctuations of the autocorrelation and autoresponse
functions and, in particular, their variances and covariance. In a first general part
of the paper, we show the equivalence of the variance of the response function
to the second-order susceptibility of a composite operator, and we derive an
equilibrium fluctuation-dissipation theorem beyond linear order, relating it to
the other variances. In a second part of the paper we apply the formalism in the
study of non-disordered ferromagnets, in equilibrium or in the coarsening kinetics
following a critical or sub-critical quench. We show numerically that the variances
and the non-linear susceptibility obey scaling with respect to the coherence length
ξ in equilibrium, and with respect to the growing length L(t) after a quench,
similar to what is known for the autocorrelation and the autoresponse functions.
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1. Introduction

Two-time quantities, such as the autocorrelation function C(t, tw) and the associated
linear response function χ(t, tw), describing the effects of a perturbation, are generally
considered in experiments, theories and numerical investigations. In equilibrium the
fluctuation-dissipation theorem (FDT) holds, providing an important tool for studying
coherence lengths and relaxation times by means of susceptibility measurements.

Apart from equilibrium, the pair C and χ has been thoroughly investigated also for
slowly relaxing systems, such as supercooled liquids, glasses, spin glasses and quenched
ferromagnets, as natural quantities for characterizing and studying the ageing behavior.
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In this context, the fluctuation-dissipation ratio X(t, tw) = dχ/dC was defined [1] in
order to quantify the distance from equilibrium, where X ≡ 1. Particularly relevant is its
limiting value X∞ = limtw→∞ limt→∞ X(t, tw) due to its robust universal properties [2]–
[5]. Complementary to the concept of X, that of an effective temperature Teff = T/X
has been thoroughly applied in several contexts [6], although the physical meaning has
not yet been completely clarified. Moreover, the fluctuation-dissipation ratio was also
proved [7] to be related to the overlap probability distribution of the equilibrium state at
the final temperature of the quench, providing an important bridge between equilibrium
and non-equilibrium. Finally, in the context of coarsening systems, the behavior of
the response function was shown to be strictly linked to geometric properties of the
interfaces [8, 9], allowing the characterization of their roughness, and, in the case of
phase ordering on inhomogeneous substrates, to important topological properties of the
underlying graph [10].

Besides this manifold interest in average two-time quantities, more recently
considerable attention has been paid also to the study of their local fluctuations, which
are now accessible in large scale numerical simulations [11] and, due to new techniques,
also in experiments [12]. The reasons for considering these quantities are various:

• For disordered systems, since averaging over the disorder makes the usual two-particle
correlation function (structure factor) short ranged even in those cases where a large
coherence length ξ is present, quantities related either to the spatial fluctuations of
C [13]–[15] or to non-linear susceptibilities [14, 16] have been proposed for detecting
and quantifying ξ.

• Local fluctuations of two-time quantities are associated with the dynamical
heterogeneities observed in several systems which are believed to be a key to local
rearrangements taking place in slowly evolving systems [11, 17]. In the context of
spin models, it was shown [18] that these fluctuations can be conveniently used to
highlight the heterogeneous nature of the system.

• In [19] it was shown that for a large class of glassy models the action describing the
asymptotic dynamics is invariant under the transformation of time t → h(t), denoted
as time reparameterization. This symmetry is expected to hold true for glassy systems
with a finite effective temperature but not for coarsening systems, where Teff = ∞ [20].
Then, restricting to glassy systems, it was proposed [18, 19] that the ageing kinetics
could be physically interpreted as the coexistence of different parameterizations t →
hr(t) slowly varying in space r. According to this interpretation, spatial fluctuations
of two-time quantities should span the possible values of C and χ associated with
different choices of h(t). Since the correlation and the response function transform
in the same way under the time reparameterization transformation, the same curve
χ(C) relating the average quantities is expected to hold also for the fluctuations.
This property was proposed in [18, 19] as a check on the time reparameterization
invariance, and the results tend to conform to this interpretation.

• In [21] it was claimed that, at least in the context of non-disordered coarsening
systems, fluctuations of two-time quantities encode the limiting fluctuation-
dissipation ratio X∞, similarly to the fluctuation-dissipation relation between the
fully averaged quantities χ and C.
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In the first part of this paper, we discuss the definition of the fluctuating versions
Ĉi, χ̂i of Ci and χi on site i, and consider their (co)variances V C

ij = 〈ĈiĈj〉 − CiCj,

V χ
ij , and V Cχ

ij (defined analogously to V C
ij ). We present a rather detailed and complete

study of these quantities and their relation to a non-linear susceptibility Vχ
ij (defined in

equation (16)) related to the fluctuations of χ̂i introduced in [16]. We show that, for i �= j,
the variance V χ

ij of χ̂i is equal to Vχ
ij . This allows us to derive a relation between V C

ij ,

Vχ
ij and V Cχ

ij , which can be regarded as a second-order fluctuation-dissipation theorem
(SOFDT) relating these quantities in equilibrium. The SOFDT holds for every choice of
t and tw and of i, j and is completely general for Markov systems. It represents also a
relation between the second moments of Ĉi and χ̂j for i �= j, but not for i = j because,
in this case, Vχ

ij cannot be straightforwardly interpreted as a variance. Prompted by the
SOFDT, we argue that Vχ

ij, rather than V χ
ij , is the natural quantity to consider, on an

equal footing with the variances V C
ij and V Cχ

ij , for studying scaling behaviors, and for
detecting and quantifying correlation lengths. Being a susceptibility, V could in principle
be accessible in experiments.

These ideas are tested in the second part of the paper, where we study numerically
the behavior of V C

ij , V Cχ
ij and of Vχ

ij in non-disordered ferromagnets in equilibrium or
in the non-equilibrium kinetics following a quench to a final temperature T at or below
Tc. Restricting to the cases with T ≥ Tc the same problem has been recently addressed
analytically by Annibale and Sollich [22] in the context of the soluble spherical model. Here
we carry out the analysis using the finite-dimensional Ising model, focusing particularly on
the scaling properties. Focusing on the k = 0 Fourier component V C

k=0 = (1/N)
∑N

i,j=1 V C
ij

(and similarly for the other quantities) our results show a pattern of behaviors for V C
k=0,

V Cχ
k=0 and Vχ

k=0 similar to what is known for C and χ. In particular, in a quench at Tc,

one finds the asymptotic scaling form V C
k=0(t, tw) ∝ V Cχ

k=0(t, tw) ∝ Vχ
k=0(t, tw) ∝ tbcw f(t/tw),

where the exponent bc = (4 − d − 2η)/zc can be expressed in terms of the equilibrium
static and dynamic critical exponents η and zc, in agreement with what was found in [22].
In quenches below Tc, in the time sector with tw → ∞ and t/tw = const, usually referred
to as the ageing regime, we find a scaling form V C

k=0(t, tw) = taC
w f(t/tw) (and similarly for

V Cχ
k=0 and Vχ

k=0), where, in contrast to the critical quench case, aC and f are genuinely non-
equilibrium quantities that cannot be straightforwardly related to equilibrium behaviors.

Our results allow us to discuss also the issue of a direct correlation between
the fluctuating parts of C and χ, as predicted for glassy systems by the time
reparameterization invariance scenario. In the ageing dynamics of coarsening systems,
we find that for large t/tw the ratio Vχ/V C diverges, both in the quench at Tc and below

Tc. This implies that Ĉ and χ̂ are not related so as to follow the curve χ(C), in contrast
with the above mentioned scenario.

This paper is organized as follows. In section 2 we introduce and discuss general
definitions of the fluctuating quantities, their variances and covariances; in section 3
we discuss the relations among them and with the second-order susceptibility Vχ. In
section 4 we specialize the above concepts to the case of ferromagnetic systems. We
study the behavior of V C , V Cχ and Vχ in equilibrium in section 4.1, relating their large
t − tw behavior to the coherence length in section 4.1.1. The non-equilibrium kinetics is
considered in section 4.2: critical quenches are studied in section 4.2.1, while section 4.2.2
is devoted to sub-critical quenches. The results of these sections are related to the issue
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of time reparameterization invariance in section 4.3. Last, in section 5 we summarize,
draw our conclusions and discuss some open problems and perspectives. Four appendices
contain some technical points.

2. Fluctuating quantities and variances

Let us consider a system described by a set of variables σi defined on lattice sites i. In
order to fix the notation we consider discrete variables, referred to as spins, the evolution
of which is described by a master equation. The results of this paper, nonetheless, apply as
well to continuous variables subjected to a Langevin equation (specific differences between
the two cases will be noticed whatever the case). The autocorrelation function is defined
as

Ci(t, tw) = 〈σi(t)σi(tw)〉 − 〈σi(t)〉〈σi(tw)〉. (1)

Using the symbol ˆ to denote the fluctuating quantities whose average gives the usual
functions, one has Ĉi(t, tw) = [σi(t) − 〈σi(t)〉][σi(tw) − 〈σi(tw)〉]. The (auto)response
function is defined as

χi(t, tw) = T

∫ t

tw

dt′
δ〈σi(t)〉h
δhi(t′)

∣
∣
∣
∣
h=0

, (2)

where 〈· · ·〉h means an average over a process where an impulsive perturbing field h has
been switched on at time t′. Notice that a factor T has been included in the definition (2)
of the response. The presence of the derivative in equation (2) makes the definition of a
fluctuating part of χi not straightforward in the case of discrete variables (see appendix A
for a discussion of a possible definition of χ̂i based on the definition (2), where the
perturbation hi is present). This problem can be bypassed using an out-of-equilibrium
fluctuation-dissipation relation

χi(t, tw) = 〈χ̂i(t, tw)〉, (3)

where in the limit of vanishing h the derivative of equation (2) is worked out analytically,
and on the right-hand side there appear specific correlation functions (see e.g. equation (7)
and the discussion below) computed in the unperturbed dynamics. Such a relation
has been obtained in different forms in [16], [23]–[29]. This allows one to introduce a
fluctuating part of the susceptibility defined over an unperturbed process. Equation (3)
is the basis of the so called field-free methods for the computation of response functions
allowing the computation of χi without applying any perturbation.

With the quantities introduced above, one can build the following (co)variances:

V C
ij (t, tw) = 〈δ̂Ci(t, tw)δ̂Cj(t, tw)〉 (4)

V χ
ij (t, tw) = 〈δ̂χi(t, tw)δ̂χj(t, tw)〉 (5)

V Cχ
ij (t, tw) = 〈δ̂Ci(t, tw)δ̂χj(t, tw)〉 (6)

where, for a generic observable A, we have defined δ̂A ≡ Â− 〈Â〉. Notice that we restrict
the analysis to variances obtained by taking products of two-time quantities on different
sites but with the same choice of times t, tw. V C

ij (t, tw) is the four-point correlation function

doi:10.1088/1742-5468/2010/04/P04003 5
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introduced in [13] for studying cooperative effects in disordered systems, usually denoted
as C4.

As discussed in [26, 30], for a given unperturbed model, there are many possible
choices of the perturbed transition rates, which give rise to different expressions for χ̂i.
However, as shown in [30], and further in appendix A, we expect all these choices to lead
to approximately the same values of the variances as were introduced above (with the
notable exception of the equal site variance V χ

ii , which, however, is not of interest in this
paper). Then, in the following, we will consider the expression

χ̂i(t, tw) = 1
2

[

σi(t)σi(t) − σi(t)σi(tw) − σi(t)

∫ t

tw

dt1 Bi(t1)

]

, (7)

where Bi = −∑
σ′ [σi − σ′

i]w(σ′|σ), w(σ′|σ) being the transition rate for going from
the configuration σ to σ′. This form has been obtained in [26] (and, in an equivalent
formulation, for continuous variables in [16, 23]).

The relation (3) with the choice (7) has the advantage of a large generality, holding
for Markov processes with generic unperturbed transition rates, both for continuous and
discrete variables. Other possible relations between the response and quantities computed
on unperturbed trajectories have been proposed [24, 25, 27, 28] but we do not consider
them here because, as discussed in [30], in those approaches either the response is not
related to correlation functions of observable quantities in the unperturbed system, as
in [24, 27, 28], or, in the case of [25], it is restricted to a specific systems (Ising) with a
specific (heat bath) transition rate.

The k = 0 Fourier components of the correlation and response functions are usually
considered to extract physical information, such as spatial coherence or relaxation times,
from the (unperturbed) system under study. The k = 0 mode V C

k=0(t, t) of the variance of

Ĉ, defined through

V C
k=0(t, tw) =

1

N

N∑

i,j=1

V C
ij (t, tw), (8)

has been considered to access the same information for disordered systems. This might
suggest that the same information is contained in the k = 0 component of the other
variances. Notice that, for V χ, the sum (8) includes the equal site term V χ

ii which, as
anticipated, takes different values according to the specific choices of the fluctuating part
of the response. We will deal with this problem later.

3. The equilibrium relation between variances and non-linear susceptibilities

In this section we derive a relation between the variances and the non-linear susceptibility
Vχ (defined in equation (16)) that will be interpreted as a second-order fluctuation-
dissipation theorem (SOFTD) relating these quantities. We sketch here the basic results;
further details and formalism are contained in appendix B.

Let us start by recovering the usual FDT. In equilibrium, using time translation and
time inversion invariance, namely the Onsager relations, it can be shown [16] that

〈σi(t)Bi(t1)〉eq = − ∂

∂t1
〈σi(t)σi(t1)〉eq, (9)

doi:10.1088/1742-5468/2010/04/P04003 6
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valid for t > t1. Plugging this relation into equations (3) and (7) one retrieves the usual
fluctuation-dissipation theorem

〈D̂i(t, tw)〉 = 0, (10)

where we have introduced the quantity

D̂i(t, tw) = χ̂i(t, tw) + Ĉi(t, tw) − Ĉi(t, t). (11)

Notice that, for Ising spins σi = ±1, Ĉi(t, t) ≡ 1 and does not fluctuate.
The next step is to seek for a relation holding between the variances. Since the

mechanism whereby this relation is obtained is different for equal or different sites i, j
(due to the sensitivity of V χ

ii to the choice of χ̂i), we split the arguments into separate
sections.

3.1. i �= j

Defining the second moment of D̂i as V D
ij (t, tw) = 〈δ̂Di(t, tw)δ̂Dj(t, tw)〉, and using the

equilibrium property (9) it is easy to show that

V D
ij (t, tw) = V χ

ij (t, tw) + 2V Cχ
ij (t, tw) + V C

ij (t, tw) − V C
ij (t, t). (12)

Proceeding in a similar way to in the derivation of equation (10), in appendix B we show
that, for i �= j, the rhs of equation (12) vanishes in equilibrium. Hence we have the
following SOFDT:

V D
ij (t, tw) = 0. (13)

This relation holds for every choice of the fluctuating part of χ: indeed, we have already
noticed that on different sites i, j the variances involved in the rhs of equation (12) are
independent of that choice. Interestingly, equation (13) shows that not only does the

first moment of D̂i vanish (due to the FDT (10)), but also the second moment does too.
Moreover, as shown in appendix A, the equal site variance V D

ii is not zero (due to the
divergence of the term Kχ

i (or K̃χ
i ) appearing in V χ

ii ; see equations (A.21) and (A.22)),

indicating that D̂ is not identically vanishing, and hence it is a truly fluctuating quantity.
This leads to the surprising conclusion that D̂ is an uncorrelated variable for any choice of
i, j and of t, tw, and in any equilibrium state of any Markovian model. This observation,
which might have far reaching consequences, will be enforced in section 4 to disentangle
quasi-equilibrium correlation from the genuine non-equilibrium ones in ageing systems.

3.2. i = j

For i = j a relation such as equation (10) cannot be satisfied for any choice of
the fluctuating part of χ. In order to show that, let us first observe that, recalling
equation (12), if equation (13) were to hold also for i = j, the quantity −2V Cχ

ii (t, tw) −
V C

ii (t, tw)+V C
ii (t, t) should equal V χ

ii (t, tw). This quantity can be easily computed, yielding

−2V Cχ
ii (t, tw) − V C

ii (t, tw) + V C
ii (t, t) = −χ2

i (t, tw) − Δi(t, tw), (14)

where Δi(t, tw) = 2〈Ĉi(t, tw)χ̂i(t, tw)〉+〈Ĉ2
i (t, tw)〉−〈Ĉ2

i (t, t)〉 is a quantity which vanishes

for Ising spins, as can be easily shown using the definitions of Ĉi and χ̂i and the

doi:10.1088/1742-5468/2010/04/P04003 7
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property (B.3). On the other hand, computing V χ
ii directly leads to the result (see

appendix A)

V χ
ii (t, tw) = −χ2

i (t, tw) − Δi(t, tw) + Kχ
i (t, tw), (15)

where Ki, given in equation (A.21), is a quantity that has been studied in specific models
in [30] and found to be positive and diverging as t − tw increases. Expression (15) is
different from the rhs of equation (14), thus proving that the SOFTD does not hold for
i = j. Worse, the quantity Kχ

i appearing in equation (15) prevents the possibility of any
direct relation between the variances because it introduces an explicit time dependence.

3.3. The non-linear susceptibility Vχ
ij(t, tw)

In order to remove the asymmetry between i = j and i �= j and proceed further, the
idea is to search for a quantity Vχ

ij related to V χ
ij such that Vχ

i�=j = V χ
i�=j , while on equal

sites the equilibrium value of Vχ
ii equals the rhs of equation (14). This would allow one to

arrive at a pair of relations analogous to equations (13) and (12) for any ij. As shown in
appendix C, the second-order susceptibility

Vχ
ij(t, tw) ≡

∫ t

tw

dt1

∫ t

tw

dt2

[
R

(2,2)
ij;ij (t, t; t1, t2) − Ri(t, t1)Rj(t, t2)

]
, (16)

where

R
(2,2)
ij;ij (t, t; t1, t2) ≡ T 2 δ2〈σi(t)σj(t)〉h

δhi(t1)δhj(t2)

∣
∣
∣
∣
h=0

(17)

is the non-linear impulsive response function proposed in [16] for studying heterogeneities
in disordered systems, meets the requirements above. Then, recalling equation (14), one
has the relations

VD
ij (t, tw) = 0, (18)

and

VD
ij (t, tw) = Vχ

ij(t, tw) + 2V Cχ
ij (t, tw) + V C

ij (t, tw) − V C
ij (t, t) (19)

formally identical to equations (13) and (12), but holding for every choice of the sites i, j
and hence also for the k = 0 component, namely

VD
k=0(t, tw) = 0. (20)

In summary, one always has an equilibrium relation (equation (18) or (20)) between
the second-order response defined in equations (16) and (17) and the variances V C

ij and

V Cχ
ij . In the case of different sites i �= j, this non-linear response is also the variance of χ̂,

whereas on equal sites there is no analogous interpretation, and neither is it possible to
obtain a relation involving V χ

ii directly.
Coming back to the problem discussed at the end of section 2, namely the possibility

of extracting physical information on the unperturbed system from the k = 0 mode of
the variances, some considerations are in order. First, it is clear that, as regards V χ

k=0, its
value changes depending on the way the perturbation is introduced (via the term V χ

ii ). In
this way this quantity mixes information regarding the perturbation with other factors of
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interest. The quantity Vχ
k=0, however, does not suffer from this problem, since its equal

site value can always be related to quantities that do not depend on the choice of the
perturbation. Moreover, for large times, V χ

k=0 (defined in analogy to equation (8)) turns
out to be dominated by the equal site contribution. Indeed, whatever definition of χ̂i is
adopted, either the quantity Kχ

i or K̃χ
i comes in (see equations (A.22) and (A.23)), and

these are either infinite (K̃χ
i ) or diverging with increasing t−tw (Kχ

i ). These considerations
suggest the use of Vχ

k=0. Indeed it has been shown in specific cases [16] that this quantity
contains information on relevant properties, such as the coherence length, similarly to the
variance V C

ij , and therefore has an important physical meaning.

4. Fluctuations in ferromagnets

Specializing the general definitions given above to the case of ferromagnetic systems, in
this section we study the behavior of the k = 0 mode of the quantities introduced above in
the Ising model in equilibrium (section 4.1) and in the non-equilibrium kinetics following a
quench to Tc (section 4.2.1) or below Tc (section 4.2.2). Our main interest is in the scaling
of these quantities with respect to the characteristic length of the system. From this
perspective, it is quite natural to focus on Vχ

k=0 rather than on V χ
k=0. Indeed we will show

that in any case V C
k=0, V Cχ

k=0 and Vχ
k=0 obey scaling forms from which a correlation length

can be extracted. On the other hand, as already anticipated, these scaling properties are
masked in V χ

k=0 by the term Kχ
i or K̃χ

i .

4.1. Equilibrium behavior

Here we consider the behavior of V C , V Cχ and Vχ in equilibrium states above, at, and
below Tc. In the last case, we consider equilibrium within ergodic components, namely in
states with broken symmetry.

4.1.1. Limiting behaviors for t − tw = 0 and for t − tw → ∞. Before discussing the
scaling properties of V C , V Cχ and Vχ, let us compute their limiting behaviors for
small and large time differences t − tw. From the definitions (4), (6) and (16) one has

V C
ij (t, t) = V C,χ

ij (t, t) = Vχ
ij(t, t) = 0, and the same for the k = 0 component. One can

compute analytically also the limiting values attained in equilibrium by V C , V C,χ and
Vχ for t − tw → ∞, relating them to the usual static correlation function. Indeed, with
the definitions of section 2, all the quantities considered are written in terms of two-
time/two-site correlation functions. For large time differences these correlation functions
can be factorized as products of one-time quantities resulting in the following behavior
(details are given in appendix D):

V C
ij (∞) = lim

t−tw→∞
V C

ij (t − tw) = Cij,eq(Cij,eq + 2m2)

V Cχ
ij (∞) = lim

t−tw→∞
V Cχ

ij (t − tw) = −m2Cij,eq

Vχ
ij(∞) = lim

t−tw→∞
Vχ

ij(t − tw) = −C2
ij,eq,

(21)

where m is the equilibrium magnetization and Cij,eq ≡ 〈σiσj〉eq−m2 is the static correlation
function.
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For the k = 0 components, from equations (21) for T � Tc, using the scaling
Cij,eq ∼ |i− j|2−d−ηf(|i− j|/ξ), where ξ is the equilibrium coherence length and i− j the
distance between i and j, one has

V C
k=0(∞) = −Vχ

k=0(∞) ∝ ξβc, (22)

where

βc = 4 − d − 2η (23)

is an exponent related to the critical exponent η, and

V Cχ
k=0(∞) = 0, (24)

because m = 0. For V C
k=0(∞) and Vχ

k=0(∞) the same result holds true also below (but close
to) Tc, since the terms containing the magnetization in equations (21) can be neglected.

Interestingly, the behavior of V Cχ
k=0(∞), on the other hand, is discontinuous around the

critical temperature: it vanishes identically for T > Tc while it diverges as −(Tc − T )2β−γ

(where γ = (2−η)ν and β are the usual critical exponents) on approaching Tc from below.

4.1.2. Scaling behavior. We turn now to the point that we are mainly interested in, namely
the scaling behavior of V C , V Cχ and Vχ. To simplify the notation let us introduce the
symbol V X , with X = C, X = Cχ, and X = χ, to denote V C , V Cχ and Vχ, respectively.
Approaching the critical temperature the coherence length diverges and hence a finite-size
scaling analysis of the numerical data will be necessary in section 4.1.3. Let us discuss
here how such an analysis can be performed. For a finite system of linear size L we expect
a scaling form

V X
k=0(t − tw) = LβXfX

(
t − tw − t0

Lzc
,
ξ

L
)

(25)

where t0 is a microscopic time, zc is the dynamic critical exponent, and fX(x, y) a scaling
function (in the following, in order to simplify the notation, we will always denote scaling
functions with an f , even if, in different cases, they may have different functional forms).
Away from the critical point, matching the large t− tw behavior of equation (25) with the
large time difference limits V C

∞ , Vχ
∞ of equation (22) implies fC(x, y) ∼ fχ(x, y) ∼ ξβc/LβX .

Since only the ratio ξ/L must enter fX this fixes the exponents βC = βχ = βc. Finally,
equation (20) implies that also βCχ takes the same value and, in conclusion,

βX ≡ βc (26)

for all the quantities. Letting Lzc = (t − tw − t0) in equation (25) implies

V X
k=0(t − tw) = (t − tw − t0)

bcfX

(
t − tw − t0

ξzc

)

, (27)

where fX [(t−tw−t0)/ξ
zc] is shorthand for fX [1, (t−tw−t0)/ξ

zc], and bc = βc/zc. Assuming
that there is no dependence on ξ for small time differences t − tw leads to fX(x) ∼ const
in this regime. This implies

V X
k=0(t − tw) ∼ (t − tw − t0)

bc (28)

for (t − tw − t0) � ξzc.
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Figure 1. V C
k=0(t − tw), −Vχ

k=0(t − tw) and −V Cχ
k=0(t − tw) are plotted against

t − tw in equilibrium conditions at T = 3.5 > Tc (left panel) where ξ � 1.98 and
at T = 1.5 < Tc (right panel) where ξ � 0.88. In the insets VD

k=0(t, tw) is plotted
against t − tw. The system size is L = 103 and l = 102.

4.1.3. Numerical studies. In this section we study numerically the equilibrium behavior
of the two-dimensional Ising model, where zc � 2.16 and bc � 0.69, and check the scaling
laws derived above.

Before presenting the results let us comment on the method used to compute the
k = 0 components. For T �= Tc, for any t and tw, V X

ij (t − tw) decays over a distance
i − j at most of order of ξ. Then, performing the sum in equation (8) over the whole
system one introduces a number of order [(L − ξ)/ξ]d of terms whose average value is
negligible. However, due to the limited statistics of the simulations, such terms are not
efficiently averaged and introduce noisy contributions which, with the definition (8), sum
up to produce an overall noise of order [(L − ξ)/ξ]d/2. For L much larger than ξ this
quantity is large and lowers the numerical accuracy. Therefore, since one knows that the
average of that noise is zero, the most efficient way of computing V X

k=0 is to sum only up to
distances i− j = l � ξ. We have checked that the two procedures (namely summing over
all the sites i, j of the system or restricting to those with i − j ≤ l) give the same results
within the numerical uncertainty. We anticipate that in the study of non-equilibrium after
a quench below Tc presented in section 4.2.2, similar considerations apply with ξ replaced
with L(t), the typical size of domains. Clearly, at Tc where ξ = ∞ such a procedure
cannot be applied and the sum must be performed over the whole system.

Starting from the case T > Tc, in the left part of figure 1 we plot V C , V C,χ and
Vχ as functions of t − tw. V C

k=0 and −Vχ
k=0 grow monotonically to the same limit (22),

while V Cχ
k=0 has a non-monotonic behavior vanishing for large time differences. In the

inset, by plotting VD
k=0(t, tw) (we recall that V C

k=0(t, t) ≡ 0 for Ising spins) we confirm the
SOFDT (20).

In the case of quenches below Tc (right part of figure 1), we obtained the broken
symmetry equilibrium state by preparing an ordered state (i.e. all spins up) and then
letting it relax at the working temperature to the stationary state. In this case the
behavior of V C , V C,χ and Vχ is similar to the case for T > Tc, with the difference that
also Vχ

k=0 has a non-monotonic behavior. We have checked that for temperatures close to
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Figure 2. L−1.45V C
k=0(t−tw) is plotted against (t−tw−t0)/Lzc (with t0 = 0.475),

in equilibrium conditions at Tc for different values of L. The dashed line is
the expected power-law behavior [(t − tw − t0)/Lzc ]bc (bc = 0.69). In the inset
VD

k=0(t, tw) is plotted against t − tw for L = 103.

Tc, both above and below Tc (i.e. for T = 2.28 and T = 2.25), V C , V C,χ and Vχ grow as
(t−tw−t0)

bX with bX consistent with the expected value bc, as expressed in equation (28).
In order to study the critical behavior we have equilibrated the system at Tc using

the Wolff cluster algorithm [31]. In figure 2 we present a finite-size scaling analysis of the
data. In view of equation (25) we plot L−1.45V C

k=0 for different L against (t− tw − t0)/Lzc,
where t0 = 0.475 and the exponent 1.45 (in good agreement with the expected value
βc = 1.5) have been obtained by requiring the best data collapse. All the data exhibit a
nice collapse on a unique master curve. The master curve grows initially as a power law
with an exponent 0.69 in good agreement with bc, as expected from equation (28), and
then tends toward saturation for t− tw + t0 � Lzc. A similar behavior is observed for the
other V C , V Cχ, apart from the sign, since Vχ

k=0 and V Cχ
k=0 are negative for large t − tw.

4.2. Non-equilibrium

4.2.1. The critical quench. In this section we consider a ferromagnetic system quenched
from an equilibrium state at infinite temperature to Tc. Numerical results are presented
for d = 2. For d = 3 the situation is qualitatively similar although our data are too noisy
for extracting precise quantitative information. With T = Tc we expect a scaling form

as in equation (25) where the role played by L is now assumed by L(tw) ∼ t
1/zc
w . Letting

t − tw � t0, one has

V X
k=0(t, tw) � tbcw fX

(
t

tw

)

, (29)

where fX(t/tw) is shorthand for fX(t/tw,∞), and the short time behavior (28). Notice
that this scaling, like the equilibrium one (27), is consistent with the results of [22] where
the same forms are obtained with bc = (4− d− 2η)/zc = (4 − d)/2, since in the spherical
model η = 0 and zc = 2.

The behavior of V C , V C,χ and Vχ is shown in figure 3. By plotting t−0.66
w V X

k=0(t, tw)
versus (t − tw)/tw one observes a good collapse of the curves for (t − tw)/tw sufficiently
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Figure 3. t−0.66
w V C

k=0(t− tw) (left panel, log–log scale), −t−0.66
w V Cχ

k=0(t− tw) (right
panel, log–log scale) and −t−0.66

w Vχ
k=0(t− tw) (inset of the right panel, log–linear

scale) are plotted against (t− tw)/tw for a quench to Tc for d = 2. In the inset of
the left panel VD

k=0(t, tw) is plotted against (t − tw)/tw.

large. Lack of collapse for t− tw � t0 is expected due to the t0 dependence in the scaling
form (25) and those derived from it. The exponent 0.66 is in good agreement with the
expected one bc � 0.69, and this confirms that the scaling (29) is obeyed. In the short
time difference regime, for t − tw � tw, these quantities behave as in equilibrium, and in
particular the relation (20) is obeyed, as is shown in the inset of the left panel of figure 3.
For t − tw � tw the relation (20) breaks down and the asymptotic regime is entered. In
this time domain V C and V Cχ approach constant values in the large t limit. For V C

k=0 this
can be understood as follows: writing the sum (8) as an integral

V C
k=0(t, tw) =

∫

dr V C(r, t, tw) (30)

where r = |i − j|, and invoking the clustering property, by factorizing V C(r, t, tw) for
t → ∞, one has

V C
k=0(t, tw) �

∫

drCr(tw)Cr(t). (31)

Using the scaling of the correlation function Cr(t) = t−(d−2+η)/zcf(r/t1/zc), with the small
x behavior f(x) ∼ x−(d−2+η), equation (31) becomes

lim
t→∞

V C
k=0(t, tw) = ctbcw (32)

with c =
∫

ddxx−(d−2+η)f(x). Notice that the asymptotic values (32) approached

by V C
k=0 (and V Cχ

k=0) are increasing functions of tw. This mechanism makes limtw→∞
limt→∞ V C

k=0(t, tw) = ∞, and in this sense the limit (22) is recovered, bearing in mind that

ξ = ∞. Moreover, limtw→∞ limt→∞ V Cχ
k=0(t, tw)/V C

k=0(t, tw) is a tw independent constant

as was found in [21]. We also observe that V Cχ
k=0 going to a constant value is a different

behavior with respect to the spherical model [22], where this quantity vanishes for t → ∞.
The quantity Vχ

k=0 has a different behavior, in that it diverges for t → ∞ for any value

of tw. Therefore, at variance with the case for V C
k=0 and V Cχ

k=0, the limit (22) is always
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recovered, irrespectively of tw. This is a general property of susceptibilities. Considering
the linear case for simplicity, from equation (A.2) one sees that χi can be written as
an average of a one-time quantity over a process where the Hamiltonian is changed at
tw. Since the average of a one-time quantity must tend to its (perturbed) equilibrium
value for large t (even if the Hamiltonian has been modified at tw), this explains why
limt→∞ χi(t, tw) is independent of tw. An analogous argument holds for Vχ

ij . Indeed,
recalling equations (A.4) and (A.14), for i �= j also this quantity can be written as an
average of a one-time quantity. The same property holds for the equal site contribution
since, according to equation (14), it is Vχ

ii(t, tw) = −χ2
i (t, tw). The limit (22) is then

satisfied irrespectively of tw.

4.2.2. The quench below Tc. In this section we consider a ferromagnetic system quenched
from an equilibrium state at infinite temperature to T < Tc, for d = 1, 2.

Let us recall the behavior of C and χ in a quench from T = ∞ to T < Tc. In the
large tw limit C obeys the following additive structure [32]:

C(t, tw) � Cst(t − tw) + Cag(t, tw). (33)

Here Cst is the contribution provided by bulk spins which are in local equilibrium. This
term vanishes for quenches to T = 0. Cag(t, tw) is the ageing contribution originated by
the presence of interfaces which scales as

Cag(t, tw) = t−b
w f

(
t

tw

)

, (34)

with b = 0 and the property [5]

f(x) ∼ x−λ (35)

for large x, where λ is related to the Fisher–Huse exponent.
A decomposition analogous to equation (33) holds for χ(t, tw), with χst(t − tw) =

χeq(t − tw) = Ceq(t, t) − Ceq(t, tw) and

χag(t, tw) = t−a
w g

(
t

tw

)

, (36)

with g behaving as [5]

g(x) ∼ x−a (37)

for large x. The exponent a depends on the spatial dimensionality such that a > 0 for
d > dl, dl being the lower critical dimensionality, and a = 0 for quenches at d = dl

with T = 0 [5, 8, 10, 33]. Notice that, at variance with the critical quench case, the non-
equilibrium exponents are not related to the equilibrium ones, since the additive form (33)
splits them into separate terms.

The addictive structure (33), which is expected also for the V X , opens the problem of
disentangling the stationary from the ageing contributions to allow the separate analysis of
their scaling properties. In order to do this one usually enforces the knowledge of the time
sectors where the stationary and the ageing terms contribute significantly. Specifically,
working in the short time difference regime, namely with tw → ∞ and t − tw finite,
the ageing term is constant and one can study the behavior of the stationary one. In

doi:10.1088/1742-5468/2010/04/P04003 14

http://dx.doi.org/10.1088/1742-5468/2010/04/P04003


J.S
tat.M

ech.
(2010)

P
04003

Fluctuations of two-time quantities and non-linear response functions

Figure 4. t
−1/2
w V C

k=0(t − tw) (left panel, log–log scale), −t
−1/2
w V Cχ

k=0(t − tw) (right
panel, log–log scale) and −t

−1/2
w V χ

k=0(t − tw) (inset of the right panel, log–linear
scale) are plotted against (t − tw)/tw for different values of tw in the key in a
quench to T = 0 for d = 1.

contrast, in the ageing regime with tw → ∞ and t/tw finite, Cst(t − tw) � 0 and one has
direct access to Cag. The same procedure can be applied to isolate the stationary and
ageing contributions to the V X , as will be done in section 4.2.2. However, in so doing
one effectively separates the two contributions only in the limit tw → ∞. In numerical
simulations, where finite values of tw are used, a certain mixing of the two is unavoidable
and may affect the results. Furthermore, this technique fails in systems where (in contrast
to the ferromagnetic model case considered here) we do not have a precise knowledge of
the time sectors where stationary and ageing terms contribute.

For the V X a more elegant and effective technique for isolating the ageing from
the stationary terms relies on the SOFDT. Indeed, according to equation (18), an exact
cancelation occurs in VD between the stationary (equilibrium) terms, so only the ageing
behavior is reflected by VD. In other words, recalling the discussion at the end of
section 3.1, the quantity D̂ does not produce any correlation in equilibrium and hence what
is left in VD is the correlation due to ageing. This fact will be enforced in section 4.2.2.

Let us now consider the behavior of V C , V C,χ and Vχ for d = 1, 2.

d = 1, quenching to T = 0

As explained in [5] the dynamical features of a system at the lower critical dimension
quenched to T = 0 are those of a quench into the ordered region, rather than those
of a critical quench, due to a non-vanishing Edwards–Anderson order parameter qEA =
limt→∞ limtw→∞ C(t, tw). Since at T = 0 there are no stationary contributions we expect
V X

k=0(t, tw) = V X
k=0,ag(t, tw), with the scaling

V X
k=0,ag(t, tw) = taX

w fX

(
t

tw

)

. (38)

The behavior of these quantities is shown in figure 4. By plotting t
−1/2
w V X(t, tw) versus

t/tw one observes an excellent collapse of the curves (tiny deviations from the master
curve for small values of t − tw are due to the t0 dependence, as discussed above). This
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Figure 5. t−1
w V C

k=0(t − tw) (left panel), −t
−1/2
w V Cχ

k=0(t − tw) (right panel) and
t
−1/2
w Vχ

k=0(t − tw) (inset of the right panel) are plotted against (t − tw)/tw for
different values of tw in the key in a quench to T = 1.5 for d = 2. In the inset of
the left panel VD

k=0(t, tw) is plotted against (t − tw)/tw.

implies that equation (38) is obeyed with aX = 1/2. Notice that, for large values of t/tw,
V C and V Cχ seem to approach constant values whereas Vχ

k=0 grows as Vχ ∝ t1/2. Then
one has the limiting behavior fX(x) ∼ xλX , with values of the exponents consistent with
λC = λCχ = 0 and λχ = 1/2.

d = 2, quenching to 0 < T < Tc

In this case we consider quenches to finite temperatures, and hence stationary
contributions are present. We expect that one can select between the stationary and
the ageing contributions to V X(t, tw) by considering the short time limit and the ageing
regimes separately. In the former case, only the stationary terms contribute and then
we expect the relation (20) to be obeyed. This is shown in the inset of the left panel of
figure 5 where the relation (20) is observed to hold for t− tw � tw. For the ageing regime
one selects the ageing contribution scaling as in equation (38). Indeed, on plotting, in
figure 5, t−aX

w V X(t, tw) versus (t−tw)/tw one observes an asymptotic collapse of the curves
with aC = 1 and aCχ = aχ = 1/2. A residual tw dependence can be observed (particularly
for V C) that tends to reduce on increasing tw. This suggests interpreting this correction
as being produced by the stationary contributions which, due to the limited values of tw
used in the simulations, are not yet completely negligible. A clear confirmation of this
interpretation comes from the inspection of the behavior of V D

k=0 in the inset of the left
panel of figure 5. Indeed one observes that, at variance with V C

k=0, this quantity exhibits
an excellent scaling for every value of tw, due to the fact that the stationary contributions
do not contribute to V D

k=0. This suggests the use of V D
k=0 to study ageing behaviors in more

complex non-equilibrium systems, such as spin glasses, where the nature of the stationary
contribution has not yet been clarified.

The results for V C for d = 1 and 2 suggest that the scaling exponent depends on
the space dimension as aC = d/2. This can be understood on the basis of an argument
which, for simplicity, is presented below for the case d = 1. Let us consider an interface
I at position xI(tw) at time tw. Suppose that at time t, I has moved to a new position
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xI(t) > xI(tw). To start with, let us suppose that I is the only interface present in the

system and that t − tw � tw. Let us indicate by RI the region where Ĉi(t, tw) = −1
(in the present case the region x(tw) < i < x(t) swept out by the interface). Since
V C

ij is the correlation function of the Cis and the quench is effectively made to below

Tc, V C
k=0 is proportional to the volume V (RI) = xI(t) − xI(tw) of the region RI . For

t − tw � tw interfaces can be considered as yielding independent contributions and the
above argument can be extended to the physical case with many interfaces. In doing
that one simply has to replace V (RI) with its typical value V (R) obtained by averaging
over the behavior of all the interfaces. Since the typical value of V (R) is L(t) − L(tw)
one obtains V C

k=0(t, tw) ∝ L(t) − L(tw). Repeating the argument for generic d one finds
V C

k=0(t, tw) ∝ Ld(t) − Ld(tw). For t − tw � tw the situation is more complex because in
this time domain another interface J may move into the region swept out by the interface
I and one cannot disentangle their contributions. The situation simplifies again in the
limit t − tw → ∞, because xI(t) � xI(tw) (we assume, without loss of generality, that
I has moved in the direction of increasing i). In this case, in the region swept out by
the interface, the configuration of the system at tw was characterized by many domains
of different sign. For an interface separating positive spins on the left of it from positive
ones, Ĉi(t, tw) is equal to the sign of the domain to which the ith spin belonged at tw.
Then, almost all the contributions to V C

k=0 cancel, because of these alternating signs.
The only imbalance between positive and negative contributions comes from the region
around xI(t). Indeed, the interface can build up a positive contribution to V C

k=0 if it is not
centered on the middle of the domain located there at tw. This contribution is of order
L(tw) (V (R) ∼ Ld(tw), for generic d) leading to the saturation of V C

k=0 to a tw-dependent
value for large t. In conclusion, from the argument above we obtain, in both of the regimes
t− tw � tw and t− tw � tw, a behavior consistent with equation (38) with aC = d/2 and
fC(x) � (xd/2 − 1) for t − tw � tw and limx→∞ fC(x) = const. The same result is found
for the soluble large N model [20]. Another way to understand the behavior of V C is the
following: factorizing for t − tw → ∞ as V C

k=0 =
∫

dr 〈σi(t)σj(t)〉〈σi(tw)σj(tw)〉, using the
scaling 〈σi(t)σj(t)〉 = g(r/L(t)) and performing the integral, one has

∫

ddr g(r/L(t))g(r/L(tw)) = L(tw)d

∫

ddx g(xL(tw)/L(t))g(x), (39)

i.e. V C
k=0 = L(tw)df(t/tw), with limt→∞ f(t/tw) = const. This behavior has been derived

in the sector of large t − tw but the scaling (38) implies its general validity. A similar
result but for a somewhat different definition of V C is found in [34]. Going back to the
data, the saturation for large t predicted by the above arguments is better observed for
d = 1 (figure 4) while for d = 2, due to computer time limitations, the data of figure 5
only show a tendency.

The data for V Cχ
k=0,ag(t, tw) and Vχ

k=0,ag(t, tw) collapse with an exponent consistent

with aCχ = aχ = 1/2. For large values of (t − tw)/tw, Vχ
k=0 grows as Vχ ∝ t1/2 while V Cχ

approaches a constant value, similarly to V C . In conclusion, our data show that aC = d/2,
aCχ = aχ = 1/2, and λC = λCχ = 0, λχ = 1/2 hold for d = 1, 2, suggesting that this
might be the generic behavior for all d.4

4 In order to check this point further we have also computed the V C , V C,χ and Vχ for d = 3. Preliminary results
seem to substantiate the dependence of the exponents discussed in the text.
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4.3. Time reparameterization invariance

In a series of papers [19] it was shown that the action describing the long time slow
dynamics of spin glasses is invariant under a reparameterization of time t → h(t). Since
C and χ have the same scaling dimension, the parametric form χ(C) is also invariant under
time reparameterizations. Elaborating on this, it was claimed that the long time physics of
ageing systems is characterized by Goldstone modes in the form of slowly spatially varying
reparameterizations hr(t), like for spin waves in O(N) models. According to this physical
interpretation, it was conjectured that fluctuating two-time functions measured locally by
spatially averaging over a box of size l centered on r, i.e. Ĉr(t, tw) =

∑
i Ĉi(t, tw)θ(l−|i−r|)

and similarly for χ̂r(t, tw), should fall on the master curve χ(C) of the average quantities
in the asymptotic limit where t and tw are large. This was checked to be consistent with
numerical results for glassy models in [18]. The choice of l should be such that l ∼ R(t),
where R(t) is the typical length over which the hr(t) variations occur.

Let us first observe that, with the definitions (8) and the discussion of l at the
beginning of section 4.1.3, the variances V C

k=0 and V χ
k=0 considered in this paper coincide

with the variances of the fluctuating quantities Ĉr, χ̂r introduced above, provided that
l is the same in the two cases. Our results for V X

k=0, therefore, allow us to comment on
this issue. Before doing so, however, let us recall once again that Vχ is not the variance
of the fluctuating χ̂. Hence, from the analysis of Vχ

k=0 one cannot directly infer the
properties of χ̂. On the other hand, it is clear that χ̂ cannot fit a priori into the time
reparameterization invariance scenario, since its variance contains the diverging terms Kχ

i

or K̃χ
i of equations (15) and (A.23), according to equations (A.19) and (A.22). Hence, the

numerical results contained in [18], which are obtained by switching on the perturbation,
can only be consistent with that scenario if a sufficiently large value of the perturbation
h is used in the simulations, such that the first contribution on the rhs of equation (A.23)
can be neglected.

The results of section 4.2 show that limtw→∞ limt→∞ Vχ
k=0/V

C
k=0 = ∞, both in the

quench to Tc and below Tc. Since V χ ≥ Vχ (see equation (A.19) or (A.22)) this implies

that the fluctuations χ̂ and Ĉ cannot be constrained to follow the χ(C) curve, at least
in this particular order of the large time limits, as already noticed in [21]. Hence the
interpretation of [18, 19] cannot be strictly obeyed. This may indicate either that the
symmetry t → h(t) is not obeyed in coarsening systems, as claimed in [20], or that its
physical interpretation misinterprets the effects of time reparameterization invariance in
phase-ordering kinetics. Actually, the results of [21] show that at least the limiting slope

X∞ of χ(C) is encoded in the distribution of Ĉ and χ̂. Whether this feature might be
physically interpreted as a different realization of time reparameterization invariance in a
coarsening system is as yet unclear.

5. Conclusions

In this paper we have considered the fluctuations of two-time quantities by studying
their variances and the related second-order susceptibility. In doing that a first problem
arises already at the level of their definition. While Ci is quite naturally associated with
the fluctuating quantity [σi(t) − 〈σi(t)〉][σi(tw) − 〈σi(tw)〉], for χi the situation is not as
clear. Actually, referring to the very meaning of a response function the straightforward
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way to associate a fluctuation with χi would be via the choice of equation (A.3) which
is defined for a perturbed process. The quantity χ̂i introduced in this way, however,
has diverging moments. A way out of this problem is to resort to fluctuation-dissipation
theorems. One may enforce a relation between χi and the average of a fluctuating quantity
χ̂i, equation (3), which holds also out of equilibrium. We have shown that the variances
involving χ̂i have a very weak dependence on the particular choice of this fluctuating part,
with the exception of the equal sites variance V χ

ii . For i �= j, V χ
ij is also a second-order

susceptibility Vχ
ij , which allows one to derive an equilibrium relation between variances, the

SOFDT, analogous to the FDT for the averages. Interestingly, the FDT and the SOFTD
can be written in a rather similar form, namely equations (10) and (13), expressing the

vanishing of the first two moments of the quantity D̂i(t, tw) defined in equation (11). The
SOFDT holds also for i = j but in this case Vχ

ii cannot be interpreted as a variance.
The SOFTD relates, in a quite natural way, Vχ

ij to V C
ij , promoting the former to a

role analogous to that advocated for the latter in the context of disordered systems. This
suggests considering Vχ

ij on an equal footing with V C
ij and V Cχ

ij , to study scaling behaviors
and cooperativity. This we have done in the second part of the paper, considering
ferromagnetic systems in and out of equilibrium. We have shown that Vχ, V C and V Cχ

obey scaling forms involving the coherence length ξ in equilibrium or the growing length
L(t) after a quench, similarly to what is known for C and χ. Our results are in good
agreement with what is found analytically for the spherical model [22]. They show that
the time reparameterization invariance scenario proposed for glassy dynamics does not
hold strictly for ferromagnets, as already guessed in [20, 21]. This we find both for critical
and for sub-critical quenches, if the large time limit is taken in the order limtw→∞ limt→∞.
Such a conclusion relies on the fact that Vχ

k=0/V
C
k=0 → ∞ in this particular limit and,

hence, the fluctuations of χ̂ cannot be exclusively triggered by those of Ĉ. Notice that this
is true also for critical quenches where X∞ is finite, showing that, quite obviously, a finite
limiting effective temperature does not guarantee that the scenario proposed in [18, 19]
necessarily holds.
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Appendix A

In this appendix we first discuss a possible definition of the fluctuating part of χi in a
perturbed process (namely, after equation (2)) and then show that for every choice of χ̂i

one obtains the same variances except for V χ
ii .

A.1. The definition of χ̂i in a perturbed process

From equation (2) one has

〈σi〉h = 〈σi〉 +
∑

j

χij(t, tw)hj(tw), (A.1)
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where now we consider a perturbing field switched on from tw onwards, and χij is the

two-point susceptibility. Using a random field with h̄j = 0 and hihj = h2δij (where . . .
means an average over the field realizations) one can single out the equal site susceptibility
as [35]

χi(t, tw) =
1

h2
〈σi(t)〉hhi(tw). (A.2)

We stress here that, on doing this, for computing χi the perturbation does not need to be
switched on only on the site i as in equation (2), and this allows one to consider higher
moments, such as the variances V χ

ij , where the field must be switched on on both sites i
and j. Indeed one can introduce a (perturbed) fluctuating part of the susceptibility as

χ̂i(t, tw) =
1

h2
σi(t)hi(tw), (A.3)

and the correlator

〈χ̂i(t, tw)χ̂j(t, tw)〉 =
1

h4
〈σi(t)σj(t)〉hhi(tw)hj(tw). (A.4)

A.2. Independence of the variances of the choice of χ̂i

For the sake of simplicity, let us consider a discrete time dynamics with two-time
conditional probability given by

P (σ, t|σ′, tw) =
t−1∏

t′=tw

wh(σ(t′ + 1)|σ(t′)), (A.5)

where σ(t) is the configuration of the system at time t and the wh are the transition rates
in the perturbed evolution. The linear susceptibility can always be written in the form

χi(t, tw) =
t∑

t′=tw

〈σi(t)ai(t
′)〉 (A.6)

with [28]

ai(t
′) =

δ lnwh(σ(t′ + 1)|σ(t′))
δhi(t′)

∣
∣
∣
∣
h=0

(A.7)

from which the fluctuating susceptibility can be defined in terms of unperturbed quantities
as

χ̂i(t, tw) = σi(t)

t∑

t′=tw

ai(t
′). (A.8)

Notice that ai depends on the particular form of the perturbed transition probabilities
wh. Then, since for a given unperturbed model there is an arbitrariness in the choice of
the perturbed transition rates [16, 26], one has different definitions of χ̂i and, in principle,
different χi. However, as discussed in [26, 30], once the average is taken in equation (A.6),
all of these definitions are expected to yield essentially the same determination of χi, apart
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from very tiny differences which exactly vanish in equilibrium or in the large time regime.
With the definition (A.8) the following correlators can be built:

〈χ̂i(t, tw)χ̂j(t, tw)〉 =

t−1∑

t′=tw

t−1∑

t′′=tw

〈σi(t)σj(t)ai(t
′)aj(t

′′)〉, (A.9)

and

〈Ĉi(t, tw)χ̂j(t, tw)〉 =

t−1∑

t′=tw

〈σi(t)σi(tw)σj(t)aj(t
′)〉. (A.10)

Even though these quantities explicitly depend on the particular choice of ai, we show
in the following that they can all be written as (non-linear) response functions, which,
therefore, are not expected to depend on the form of ai, in the sense discussed above
for χi. Indeed, considering for simplicity a single-spin dynamics, using equation (A.5)
and proceeding analogously to in the derivation of χi (equation (A.6)), for i �= j one can
compute the following response functions:

R
(2,2)
ij;ij (t, t; t′, t′′) ≡ δ2〈σi(t)σj(t)〉h

δhi(t′)δhj(t′′)

∣
∣
∣
∣
h=0

= 〈σi(t)σj(t)ai(t
′)aj(t

′′)〉 (A.11)

and

R
(3,1)
iij;j (t, tw, t; t′) ≡ δ〈σi(t)σi(tw)σj(t)〉h

δhj(t′)

∣
∣
∣
∣
h=0

= 〈σi(t)σi(tw)σj(t)aj(t
′)〉. (A.12)

Comparing equations (A.9) and (A.10) with equations (A.11) and (A.12) one concludes
that the correlators (A.9) and (A.10) can both be related to response functions whose
values, as for χi, are not expected to depend significantly on the choice of the form of
the wh (and hence of ai). The same holds, therefore, for the variances V χ

i,j and V Cχ
ij .

Incidentally, equations (A.9), (A.11) and (16) show also that V χ
ij = Vχ

ij for i �= j. We

stress that the above argument holds for every ij for V Cχ
ij whilst it cannot be extended

to the equal site variance V χ
ii , as we will show in section A.3. Along the same lines, one

can show that also the variances obtained with the perturbed fluctuating part (A.3) are
related to the same response functions (A.11) and (A.12), and hence take the same values.
For instance, for the correlator (A.4), since

lim
h→0

1

h4
〈σi(t)σj(t)〉hhi(tw)hj(tw) =

t−1∑

t1=tw

t−1∑

t2=tw

δ2〈σi(t)σj(t)〉h
δhi(t1)δhj(t2)

∣
∣
∣
∣
h=0

(A.13)

one has again

〈χ̂i(t, tw)χ̂j(t, tw)〉 =

t−1∑

t1=tw

t−1∑

t2=tw

R
(2,2)
ij;ij (t, t; t1, t2). (A.14)
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A.3. Equal sites

In order to discuss the behavior of V χ
ii we compute explicitly this quantity and Vχ

ii

making the specific choice of wh which leads to equation (7). Using the second-order

fluctuation-dissipation relations derived in [16], for Ising spins R
(2,2)
ij;ij (t, t; t1, t2) can be

rewritten as

R
(2,2)
ij;ij (t, t; t1, t2) =

1

4

{
∂

∂t1

∂

∂t2
〈σi(t)σj(t)σi(t1)σj(t2)〉 − ∂

∂t1
〈σi(t)σj(t)σi(t1)Bj(t2)〉

− ∂

∂t2
〈σi(t)σj(t)Bi(t1)σj(t2)〉 + 〈σi(t)σj(t)Bi(t1)Bj(t2)〉

}

+ 1
2
δ(t1 − t2)δij〈σi(t)

2Bi(t1)σi(t1)〉. (A.15)

Using the property σ2
i = 1 the term 〈σi(t)

2Bi(t1)σi(t1)〉 can be cast as
1
2
〈σi(t)

2B̃i(t1)〉, where B̃i = −∑
σ′ [σ′ − σ]2w(σ′|σ). Writing this term in this form,

equation (A.15) holds generally for generic discrete or continuous variables. We
will use this expression in the following. Integrating over t1 and t2 one obtains

Vχ
ij = 1

4

{

〈σi(t)σj(t)[σi(t) − σi(tw)][σj(t) − σj(tw)]〉

−
∫ t

tw

dt2 〈σi(t)σj(t)[σi(t) − σi(tw)]Bj(t2)〉

−
∫ t

tw

dt1 〈σi(t)σj(t)Bi(t1)[σj(t) − σj(tw)]〉

+

∫ t

tw

dt1

∫ t

tw

dt2 〈σi(t)σj(t)Bi(t1)Bj(t2)〉
}

+ 1
4
δij

∫ t

tw

dt1 〈σi(t)
2B̃i(t1)〉 − χi(t, tw)χj(t, tw). (A.16)

On the other hand, from the definitions (7) and (5) one has

V χ
ij (t, tw) = 〈χ̂i(t, tw)χ̂j(t, tw)〉 − χi(t, tw)χj(t, tw)

= 1
4

[

〈σi(t)σi(t)σj(t)σj(t)〉 − 〈σi(t)σi(t)σj(t)σj(tw)〉

−
∫ t

tw

dt1 〈σi(t)σi(t)σj(t)Bi(t1)〉 − 〈σi(t)σj(t)σj(t)σi(tw)〉

+ 〈σi(t)σi(tw)σj(t)σj(tw)〉 +

∫ t

tw

dt1 〈σi(t)σj(t)Bj(t1)σi(tw)〉

−
∫ t

tw

dt1 〈σi(t)σj(t)σj(t)Bi(t1)〉 +

∫ t

tw

dt1 〈σi(t)σj(t)Bi(t1)σj(tw)〉

+

∫ t

tw

dt1

∫ t

tw

dt2 〈σi(t)σj(t)Bi(t1)Bj(t2)〉
]

− χi(t, tw)χj(t, tw). (A.17)
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This shows once again that in the case i �= j

V χ
ij (t, tw) = Vχ

ij(t, tw). (A.18)

For equal sites, on the other hand, one obtains from equations (A.16) and (A.17) the
following relation:

V χ
ij (t, tw) = Vχ

ij(t, tw) + Kχ
i (t, tw)δij, (A.19)

where

Vχ
ij(t, tw) = −χ2

i (t, tw) − Δi(t, tw), (A.20)

(with Δi defined below equation (14)) and

Kχ
i (t, tw) = −1

4

∫ t

tw

dt1 〈σi(t)
2B̃i(t1)〉. (A.21)

This quantity has been studied for specific models in [30] and it is found to be positive
and to diverge as t − tw increases. Finally, let us consider the equal site variance V χ

ii in
the case where the perturbed definition (A.3) is used. By forming products of χ̂i(t, tw)
one has

V χ
ii (t, tw) = lim

h→0

〈[
δ̂χi(t, tw)

]2〉
= K̃χ

i , (A.22)

with

K̃χ
i (t, tw) = T 2 lim

h→0
h−2 − χ2

i (t, tw). (A.23)

This term diverges in the vanishing field limit. Since V χ
ii is finite, this implies that V χ

ii

and V χ
ii are necessarily different.

In conclusion, with every definition of the fluctuating part the variances and Vχ
ij turn

out to be the same, with the exception of V χ
ii which takes different values.

Appendix B

In this appendix we derive the equilibrium relation (13) among the variances, for i �= j.
First, let us write explicitly the variances defined in equations (4) and (6) with the help
of equation (7):

V C
ij (t, tw) = 〈Ĉi(t, tw)Ĉj(t, tw)〉 − Ci(t, tw)Cj(t, tw) (B.1)

V Cχ
ij (t, tw) = 1

2

[

〈σi(t)σi(tw)σj(t)σj(t)〉 − 〈σi(t)σi(tw)σj(t)σj(tw)〉

−
∫ t

tw

dt1 〈σi(t)σj(t)Bj(t1)σi(tw)〉
]

− 〈σi(t)〉〈σi(tw)〉χj(t, tw)

− Ci(t, tw)χj(t, tw). (B.2)

The variance V χ can be read from equation (A.17).
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In the following, we will use two properties involving the quantity Bi [16, 26, 36]:

〈Bi(t)O(t1)〉 =
∂

∂t
〈σi(t)O(t1)〉 t > t1, (B.3)

〈[Bi(t)σj(t) + Bj(t)σi(t)]O(t1)〉 =
∂

∂t
〈σi(t)σj(t)O(t1)〉 t > t1, (B.4)

where O(t) is a generic observable. In particular, at equilibrium, using time translation
and time inversion invariance, from equation (B.3) one has

〈O(t)Bi(t1)〉eq = − ∂

∂t1
〈O(t)σi(t1)〉eq t > t1, (B.5)

where we have introduced the notation 〈· · ·〉eq to indicate the equilibrium dynamics.

This relation allows us to perform the integrals
∫ t

tw
dt1 〈σi(t)σi(t)σj(t)Bi(t1)〉 and

∫ t

tw
dt1 〈σi(t)σj(t)σj(t)Bi(t1)〉 appearing in equation (A.17). This yields

V χ
ij (t, tw) = 1

4

[

3〈σi(t)σi(t)σj(t)σj(t)〉eq − 2〈σi(t)σi(t)σj(t)σj(tw)〉eq
− 2〈σi(t)σj(t)σj(t)σi(tw)〉eq + 〈σi(t)σi(tw)σj(t)σj(tw)〉eq
+

∫ t

tw

dt1 〈σi(t)σj(t)Bj(t1)σi(tw)〉eq +

∫ t

tw

dt1 〈σi(t)σj(t)Bi(t1)σj(tw)〉eq

+

∫ t

tw

dt1

∫ t

tw

dt2 〈σi(t)σj(t)Bi(t1)Bj(t2)〉eq
]

− χi(t, tw)χj(t, tw). (B.6)

Moreover, exploiting again the relation (B.5), the double integral appearing in
equation (B.6) can be rewritten as
∫ t

tw

dt1

∫ t

tw

dt2 〈σi(t)σj(t)Bi(t1)Bj(t2)〉eq

=

∫ t

tw

dt1

∫ t1

tw

dt2

(

− ∂

∂t2

)

〈σi(t)σj(t)Bi(t1)σj(t2)〉eq

+

∫ t

tw

dt2

∫ t2

tw

dt1

(

− ∂

∂t1

)

〈σi(t)σj(t)Bj(t2)σi(t1)〉eq

= −
∫ t

tw

dt1 〈σi(t)σj(t)Bi(t1)σj(t1)〉eq +

∫ t

tw

dt1 〈σi(t)σj(t)Bi(t1)σj(tw)〉eq

−
∫ t

tw

dt2 〈σi(t)σj(t)Bj(t2)σi(t2)〉eq +

∫ t

tw

dt2 〈σi(t)σj(t)Bj(t2)σi(tw)〉eq

=

∫ t

tw

dt1 〈σi(t)σj(t)Bi(t1)σj(tw)〉eq +

∫ t

tw

dt1 〈σi(t)σj(t)Bj(t1)σi(tw)〉eq

+

∫ t

tw

dt1
∂

∂t1
〈σi(t)σj(t)σj(t1)σi(t1)〉eq

=

∫ t

tw

dt1 〈σi(t)σj(t)Bi(t1)σj(tw)〉eq +

∫ t

tw

dt1 〈σi(t)σj(t)Bj(t1)σi(tw)〉eq
+ 〈σi(t)σi(t)σj(t)σj(t)〉eq − 〈σi(t)σj(t)σi(tw)σj(tw)〉eq, (B.7)
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where we have used the relation (B.4) to obtain the third equality. Substituting this result
into equation (B.6), one finally obtains

V χ
ij (t, tw) = 1

4

[

4〈σi(t)σi(t)σj(t)σj(t)〉eq − 2〈σi(t)σi(t)σj(t)σj(tw)〉eq

− 2〈σj(t)σj(t)σi(t)σi(tw)〉eq + 2

∫ t

tw

dt1 〈σi(t)σj(t)Bj(t1)σi(tw)〉eq

+ 2

∫ t

tw

dt1 〈σi(t)σj(t)Bi(t1)σj(tw)〉eq
]

− χi(t, tw)χj(t, tw). (B.8)

Now, using the FDT χi(t, tw) = Ci(t, t) − Ci(t, tw) and assuming space translation
invariance Ci(t, tw) = Cj(t, tw) and 〈σi(t)σj(t)Bj(t1)σi(tw)〉eq = 〈σi(t)σj(t)Bi(t1)σj(tw)〉eq,
from equations (B.1), (B.2) and (B.8) one obtains

V C
ij (t, tw) + 2V Cχ

ij (t, tw) + V χ
ij (t, tw) = 〈Ĉi(t, t)Ĉj(t, t)〉eq − Ci(t, t)Cj(t, t), (B.9)

which is the equilibrium relation (13).

Appendix C

In this appendix we show that the quantity Vχ
ij(t, tw) at equal sites verifies the relation (18).

In the case of Ising spins, since R
(2,2)
ij;ij vanishes for i = j by definition, one immediately

obtains Vχ
ii = −χ2

i , and, using the definitions (B.1) and (B.2) and the property σ(t)2 ≡ 1,
one can easily check that equation (18) holds. In the case of continuous variables, in
equilibrium, using the property (B.5), from equation (A.16) one has

Vχ
ii(t, tw) = 1

4

{

3〈σi(t)
4〉eq + 〈σi(t)

2σi(tw)2〉eq − 4〈σi(t)
3σi(tw)〉eq

+ 4

∫ t

tw

dt1 〈σi(t)
2Bi(t1)σi(tw)〉eq − 2

∫ t

tw

dt1 〈σi(t)
2Bi(t1)σi(t1)〉eq

+

∫ t

tw

dt1 〈σi(t)
2B̃i(t1)〉eq

}

− χi(t, tw)2. (C.1)

The quantities appearing in the last two terms in the braces at time t1 can be rewritten
as

−2Biσi + B̃i = −2
∑

σ′
[σ′

i − σi]σ
′
iw(σ′|σ) +

∑

σ′
[σ′2

i + σ2
i − 2σ′

iσi]w(σ′|σ)

=
∑

σ′
[−σ′2

i + σ2
i ]w(σ′|σ) (C.2)

yielding

∫ t

tw

dt1 〈σi(t)
2[−2Bi(t1)σi(t1) + B̃i(t1)]〉eq =

∫ t

tw

dt1
∂

∂t1
〈σi(t)

2σi(t1)
2〉eq

= 〈σi(t)
4〉eq − 〈σi(t)

2σi(tw)2〉eq. (C.3)
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Substituting this result into equation (C.1), one finds

Vχ
ii(t, tw) = 〈σi(t)

4〉eq − 〈σi(t)
3σi(tw)〉eq +

∫ t

tw

dt1 〈σi(t)
2Bi(t1)σi(tw)〉eq − χi(t, tw)2 (C.4)

which coincides with equation (18), as can easily be checked recalling the definitions (B.1)
and (B.2).

Appendix D

In this appendix we compute the large time limit of V C , V C,χ and Vχ, starting from an
equilibrium state (tw > teq) and taking the limit t − tw → ∞. For the variance of the
autocorrelation function one has

lim
t−tw→∞

V C
ij (t, tw) = lim

t−tw→∞
[〈Ĉi(t, tw)Ĉj(t, tw)〉eq − Ci(t − tw)Cj(t − tw)]

= Cij,eq(Cij,eq + 2m2), (D.1)

where factorization at large t − tw has been used, and m = 〈σi〉eq is the equilibrium
magnetization.

For the covariance V Cχ
ij (t, tw) one has

lim
t−tw→∞

V Cχ
ij (t, tw) = lim

t−tw→∞

{
1
2

[

Ci(t − tw) − 〈σi(t)σi(tw)σj(t)σj(tw)〉eq

−
∫ t

tw

dt1 〈σi(t)σj(t)Bj(t1)σi(tw)〉eq
]

− m2χj(t, tw) − Ci(t − tw)χj(t − tw)

}

= 1
2

[

m2 − 〈σiσj〉2eq − 2m2(1 − 〈σiσj〉2eq)

− lim
t−tw→∞

∫ t

tw

dt1 〈σi(t)σj(t)Bj(t1)σi(tw)〉eq
]

− m2(1 − m2). (D.2)

The integral can be computed in the following way. Introduce an intermediate time t∗

between t and tw and take tw, t∗ and t sufficiently far apart. Then one can write
∫ t

tw

dt1 〈σi(t)σj(t)Bj(t1)σi(tw)〉eq =

∫ t∗

tw

dt1 〈σi(t)σj(t)〉eq〈Bj(t1)σi(tw)〉eq

+

∫ t

t∗
dt1 〈σi(t)σj(t)Bj(t1)〉〈σi(tw)〉eq. (D.3)

Using the property (B.3), the integral in the first term of the rhs can be rewritten as
∫ t∗

tw

dt1 〈σi(t)σj(t)〉eq〈Bj(t1)σi(tw)〉eq = 〈σi(t)σj(t)〉eq
∫ t∗

tw

dt1
∂

∂t1
〈σj(t1)σi(tw)〉eq

= 〈σi(t)σj(t)〉eq[〈σj(t
∗)σi(tw)〉eq − 〈σj(tw)σi(tw)〉eq]

→ m2〈σiσj〉eq − 〈σiσj〉2eq, (D.4)

where in the last line the limit t∗ → ∞ has been taken. Analogously, using the
property (B.5), the second term on the rhs of equation (D.3) can be computed, yielding

−m(m − 〈σiσj〉eqm). (D.5)
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Thus, replacing the integral appearing in equation (D.2) with equations (D.4) and (D.5)
one finds

lim
t−tw→∞

V Cχ
ij (t, tw) = −m2Cij,eq. (D.6)

From equation (10), by means of analogous computations, one can easily check that

lim
t−tw→∞

Vχ
ij(t, tw) = −C2

ij,eq. (D.7)
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