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We present a translation of Paul Langevin’s landmark paper. In it Langevin successfully applied
Newtonian dynamics to a Brownian particle and so invented an analytical approach to random
processes which has remained useful to this day. ©1997 American Association of Physics Teachers.

I. LANGEVIN, EINSTEIN, AND MARKOV
PROCESSES

In 1908, three years after Albert Einstein initiated the
modern study of random processes with his ground breaking
paper on Brownian motion,1 Paul Langevin~1872–1946!, a
French physicist and contemporary of Einstein, devised a
very different but likewise successful description of Brown-
ian motion.2 Both descriptions have since been generalized
into mathematically distinct but physically equivalent tools
for studying an important class of continuous random pro-
cesses.

Langevin’s work, like Einstein’s, remains current and is
widely referenced and discussed.3 Yet, while Einstein’s pa-
per is readily available in English,4 Langevin’s is not. Here
we present a translation of this important primary source.

Langevin’s approach to Brownian motion is, in his own
words, ‘‘infinitely more simple’’ than Einstein’s. Indeed, his
paper is apparently more simple and for this reason is attrac-
tive as an introduction to the subject. While Einstein, starting
from reasonable hypotheses, derived and solved a partial dif-
ferential equation~i.e., a Fokker–Planck equation! governing
the time evolution of the probability density of a Brownian
particle, Langevin applied Newton’s second law to a repre-
sentative Brownian particle. In this way Langevin invented
the ‘‘F5ma’’ of stochastic physics now called the ‘‘Lange-
vin equation.’’

Today it is clear that the apparent simplicity of Langevin’s
approach was purchased at the cost of forcing into existence
new mathematical objects with unusual properties. While
Langevin manipulated these objects~Gaussian white noise
and the stochastic differential equation! cautiously and intu-
itively, their formal properties have now been developed and
widely applied. Thus Langevin’s 1908 paper inspired new
mathematics as well as new physics.

The Langevin equation and the Fokker–Planck equation
both describe the physics of continuous, Markov~i.e.,
memoryless stochastic! processes. In fact, Einstein and
Langevin used their respective methods to derive the same
result: that the root-mean-squared displacement of a Brown-
ian particle~imagine, say, a perfume particle in a still room!
increases with the square root of the time. Nonetheless,
Langevin’s analysis of Brownian motion was slightly more
general and more correct than Einstein’s. In particular,
Langevin introduced a stochastic force~his phrase is
‘‘complementary force’’! pushing the Brownian particle
around in velocity space, while Einstein worked completely

in configuration space. This is to say, in modern terminol-
ogy, Langevin described the Brownian particle’s velocity as
an Ornstein–Uhlenbeck process and its position as the time
integral of its velocity, while Einstein described its position
as a driftless Wiener process. The former is a covering
theory for the latter and reduces to it in a special ‘‘coarse-
graining’’ limit.5

II. LANGEVIN’S WORK AND LIFE

Langevin is, probably, best known for his still standard
theoretical model of para- and diamagnetism. During World
War I he did early work on sonar and he was an enthusiastic
advocate of the then new ideas in relativity. Einstein said of
him ‘‘...It seems to me certain that he would have developed
the special theory of relativity if that had not been done
elsewhere, for he had clearly recognized the essential
points.’’6

Langevin loved teaching and excelled at it. A married man
with four children, he had an affair in 1911 with the recently
widowed Marie Curie which was publicized by scandal mon-
gering newspapers. He subsequently challenged his chief tor-
mentor, the editor Te´ry, to a duel. Although the challenge
was accepted and the combatants met on a sports field, no
shots were fired because Te´ry did not want, as he said, ‘‘to
deprive French science of a precious mind.’’7 In the prelude
to World War II Langevin became a vocal anti-fascist and
peace activist. Eventually he joined the French communist
party. He was arrested by the Nazis after their invasion of
France in 1940, was briefly imprisoned by the Vichy govern-
ment, and finally escaped to Switzerland. Thus, near the end
of his life, he personally experienced, as it were, the chaos of
Brownian motion into which the whole of Europe was
thrown. He died in 1946 and was buried with high honors
conferred by the French government.

III. THE TEXT

Langevin’s note is divided into three untitled parts. His
analysis of Brownian motion proper begins in the first sen-
tence of part II with the phrase ‘‘...and, furthermore, that it is
easy to give a demonstration...’’ and continues to the end of
part II. This analysis is self-contained, constitutes the bulk of
his paper, and will be of most interest to physicists today.
However, the careful reader may also note that Langevin’s
characterization of his sources in parts I and III is problem-
atic.
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At issue is the correct form and quantitative verification of
Dx

2: the mean-square displacement of a Brownian particle. In
part I Langevin refers to two papers of Einstein’s in which
the latter derives the functional form ofDx

2 reported in
Langevin’s equation~1!. Langevin’s own analysis in part II
also generates Eq.~1!. This much is clear.

Smoluchowski, on the other hand, using yet different
methods ‘‘...has obtained forDx

2 an expression of the same
form as~1! but which differs from it by the coefficient 64/
17.’’ Does Smoluchowski’s theory predict a value ofDx

2

larger by a factor of 64/27 or smaller by a factor of 27/64
than that predicted by the Einstein/Langevin formula~1!? If
the translation is here slightly ambiguous, it only reflects a
similar ambiguity in Langevin’s French. Yet the natural
reading is that Smoluchowski’s prediction is larger than Ein-
stein’s and Langevin’s by a factor of 64/27. Indeed, an in-
spection of Smoluchowski’s paper confirms this interpreta-
tion. We mention this detail because it leads to the problem.

In part III we find that the only experimental results avail-
able to Langevin with which to compare theory are those of
Svedberg, and these, apparently, ‘‘...differ from those given
by formula ~1! only by approximately the ratio of 1 to 4.’’
Again, the natural interpretation is that Svedberg’s measure-
ments are consistent with a value ofDx

2 one-fourth the size of
that predicted by the Einstein/Langevin formula~1!. Such
divergences among theories and experiment are, perhaps, un-
exceptional in a new field. However, Langevin goes on to
say, in the second half of the sentence quoted above, that
Svedberg’s experimental results are ‘‘...closer to the ones
calculated with M. Smoluchowski’s formula.’’ How can this
be? Smoluchowski predicts a mean square displacementDx

2

larger while Svedberg measures aDx
2 smaller than that of the

Einstein/Langevin formula~1!, yet Svedberg’s results are
supposed to be closer to those predicted by Smoluchowski!
Evidently, Langevin misstates the case. In just what way and
for what reason, we are unsure.

If we must fault Langevin’s exposition, we admire his
physics. In the first place Langevin found that even if Smolu-
chowski’s method is sound his execution of it was mistaken.
Langevin corrected Smoluchowski’s calculation and found
that it too leads to formula~1! without the suspicious factor
64/27. Langevin also discerned that Svedberg’s measurement
of Dx

2 was not direct and that the Brownian particles the
latter observed were probably too small to invoke Stokes’s
formula upon which formula~1! depended. Fortunately,
Langevin had more confidence in his and Einstein’s well
motivated and well executed theories than in the supposed
convergence of flawed theory and flawed experiment.

ACKNOWLEDGMENTS

The authors thank the publishers Gauthier-Villars~Paris!
for permission to translate the Langevin article and acknowl-
edge the assistance of Allison Lemons and Ken Friesen.

a!Electronic mail: dlemons@bethelks.edu
1Albert Einstein, ‘‘On the movement of small particles suspended in sta-
tionary liquids required by the molecular-kinetic theory of heat,’’ Ann.
Phys.17, 549–60~1905!, appearing inThe Collected Papers of Albert
Einstein, English translation by Anna Beck~Princeton U.P., Princeton, NJ,
1989!, Vol. 2, pp. 123–134.

2Paul Langevin, ‘‘Sur la the´orie du mouvement brownien,’’ C. R. Acad.
Sci. ~Paris! 146, 530–533~1908!.

3See, for example, relevant monographs by C. W. Gardiner,Handbook of
Stochastic Methods~Springer-Verlag, New York, 1990!, pp. 6–8; N. G.
Van Kampen,Stochastic Processes in Physics and Chemistry~North Hol-
land, New York, 1992!, pp. 219 ff; and D. T. Gillespie,Markov Processes;
An Introduction for Physical Scientists~Academic, New York, 1992!, pp.
138 ff.

4See also the collectionAlbert Einstein, Investigations on the Theory of the
Brownian Movement~Dover, New York, 1956!, pp. 1–18.

5Daniel T. Gillespie, ‘‘Exact numerical simulation of the Ornstein–
Uhlenbeck process and its integral,’’ Phys. Rev. E54, 2084–2091~1996!.

6Dictionary of Scientific Biography, edited by Charles Coulston Gillispie
~Scribners, New York, 1971!, Vol. VII, p. 10.

7Françoise Giroud,Marie Curie: A Life, translated by Lydia Davis~Holmes
and Meier, New York, 1986!, pp. 183–184.

PHYSICS--On the Theory of Brownian Motion
A note from M. P. Langevin, presented by M. Mascart.

I. The very great theoretical importance presented by the
phenomena of Brownian motion has been brought to our
attention by M. Gouy.~1! We are indebted to this physicist
for having clearly formulated the hypothesis which sees in
this continual movement of particles suspended in a fluid an
echo of molecular-thermal agitation, and for having demon-
strated this experimentally, at least in a qualitative manner,
by showing the perfect permanence of Brownian motion, and
its indifference to external forces when the latter do not
modify the temperature of the environment.

A quantitative verification of this theory has been made
possible by M. Einstein~2!, who has recently given a formula
that allows one to predict, at the end of a given timet, the
mean squareDx

2 of displacementDx of a spherical particle in
a given directionx as the result of Brownian motion in a
liquid as a function of the radiusa of the particle, of the
viscositym of the liquid, and of the absolute temperature T.
This formula is:

~1! Dx
25

RT

N

1

3pma
t

where R is the perfect gas constant relative to one gram-
molecule and N the number of molecules in one gram-
molecule, a number well known today and around 831023.

M. Smoluchowski~3! has attempted to approach the same
problem with a method that is more direct than those used by
M. Einstein in the two successive demonstrations he has
given of his formula, and he has obtained forDx

2 an expres-
sion of the same form as~1! but which differs from it by the
coefficient 64/27

II. I have been able to determine, first of all, that a correct
application of the method of M. Smoluchowski leads one to
recover the formula of M. Einsteinprecisely, and, further-
more, that it is easy to give a demonstration that is infinitely
more simple by means of a method that is entirely different.

The point of departure is still the same: The theorem of the
equipartition of the kinetic energy between the various de-
grees of freedom of a system in thermal equilibrium requires
that a particle suspended in any kind of liquid possesses, in

the directionx, an average kinetic energy
RT

2N equal to that of

a gas molecule of any sort, in a given direction, at the same
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temperature. Ifj5
dx

dt is the speed, at a given instant, of the

particle in the direction that is considered, one therefore has
for the average extended to a large number of identical par-
ticles of massm

~2! mj25
RT

N
.

A particle such as the one we are considering, large rela-
tive to the average distance between the molecules of the
liquid, and moving with respect to the latter at the speedj,
experiences a viscous resistance equal to26pmaj accord-
ing to Stokes’ formula. In actual fact, this value is only a
mean, and by reason of the irregularity of the impacts of the
surrounding molecules, the action of the fluid on the particle
oscillates around the preceding value, to the effect that the
equation of the motion in the directionx is

~3! m
d2x

dt2
526pma

dx

dt
1X.

About the complementary force X, we know that it is indif-
ferently positive and negative and that its magnitude is such
that it maintains the agitation of the particle, which the vis-
cous resistance would stop without it.

Equation~3!, multiplied by x, may be written as:

~4!
m

2

d2x2

dt2
2mj2523pma

dx2

dt
1Xx.

If we consider a large number of identical particles, and
take the mean of the equations~4! written for each one of
them, the average value of the termXx is evidently null by
reason of the irregularity of the complementary forcesX. It

turns out that, by settingz5
dx2

dt ,

m

2

dz

dt
13pmaz5

RT

N
.

The general solution

z5
RT

N

1

3pma
1Ce2

6pma
m t

enters aconstant regimein which it assumes the constant
value of the first term at the end of a time of orderm/6pma
or approximately 1028 seconds for the particles for which
Brownian motion is observable.

One therefore has, at a constant rate of agitation,

dx2

dt
5

RT

N

1

3pma
;

hence, for a time intervalt,

x22x0
25

RT

N

1

3pma
t.

The displacementDx of a particle is given by

x5x01Dx ,

and, since these displacements are indifferently positive and
negative,

Dx
25x22x0

25
RT

N

1

3pma
t;

thence the formula~1!.

III. A first attempt at experimental verification has just been
made by M. T. Svedberg~4!, the results of which differ from
those given by formula~1! only by about the ratio 1 to 4 and
are closer to the ones calculated with M. Smoluchowski’s
formula.

The two new demonstrations of M. Einstein’s formula,
one of which I obtained by following the direction begun by
M. Smoluchowski, definitely rule out, it seems to me, the
modification suggested by the latter.

Furthermore, the fact that M. Svedberg does not actually
measure the quantityDx

2 that appears in the formula and the
uncertainty of the real diameter of the ultramicroscopic gran-
ules he observed call for new measurements. These, prefer-
ably, should be made on microscopic granules whose dimen-
sions are easier to measure precisely and for which the
application of the Stokes formula, which neglects the effects
of the inertia of the liquid, is certainly more legitimate.

FOOTNOTES

@translators note: In the original, footnote numbering started
anew on each page; here, in order to avoid confusion, num-
bering is sequential throughout the paper.#

1. Gouy, Journ. de Phys., 2e série, t. VII, 1888, p. 561;
Comptes rendus, t. CIX, 1889, p. 102.

2. A. Einstein, Ann. d. Physik, 4e série, t. XVII, 1905, p.
549; Ann. d. Physik, 4e série, t. XIX, 1906, p. 371.

3. M. von Smoluchowski, Ann. d. Physik, 4e série, t. XXI,
1906, p. 756.

4. T. Svedberg, Studien zer Lehre von den kolloı¨den Lö-
sungen. Upsala, 1907.

DEFINING THE DYNE

A parrot-like learning of stereotyped phrases is apt to produce calamitous results, as was the
case with what I once read in an examination paper as the definition of a ‘‘dyne’’: ‘‘A dyne is that
force which, when placed one centimeter away from a magnetic pole of exactly similar strength,
repels it with the force of one dyne.’’

W. F. G. Swann, ‘‘The Teaching of Physics,’’ Am. J. Phys.19~3!, 182–187~1951!.
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