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Abstract. We study the Einstein relation between diffusion and response to
an external field in systems showing superdiffusion. In particular, we investigate
a continuous time Lévy walk where the velocity remains constant for a time τ
with distribution Pτ (τ) ∼ τ−g. At varying g the diffusion can be standard or
anomalous; in spite of this, if in the unperturbed system a current is absent, the
Einstein relation holds. In the case where a current is present the scenario is
more complicated and the usual Einstein relation fails. This suggests that the
main ingredient for the breaking of the Einstein relation is not the anomalous
diffusion but the presence of a mean drift (current).
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1. Introduction

The fluctuation-dissipation relation (FDR) is one of the fundamental results of statistical
physics [1]. In his celebrated work on Brownian motion, Einstein gave the first example
of FDR. In the absence of external forcing, at large times, one has

〈x(t)〉 = 0 and 〈x2(t)〉 � 2Dt, (1)

where x is the position of the colloidal particle, D is the diffusion coefficient and the average
refers to the unperturbed dynamics. If a small constant external force E is applied, one
obtains a linear drift

〈x(t)〉E � μEt, (2)

where 〈· · ·〉E is the average on the perturbed system, and μ is the mobility. The remarkable
result obtained by Einstein is the proportionality between 〈x(t)〉E and the mean square
displacement (MSD) 〈x2(t)〉:

〈x2(t)〉
〈x(t)〉E =

2

βE , (3)

namely μ = βD, where β is the inverse temperature and we have taken the Boltzmann
constant kB = 1.

In the last few decades much research has been devoted to the study of anomalous
diffusion, where, instead of (1), one has

〈x2(t)〉 ∼ t2ν with ν �= 1/2, (4)

see for instance [2]–[7]. The case ν < 1/2 is called subdiffusion while if ν > 1/2 we are in
the presence of superdiffusion. It is quite natural to wonder about the validity of the FDR
in these anomalous situations. Important results showing the proportionality between
〈x(t)〉E and 〈x2(t)〉, which we refer to as the Einstein relation ‘at equilibrium’, have
already been obtained for both superdiffusive [8, 9, 7] and subdiffusive [2, 10, 7] anomalous
dynamics. Differently, the situation where the drift is compared to the mean square
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displacement in a state which is already ‘out of equilibrium’, either due to a current [11]
or due to dissipation [12], has been studied only in the subdiffusive cases.

The aim of this letter is to discuss the validity of the Einstein relation in equilibrium
and out-of-equilibrium situations in the presence of superdiffusive dynamics. In particular,
we consider a Lévy walk collision process [13] and we show that the Einstein relation is
violated when the perturbation is applied on a reference state where a current is already
present.

2. The model

We consider an ensemble of probe particles of mass m endowed with scalar velocity v and
position x. Each probe particle only interacts with particles of mass M and velocity V
extracted from an equilibrium bath at temperature T . We assume that the scattering
probability does not depend on the relative velocity between the probe particle and the
colliders, as, for instance, in the case of Maxwell-molecule models [14]. The velocity of
the probe particle changes from v to v′ at each collision, according to the rule:

v′ = γv + (1 − γ)V, (5)

where γ = (ζ−α)/(1+ζ), with ζ = m/M , and α is the coefficient of restitution (α = 1 for
an elastic collision). The velocity V of the bath particles is a random variable generated
from a Gaussian distribution with zero mean and variance T/M :

PS(V ) =

√
M

2πT
exp

{
−M

2T
V 2

}
. (6)

The elementary steps of the dynamics are made by: (i) a flight, x(t + τ) = x(t) +
v′τ + 1/2Eτ 2, where x(t) is the position of the probe particle at time t, with τ taken
from a distribution Pτ (τ) and E a constant acceleration, followed by (ii) a collision
v′ = γv + (1 − γ)V , with V taken from the Gaussian distribution (6). In the specific
case α = 1 and M = m, one has γ = 0 and the collision rule (5) results in a random
update of the velocity according to the distribution (6). The duration of each flight, τ , is
an independent identically distributed random variable with probability

Pτ (τ) ∼ τ−g, (7)

with g > 1. This kind of process is called a Lévy walk collision process [13], and may be
interpreted as due to scattering centers randomly distributed on a fractal spatial structure,
such as for instance in the case of molecular diffusion in porous media [15]. If α �= 1 or
m �= M , with α �= ζ , a dependence on the last velocity before the collision remains. In
this case velocity correlations can be measured in the system, as discussed in section 3.1.

According to the dynamic rules of the process described above, the displacement of
the probe particle is always finite in a finite time. The anomalous dynamics of such
a model has been studied in [16], showing that the process is an example of ‘strong’
anomalous diffusion, namely that it is not possible to find a scaling for the probability
density function (PDF) of displacements. Such a collision process becomes a standard
diffusive system when Pτ decays fast enough: in this regime the dynamics is qualitatively
equivalent to that of a system with exponential Pτ , studied for instance in [17]–[19]. Lévy
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walk collision processes have been thoroughly studied, see for instance [7], where the
behavior of the mean square displacement has been obtained analytically.

We recall here a simple argument already presented in [16] to study the asymptotic
behavior of higher order moments of displacement and that can be easily applied also to
the case with an external perturbing field that we are going to discuss here in section 3. In
order to obtain in a simple way the dominant asymptotic behavior of 〈x2(t)〉, we introduce
a cut-off tc for Pτ (τ):

Pτ (τ) ∼
{

τ−g if τ < tc

0 if τ > tc.
(8)

Assuming x = 0 as the initial condition for each trajectory, the mean square displacement
after time t, where N(t) collisions occurred, can be written in full generality as:

〈x2(t)〉 =

〈[N(t)∑
i=1

viτi

]2
〉

�
N̄(t)∑
i=1

〈v2
i τ

2
i 〉 + 2N̄(t)

N̄(t)∑
i=1

〈viv0τiτ0〉. (9)

Here vi denotes the velocity of the probe particle after the ith collision, τi is the time
elapsed between the collisions i and i + 1 and N̄(t) is the average number of collisions
occurring up to time t. The average 〈· · ·〉 is taken over the distributions (6) and (7). From
equation (8) we have, for n + 1 − g > 0,

〈τn〉c ∼ tn+1−g
c , (10)

where 〈· · ·〉c denotes an average over the distribution (8) with the cut-off tc.
We start by considering the case with independent velocities vi, corresponding to

a choice of parameters such that γ = 0. Then, estimating 〈x2(t)〉 at a time t � tc,
so that the average number of collisions along the trajectory can be approximated to
N̄(t) � t/〈τ〉c, and considering that the cross terms in equation (9) are zero, we can write

〈x2(t)〉 � t

〈τ〉c 〈v
2〉〈τ 2〉c. (11)

In the case g > 3, both 〈τ〉c and 〈τ 2〉c are finite, even in the limit tc → ∞, so that we
find the simple diffusive behavior 〈x2(t)〉 ∼ t. For t � tc and 1 < g < 3, instead of (11)
we expect

〈x2(t)〉 ∼ t2ν . (12)

One can easily find the exponent ν with a matching argument. Comparing (11) and (12)
at t ∼ tc and using (10), we obtain ν = 1/2 for g > 3, ν = 2 − g/2 for 2 < g < 3, and
ν = 1 for 1 < g < 2 (logarithmic corrections appear at the values g = 2 and 3 [7]).

3. Einstein relation

The main concern of our study is the question about the validity of the Einstein relation
for superdiffusive anomalous dynamics. In particular such a relation can be checked in
two different situations.
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(A) The drift due to the external force is compared with the MSD of the probe particle
in the absence of any pulling force. This case corresponds to a fluctuation-dissipation
experiment realized by switching on from zero the external perturbation.

(B) The drift is compared to the MSD in a state where a current is already present. This
procedure corresponds to increasing the intensity of the perturbation in a state already
perturbed and comparing the average current in this state with the fluctuations in
the initial reference state.

In the following, we will refer to situation (A) as a test of the fluctuation-dissipation
relation at equilibrium while to case (B) as a test out of equilibrium. We will show that
these two cases are very different.

3.1. Perturbation of a state without current

The argument used in section 2 to study the MSD can be applied to the drift, yielding

〈x(t)〉E =

〈
N(t)∑
i=1

(
viτi +

E
2
τ 2
i

)〉
=

t

〈τ〉c

[
〈τ〉c〈v〉 +

E
2
〈τ 2〉c

]
=

E
2

t

〈τ〉c 〈τ
2〉c, (13)

which perfectly matches the result for the MSD found in equation (11). Therefore, when
we perturb an equilibrium state, namely a state without currents, we have for any value
of g > 1

〈x2(t)〉
〈x(t)〉E = const. (14)

Let us note that the Einstein relation holds quite generally, namely it persists even if we
make our process non-Markovian by allowing some memory across collisions, that is, we
put γ > 0 in the collision rule equation (5), preventing a complete reshuffling of velocities.
In this case the MSD reads as:

〈x2(t)〉 =

N̄(t)∑
i,j

〈viτivjτj〉 ∼ t

〈τ〉c

⎡
⎣〈v2〉〈τ 2〉c + 2〈τ〉2c

N̄(t)∑
i

〈viv0〉
⎤
⎦ , (15)

because the collision times are still not dependent on the velocity but correlations between
the velocities must be taken into account. Note that, even in the presence of non-
independent {vi}, if

∑n
i 〈viv0〉 yields a finite contribution at large times the second term

on the right of equation (15) grows as 〈τ〉2c , namely it is subdominant compared to 〈τ 2〉c
in all situations. If the exponent of the flight time distribution is 1 < g < 2, then
〈τ 2〉c ∼ t3−g > t4−2g ∼ 〈τ〉2c ; if 2 < g < 3 we have that 〈τ〉2c is a finite number, while for
g > 3 we recover a simple diffusive behavior for both the MSD and the drift. In particular,
in the case g > 3 the presence of correlations of velocities amounts to a renormalization
of the diffusion coefficient.

We conclude that the asymptotic behavior of the MSD is the same as in equation (11).
From equation (13) one can see that no cross correlations between velocities at different
times appear, so that the drift is not influenced by velocity correlations across collisions.
Therefore, we can conclude that the Einstein relation is preserved for all values of the
exponent g of the flight times’ distribution, see for instance figure 1 for the case g = 3/2.
This example shows how the Einstein relation is a stable result, valid under quite general
conditions also in the presence of anomalous dynamics [7, 20, 11].
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Figure 1. Log–log plot of the MSD in the case of superdiffusive dynamics with
g = 3/2, 〈x2(t)〉 (black line) and of the drift 〈x(t)〉E (red dashed line) in the case
of uniform external field E = 1.5. Both quantities behave as ∼t2 and the Einstein
relation is verified.

3.2. Perturbation of a state with a current

In order to study the Einstein relation out of equilibrium, let us first consider a simple
Gaussian process, namely the Brownian motion of a colloidal particle when we add a
constant force pulling the particle. In this case it is sufficient to replace the MSD around
the average position 〈[δx(t)]2〉E = 〈x2(t)〉E−〈x(t)〉2E for the simple MSD, in order to recover
the Einstein relation with the drift 〈x(t)〉E+δE−〈x(t)〉E (here 〈· · ·〉E+δE denotes the average
over a state where the further perturbation δE is applied). In what follows we consider
that a non-trivial violation of the Einstein relation happens when also the MSD around
the drift lacks proportionality with the drift itself. This is indeed the case of superdiffusive
dynamics.

For simplicity we will refer to the case γ = 0 but the physical picture remains the same
also when the case with memory is considered. In our model, by applying the constant
field E > 0, we have:

〈x2(t)〉E =

〈[N(t)∑
i=1

(
viτi +

E
2
τ 2
i

)]2
〉

tc

� E2

4
t2
〈τ 2〉2c
〈τ〉2c

+ t

(E2

4

〈τ 4〉c − 〈τ 2〉2c
〈τ〉c +

〈v2〉〈τ 2〉c
〈τ〉c

)
(16)

〈[δx(t)]2〉E = 〈x2(t)〉E − 〈x(t)〉2E � t

(E2

4

〈τ 4〉c − 〈τ 2〉2c
〈τ〉c +

〈v2〉〈τ 2〉c
〈τ〉c

)
. (17)

In the case 2 < g < 3, namely when the distribution Pτ (τ) has finite mean and infinite
variance, the diffusion around the average position behaves asymptotically as

〈[δx(t)]2〉E � t

(E2

4

t5−g
c − t6−2g

c

〈τ〉c +
〈v2〉t3−g

c

〈τ〉c

)
. (18)
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Figure 2. Log–log plot of the MSD (black line) in the presence of a constant
external field E = 1.5 and drift (red dashed line) with the same value of the field,
in the case of superdiffusive dynamics with g = 5/2. We observe a breaking of
the Einstein relation with leading asymptotic behaviors, 〈[δx(t)]2〉E ∼ t7/2, see
equation (18), and 〈x(t)〉E ∼ t3/2, see equation (13).

Table 1. Columns from left to right: MSD for unperturbed dynamics; drift in the
case of constant field E > 0; second cumulant, i.e. 〈[δx(t)]2〉E = 〈x2(t)〉E −〈x(t)〉2E ,
in the presence of a constant field E .

〈x2(t)〉 〈x(t)〉E 〈[δx(t)]2〉E
g > 5 t t t
3 < g < 5 t t t6−g

2 < g < 3 t4−g t4−g t6−g

1 < g < 2 t2 t2 t4

Considering for instance the case g = 5/2, by applying the matching argument to
equation (18), we find that the leading behaviors are

〈x2(t)〉E ∼ t3 〈[δx(t)]2〉E ∼ t7/2, (19)

whereas, from equation (13), we have that

〈x(t)〉E+δE − 〈x(t)〉E ∝ 〈x(t)〉E ∼ t3/2, (20)

as shown in figure 2. The Einstein relation is therefore violated in the out-of-equilibrium
regime for both the MSD and MSD around the average current for all the values of the
flight time distribution exponent g < 5, as summarized in table 1.

As already noticed in [11] in the context of subdiffusive dynamics, such a violation
of the Einstein relation is accompanied by an asymmetric spreading of the PDF P (x, t)
of observing the particle in x at time t. In the case of the standard random walk, when
a perturbation E is applied, the P (x, t) remains Gaussian and the mean value coincides
with the most probable one. On the contrary, in the present case, the average value of
x(t), due to the strongly asymmetric shape, grows much faster than the most probable
value. The tail of P (x, t) is reported in figure 3 (main frame). The stationary distribution

doi:10.1088/1742-5468/2012/06/L06001 7
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Figure 3. Main frame: semi-log plot of P (x, t) at t = 10 (black histogram) and
t = 100 (red histogram) for superdiffusive dynamics with g = 5/2 and constant
external field E = 1.5. Notice that for increasing time the typical (most frequent)
value and the mean (indicated with a vertical dashed line) of the distribution
become increasingly different for growing times. The increasing average value
of the distribution is due to the arising of a power-law tail for P (x, t). Inset:
semi-log plot of the velocity PDF P (v).

of the velocities is also asymmetric, and with a power-law tail, as shown in the inset of
figure 3. The study of the velocity distribution in the diffusive case can be found in [19],
while a careful study of the behavior of higher moments and of the scaling properties of
P (x, t) in similar models in the absence of external field can be found in [16] and [21],
respectively.

The study of the Einstein relation on a state with non-zero current induced by a
constant field E allows us to show that there is some ‘anomaly’ in the dynamics also
when the exponent of the power-law distribution of times is g > 3. More precisely,
when 3 < g < 5, at equilibrium, i.e. in the absence of current, a fluctuation-dissipation
experiment would not show any anomaly in the dynamics, because 〈[δx(t)]2〉 ∼ 〈x(t)〉E .
On the other hand, the same experiment performed out of equilibrium, i.e. comparing the
MSD around the drift with the drift itself, shows an evident violation

〈[δx(t)]2〉E
〈x(t)〉E ∼ t5−g. (21)

4. Conclusions

The present study concerns the comparison of the drift of a probe particle in the presence
of an external field with its MSD, measured either in the presence or in the absence of an
external perturbation. The outcome of our study is that, while for a Lévy walk process
the equilibrium fluctuation-dissipation relation is always valid [8], the situation is very
different in the out-of-equilibrium case, where we have a breaking of the Einstein relation.
In particular, we find that the standard fluctuation-dissipation relation can be recovered
by replacing the MSD with the diffusion around the average current 〈x2(t)〉E − 〈x(t)〉2E ,
as happens for standard random walks, only for values of the exponent g > 5. This
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is a new and unexpected result, since already for g > 3 we observe a simple diffusive
dynamics at equilibrium, even if the P (x, t) is non-Gaussian. The non-Gaussian nature
of the distribution of displacements emerges for 3 < g < 5 only through a ‘response
experiment’ in the presence of some currents.

As shown in figure 3, the violation of the fluctuation-dissipation relation for g < 5
comes together with a strongly asymmetric shape of the P (x, t) for large times. Let us
note that such a mechanism, namely a transport mechanism which does not correspond
to a uniform shift of the P (x, t), is peculiar not only to this superdiffusive model, but has
already been observed in the context of subdiffusive dynamics [11].
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Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas (Lectures Notes in Physics vol 511) ed
S Benkadda and G M Zaslavsky (Berlin: Springer)

[14] Ernst M H, Nonlinear model-Boltzmann equations and exact solutions, 1981 Phys. Rep. 78 1
[15] Levitz P, From Knudsen diffusion to Lévy walks, 1997 Europhys. Lett. 39 593
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